
Efficiency-based hp-refinement for

finite element methods

by

Lei Tang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Applied Mathematics

Waterloo, Ontario, Canada, 2007

c©Lei Tang, 2007



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THE-

SIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public

ii



Abstract

Two efficiency-based grid refinement strategies are investigated for adaptive finite element

solution of partial differential equations. In each refinement step, the elements are ordered

in terms of decreasing local error, and the optimal fraction of elements to be refined is deter-

mined based on efficiency measures that take both error reduction and work into account.

The goal is to reach a pre-specified bound on the global error with a minimal amount of

work. Two efficiency measures are discussed, work times error and accuracy per compu-

tational cost. The resulting refinement strategies are first compared for a one-dimensional

model problem that may have a singularity. Modified versions of the efficiency strategies

are proposed for the singular case, and the resulting adaptive methods are compared with a

threshold-based refinement strategy. Next, the efficiency strategies are applied to the case

of hp- refinement for the one-dimensional model problem. The use of the efficiency-based

refinement strategies is then explored for problems with spatial dimension greater than

one. The work times error strategy is inefficient when the spatial dimension, d, is larger

than the finite element order, p, but the accuracy per computational cost strategy provides

an efficient refinement mechanism for any combination of d and p.
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Chapter 1

Introduction

Finite element methods (FEM) are an attractive class of methods for the numerical solution

of partial differential equations (PDEs). They are motivated by variational formulations

of a PDE boundary value problem in a certain properly chosen solution space U . By par-

titioning the problem domain Ω into a union of sub-domains, finite dimensional subspaces

Uh ⊂ U , are easily constructed. Then, in a general setting, finite element methods seek

approximate solutions uh by solving variational problems in Uh. Finite element methods

possess many features that are absent from other numerical PDE methods. For example,

in general settings, the finite element approximation uh is a projection of u into the fi-

nite dimensional subspace, satisfying certain minimization properties. This implies that

techniques from functional analysis and interpolation theory can be used directly for the

analysis of error convergence. Also, finite element methods can deal with irregular domains

and unstructured grids. Furthermore, the resulting linear systems are usually easy to solve.

In the literature, it is shown that the linear systems of many PDE problems discretized

with finite element methods can be solved by multigrid efficiently. Moreover, the most

important feature of FEM is that adaptive grid refinement based on an error estimator can

be applied to reduce the error in an efficient fashion when a sharp, easily computed local

a posteriori error estimator is available.

Adaptive finite element methods are being used extensively as powerful tools for ap-

proximating solutions of partial differential equations (PDEs) in a variety of application

fields, see, e.g., [1, 2, 3, 12, 18]. Various strategies have been developed for adaptive re-
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2 hp-Adaptive Refinement

finement and for generating mesh sequences with roughly optimal error convergence, i.e.,

highly accurate mesh sequences. For example, one can consider threshold-based refinement

strategies which refine a properly chosen fixed fraction of elements on each refinement level,

or strategies which refine elements with local error greater than a fixed fraction of the max-

imum local error (cf [9, 12]). However, in these approaches the total work to generate the

mesh sequence is barely considered. There are examples which show that, if the solution

contains highly singular points, threshold-based strategies would only refine the singular

elements multiple times. Note that in order to evaluate the a-posteriori error estimator,

we generally require solving the linear system after each refinement. Even if optimal linear

solvers, such as multigrid, are used, large amount of work may be required. This issue mo-

tivates us to develop new strategies by taking into account both work and error reduction,

in order to generate a highly accurate mesh sequence efficiently.

This thesis develops and investigates the behaviour of two efficiency-based grid refine-

ment strategies for adaptive finite element solution of PDEs. In each refinement step, the

elements are ordered in terms of decreasing local error, and the optimal fraction of elements

to be refined in the current step is determined based on efficiency measures that take both

error reduction and work into account. The goal is to reach a pre-specified bound on the

global error with a minimal amount of work. It is assumed that optimal solvers are used for

the discrete linear systems, and that the computational work for solving these systems is,

thus, proportional to the number of degrees of freedom (DOF). Two efficiency measures are

discussed. The first efficiency measure is ‘work times error’ efficiency (WEE), which was

originally proposed in [11]. A second measure proposed in this thesis is called ‘accuracy

per computational cost’ efficiency (ACE).

This thesis is divided into four parts. First, preliminary background in Sobolev spaces

and finite element methods are reviewed in Chapter 2. In Chapter 3, assumptions on adap-

tive refinements are presented and the WEE and ACE refinement strategies are described.

Then, in Chapter 4, we apply WEE and ACE strategies to a 1D model problem using

the standard Galerkin finite element method. Numerical results of h- and hp-refinement

for both smooth and singular cases are presented. Comparisons with general threshold

based strategies are discussed. Finally, in Chapter 5, WEE and ACE are applied for a 2D

problem using first-order least-squares (FOSLS) finite element methods.



Chapter 2

Preliminary background

In this chapter, concepts of finite element methods are reviewed. Background material on

Sobolev spaces is introduced in section 2.1, along with the notation used throughout this

thesis. Then, in section 2.2, properties of finite element methods are briefly are briefly

discussed. Error estimate of FEM are especially addressed. This chapter is devoted to

provide theoretical background for proposing our refinement strategies in next chapters.

Readers who are familiar with Sobolev spaces and FEM may skip this introductory part.

2.1 Function spaces

In this section, we present the basic definitions and properties of Sobolev spaces which are

used throughout this thesis. For more details on Sobolev spaces, one can refer to [5].

2.1.1 Domains and boundaries

Let Ω ⊂ Rd be an open, connected bounded domain with boundary Γ = ∂Ω. For example,

for d = 1, Ω = (a, b) is an open interval and Γ = {a, b} consisting of the end points.

Definition 2.1 (Lipschitz boundary). If d ≥ 2, we say that Γ is a Lipschitz boundary, if

there exists a finite open cover O1, O2, ..., Om of Γ such that for j = 1, 2, ..., m.

a) Γ ∪Oj is the graph of a Lipschitz function gj and

b) Ω ∪Oj is on one side of this graph.

3



4 hp-Adaptive Refinement

2.1.2 Spaces of continuous functions

Definition 2.2 (Multi-index). A multi-index, α, is a d-tuple of non-negative integers, αi.

The length of α is given by

|α| =
d∑

i=1

αi. (2.1)

Then we denote by Dαu the partial derivative

∂|α|u
∂xα1

1 ∂xα2
2 ...∂xαd

d

.

Let Ω ⊂ Rd be open and bounded. We will use the following spaces of continuous

functions.

Definition 2.3.

C(Ω) = {u : Ω →R|u is continuous}
C(Ω) = {u ∈ C(Ω)|u is uniformly continuous}
Ck(Ω) = {u : Ω →R|Dαu is continuous for all|α| ≤ k}
Ck(Ω) = {u ∈ Ck(Ω)|Dαu is uniformly continuous for all |α| ≤ k}
C0(Ω), Ck

0 (Ω) denote the sets of functions in C(Ω), Ck(Ω) with compact support in Ω

(2.2)

Definition 2.4 (Hölder norm). (i) If u : Ω → R is bounded and continuous, we write

||u||C(Ω) := sup
x∈Ω

|u(x)|. (2.3)

(ii) The βth-Hölder semi-norm of u : Ω → R is

[u]C0,β(Ω) := sup
x 6=y∈Ω

{ |u(x)− u(y)|
|x− y|β

}
, (2.4)

and the βth-Hölder norm is

||u||C0,β(Ω) := ||u||C(Ω) + [u]C0,β(Ω). (2.5)
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Definition 2.5 (Hölder spaces). The Hölder space

Ck,β(Ω)

consists of all functions u ∈ Ck(Ω) for which the norm

||u||Ck,β(Ω) :=
∑

|α|≤k

||Dαu||C(Ω) +
∑

|α|=k

[Dαu]C0,β(Ω) (2.6)

is finite.

As a function space, the Hölder space Ck,β(Ω) is a Banach space.

2.1.3 Sobolev spaces

Definition 2.6 (Locally integrable functions). Given a domain Ω (not necessarily open),

the set of locally integrable functions is denoted by

L1
loc(Ω) :=

{
f : f ∈ L1(K) ∀ compact K ⊂ interior Ω

}
. (2.7)

Definition 2.7 (Weak derivative). We say a function f ∈ L1
loc(Ω) has a weak derivative,

Dα
wf , provided there exists a function g ∈ L1

loc(Ω) such that
∫

Ω

g(x)φ(x) dx = (−1)|α|
∫

Ω

f(x)Dαφ(x) dx ∀φ ∈ C∞
0 (Ω). (2.8)

If such g exists, define Dα
wf = g.

A weak derivative of u, Dα
wu, if it exists, is uniquely defined up to a set of measure zero.

Moreover, if u ∈ C |α|(Ω), then the weak derivative Dα
wu is given by the classical derivative

Dαu up to a set of measure zero. As a consequence, we will ignore the difference between

Dα
wu and Dαu from now on.

Now we can use the notation of weak derivative to define Sobolev spaces.

Definition 2.8 (Sobolev spaces W k
p (Ω)). Let k be a non-negative integer, and let f ∈

L1
loc(Ω). Suppose that the weak derivative Dαf exist for all |α| ≤ k. Define the Sobolev

norm

||f ||W k
p (Ω) :=


 ∑

|α|≤k

∫

Ω

|Dαf |p



1/p

(2.9)
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in the case 1 ≤ p < ∞, and in the case p = ∞

||f ||W k∞(Ω) := max
|α|≤k

||Dαf ||L∞(Ω). (2.10)

In either case, define the Sobolev spaces via

W k
p (Ω) :=

{
f ∈ L1

loc(Ω) : ||f ||W k
p (Ω) < ∞

}
. (2.11)

The Sobolev space W k
p (Ω) is a Banach space. Throughout this thesis, mainly the case

k = 2 will be used. As usual, W k
2 (Ω) is denote by Hk(Ω), and we further have

Theorem 2.1. Hk(Ω) is a Hilbert space with inner product

(f, g)Hk(Ω) =
∑

|α|≤k

∫

Ω

Dαf Dαg dx ∀f, g ∈ Hk(Ω). (2.12)

Likewise, we define the Sobolev semi-norms.

Definition 2.9 (Sobolev semi-norm). For k a non-negative integer and f ∈ W k
p (Ω), let

|f |W k
p (Ω) =


 ∑

|α|=k

∫

Ω

|Dαf |p dx




1/p

(2.13)

in the case 1 ≤ p < ∞, and in the case p = ∞

|f |W k∞(Ω) = max
|α|=k

||Dαf ||L∞(Ω). (2.14)

The following theorem relates Sobolev spaces to continuous function spaces. It will be

used to determine the smoothness of finite element subspaces in the following chapters.

For more information on embedding theory in Sobolev spaces, please refer to [5], Chapter

5.

Theorem 2.2 (The Sobolev imbedding theorem). [5] Let Ω be a bounded domain in Rd

with Lipschitz boundary. Let j and m be non-negative integers and let p satisfy 1 ≤ p < ∞.

Suppose mp > d > (m− 1)p. Then

W j+m
p (Ω) ↪→ Cj,β(Ω) 0 < β ≤ m− d

p
. (2.15)
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Here W j+m
p (Ω) ↪→ Cj,β(Ω) denotes that W j+m

p (Ω) can be imbedded in Cj,β(Ω), i.e.,

(i) W j+m
p (Ω) ⊂ Cj,β(Ω), and

(ii) there exists a constant C such that

||u||Cj,β(Ω) ≤ C||u||W j+m
p (Ω) ∀u ∈ W j+m

p (Ω). (2.16)

2.1.4 Traces: Sobolev spaces on boundaries

For a boundary value problem posed in Sobolev spaces, it is nontrivial to interpret the

boundary condition. InR1, the Sobolev inequality (2.16) implies that Hk(Ω) ↪→ Ck+1, 1
2 (Ω).

It follows that for any u ∈ Hk(Ω), u is well defined at boundary points. However, in higher

dimensional spaces, e.g, d ≥ 2, H1(Ω) contains unbounded functions. Thus, we can not

interpret boundary conditions in a pointwise sense. The following theorem is used to

interpret a restriction of Sobolev-class functions on the boundary.

Theorem 2.3 (Trace Theorem). [20] Assume Ω is bounded with Lipschitz boundary Γ.

Then there exists a bounded linear operator

T : W 1
p (Ω) → Lp(Γ)

such that

Tu = u|Γ if u ∈ W 1
p (Ω) ∩ C(Ω)

and

||Tu||Lp(Γ) ≤ C||u||W 1
p (Ω),

for each u ∈ W 1,p(Ω), with the constant C depending only on p and Ω.

Definition 2.10. We call Tu the trace of u on Γ.

Theorem 2.4. The range space of T (H1(Ω)) is a proper and dense subspace of L2(Γ),

called H1/2(Γ). For any v ∈ H1/2(Γ), define the norm

||v||1/2,Γ = inf
u∈H1(Ω),Tu=v

||u||H1(Ω). (2.17)

Then, H1/2(Γ) is a Hilbert space.
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When Γ is sufficiently smooth, Hm− 1
2 (Ω) can be similarly defined as the trace space of

Hm(Ω). For more details, one can refer to [5].

The Sobolev space Hk
0 (Ω) is defined as the completion of C∞

0 (Ω) with the norm ||·||Hk(Ω).

In the literature, under certain assumptions, it has been shown that u ∈ Hk
0 (Ω) if and only

if Tu = 0. Thus, we define

Definition 2.11.

Hk
0 (Ω) = {u ∈ Hk(Ω) : u|Γ = 0},

where u|Γ = 0 in the trace sense.

2.1.5 H(div) and H(curl) spaces

In an addition to the usual Sobolev spaces, the following two spaces are often considered

in FOSLS finite element methods, which will be used in Chapter 5. For more details, one

can refer to [20].

We define

H(div; Ω) = {u ∈ (L2(Ω))d : ∇ · u ∈ L2(Ω)},
H(curl; Ω) = {u ∈ (L2(Ω))d : ∇× u ∈ (L2(Ω))2d−3},

(2.18)

which are Hilbert spaces with norms

||u||2H(div;Ω) = ||u||2L2(Ω) + ||∇ · u||2L2(Ω),

||u||2H(curl;Ω) = ||u||2L2(Ω) + ||∇ × u||2L2(Ω).
(2.19)

2.2 PDE problem and finite element method

In this section, basic properties of finite element methods are introduced in three parts.

First, it is shown how a boundary value problem can be cast into a variational problem

using model problems. Then, requirements a variational problem must satisfy in order

to be well-posed are presented. Lastly, error estimates are briefly discussed. For more

information about FEM, one can refer to [3, 4].
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2.2.1 Variational formulation of PDE problem

Let Ω be a bounded domain in Rd, and consider a linear PDE boundary value problem

written abstractly as

Lu = f in Ω,

Bu = g on ∂Ω.
(2.20)

The variational problem is obtained by associating (2.20) with a bilinear form B(u, v) and

a linear functional F (v). In a proper variational problem, both B(u, v) and F (v) must be

defined on properly chosen normed linear spaces U and V , i.e. B : U×V →R, F : V →R.

Then the variational formulation (or weak form) of BVP (2.20) is defined as follows:

find u ∈ U such that B(u, v) = F (v) ∀v ∈ V. (2.21)

Here V is called the test space and U the trial space.

To derive this associated variational problem, one can consider the Galerkin method,

that is, if u solves (2.20), then (Lu, v)L2(Ω) = (f, v)L2(Ω) for all test functions v in a properly

chosen space. By integrating by parts, we may obtain a bilinear form which allows the

generalized solution u to be less smooth. We illustrate the procedure by the following

model problem.

Consider the boundary value problem

{
−∇ · A∇u + b(x) · ∇u + c(x)u = f(x) in Ω,

u = 0 on ∂Ω,
(2.22)

for f ∈ L2(Ω), where A is a d×d symmetric matrix with entries in L2(Ω), b(x) ∈ (L2(Ω))d,

and n is the outward unit vector normal to the boundary. Suppose u solves (2.22), then

we have

(−∇ · A∇u + b(x) · ∇u + c(x)u , v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω). (2.23)

Integrating by parts, and noting that v = 0 on the boundary, we obtain

(A∇u ,∇v)(L2(Ω))d + (b(x) · ∇u + c(x)u , v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω). (2.24)
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It follows that the associated variational problem of the boundary value problem (2.22) is

to find u ∈ H1
0 (Ω) such that (2.24) holds. Inhomogeneous boundary conditions are easily

treated. For example, suppose u = g on ∂Ω. For simplicity, assume that g is defined on all

of Ω with g ∈ H1(Ω). Then the variational problem of (2.22) is as follows: find u ∈ H1(Ω)

such that u− g ∈ H1
0 (Ω) and such that B(u, v) = (f, v)0,Ω, ∀v ∈ H1

0 (Ω).

One can also consider a Ritz-Rayleigh method, in which the variational problem is

obtained by minimizing a functional over a certain trial space U , e.g., FOSLS formulations,

which are discussed in Chapter 4.

Generally, the FEM is a projection method based on a variational formulation of a

BVP. It generates an approximate solution in a finite dimensional subspace, Uh, of U . An

approximate solution uh of the following form is sought:

uh(x) =
N∑

i=1

ciψi(x), (2.25)

where ψi(x) ∈ U , i = 1, 2, ...N are N linearly independent functions in U , and ai are real

numbers. The set Uh of all functions uh of the form (2.25) is a linear space of dimension N

contained in U . Let Vh ⊂ V also be a subspace of dimension N . Then the discrete weak

form of (2.21) is defined by

find uh ∈ Uh such that B(uh, v) = F (v) ∀v ∈ Vh. (2.26)

This problem is equivalent to solving an N ×N linear system. We can write

uh =
N∑

i=1

ciψi,

and

v =
N∑

i=1

aiφi.

Hence
N∑

i=1

N∑
j=1

aiB(ψj, φi)cj =
N∑

i=1

aiF (φi) ∀a = (a1, a2, ..., aN)T ∈ RN .

Therefore

Kc = q, (2.27)
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where the stiffness matrix K is an N × N matrix with entries kij = B(ψj, φi), and qi =

F (φi). In order for (2.27) to have a unique solution, we require K to be nonsingular. This

implies that the bilinear form B(·, ·) must satisfy certain conditions, which are discussed

in the next section.

2.2.2 Well-posed variational problems

We are seeking conditions that a variational problem must satisfy in order to be well-posed,

i.e., there exists a unique solution solving the variational problem. A minimal requirement

on F (v) is continuity: there exists a constant CF > 0 such that, for all v ∈ V ,

|F (v)| ≤ CF ||v||V . (2.28)

If (2.28) holds, F (·) is called a continuous linear functional on V . Denote by V ′ the set of

all such functionals, with norm given by

||F ||V ′ = sup
v 6=0

|F (v)|
||v||V . (2.29)

It follows that V ′ is a Banach space, and it is called the dual space of V , see [7]. As usual,

we use the notation < F, v >= F (v) for all F ∈ V ′, v ∈ V .

We define continuity and coercivity of a bilinear form B(·, ·) as follows:

Definition 2.12 (Continuity and coercivity). A bilinear form B(·, ·) on a normed linear

space X is said to be continuous if ∃ C1 > 0 such that

|B(u, v)| ≤ C1||u||X ||v||X ∀u, v ∈ X, (2.30)

and coercive on V ⊂ X if ∃ C2 > 0 such that

B(v, v) ≥ C2||v||2X ∀v ∈ V. (2.31)

First, consider the well-posedness of variational problems in a Hilbert space. Let H

be a Hilbert space with inner product (·, ·). For any continuous functional F on a Hilbert

space, we have the following well-known theorem:
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Theorem 2.5 (Riesz Representation Theorem). Any continuous linear functional F on a

Hilbert space H can be represented uniquely as

F (v) = (u, v) (2.32)

for some u ∈ H. Furthermore, we have

||F ||H′ = ||u||H . (2.33)

One can refer to [4] for a proof.

Assume that the bilinear form B(·, ·) is symmetric on H, i.e., B(u, v) = B(v, u) for all

u, v ∈ H. If U = V , a closed subspace of H, and the bilinear form B(·, ·) is continuous

and coercive, then (V,B(·, ·)) is also a Hilbert space. Applying the Riesz Representation

Theorem, and noting that F ∈ V ′, there exists a unique solution u ∈ V solving (2.21).

In general, suppose that the following three conditions are valid.





(1) (H, (·, ·)) is a Hilbert space.

(2) V is a closed subspace of H.

(3) B(·, ·) is a continuous, symmetric bilinear form that is coercive on V.

(2.34)

Then the variational problem:

given F ∈ V ′, find u ∈ V such that B(u, v) = F (v) ∀v ∈ V, (2.35)

is well-posed. Likewise, under conditions (2.34), the approximation problem:

given a finite-dimensional subspace Vh ⊂ V and F ∈ V ′,

find uh ∈ Vh such that

B(uh, v) = F (v) ∀v ∈ Vh,

(2.36)

is also well-posed.

The bilinear form is not always symmetric, e.g., the bilinear form (2.24) of the model

problem (2.22) is not symmetric on H1
0 (Ω). For a nonsymmetric bilinear form on a Hilbert

space, we have the following theorem:
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Theorem 2.6 (Lax-Milgram). Given a Hilbert space (V, (·, ·)), a continuous, coercive bi-

linear form B(·, ·) and a continuous functional F ∈ V ′, there exists a unique u ∈ V such

that

B(u, v) = F (v) ∀v ∈ V.

Proof. Step 1: Let u ∈ V be arbitrary, fixed. Then the continuity of B(·, ·) implies that

Tu(v) := B(u, v) ∈ V ′.

Applying the Riesz Representation Theorem, there exists a unique u∗ ∈ V such that

(u∗, v) = Tu(v) = B(u, v) for all v ∈ V . Let u∗ = Φ(u). Then Φ : V → V is linear:

(Φ(a1u1 + a2u2), v) = B(a1u1 + a2u2, v)

= a1B(u1, v) + a2B(u2, v)

= a1(Φ(u1), v) + a2(Φ(u2), v)

= (a1Φ(u1) + a2Φ(u2), v) ∀v ∈ V.

Moreover, Φ is continuous and bounded below:

||Φ(u)||2V = (Φ(u), Φ(u)) = B(u, Φ(u)) ≤ C1||Φ(u)||V ||u||V ⇒ ||Φ(u)||V ≤ C1||u||V ,

and

C2||u||2V ≤ B(u, u) = (u, Φ(u)) ≤ ||u||V ||Φ(u)||V ⇒ C2||u||V ≤ ||Φ(u)||V .

Step 2: We show that the range of Φ, R(Φ), is a closed subspace of V .

Obviously, R(Φ) is a subspace of V since Φ is a linear operator defined from V to V .

We claim that R(Φ) is closed in V . To see this, let {Φ(un)}∞n=1 be a Cauchy sequence in

V , i.e.,

∃ z ∈ V s.t. lim
n→∞

||Φ(un)− z||V = 0. (2.37)

From step 1, we have

||Φ(un)− Φ(um)||V = ||Φ(un − um)||V ≥ C1||un − um||V .

It follows that {un}∞n=1 is also a Cauchy sequence in V , i.e.,

∃ u ∈ V s.t. lim
n→∞

||un − u||V = 0.
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This implies that

lim
n→∞

||Φ(un)− Φ(u)||V = lim
n→∞

||Φ(un − u)||V ≤ lim
n→∞

C2||un − u||V = 0.

It follows that z = Φ(u) ∈ R(Φ). Thus, R(Φ) is closed.

Step 3: We show that R(Φ) = V .

Since R(Φ) is a closed subspace of V , we have V = R(Φ)⊕R(Φ)⊥. If R(Φ) 6= V , then

R(Φ)⊥ 6= {0}. For any 0 6= v ∈ R(Φ)⊥, (Φ(u), v) = 0 holds for all u ∈ V . Putting u = v,

we have C2||v||2 ≤ B(v, v) = (Φ(v), v) = 0. Therefore v = 0, a contradiction.

Step 4: From step 1, Φ is bounded below, i.e., ||Φ(u)||V ≥ C2||u||V . It has a bounded

inverse Φ−1 : V → V . For any given functional F ∈ V ′, by the Riesz Representation

Theorem, there exists a unique p ∈ V s.t. F (v) = (v, p) for all v ∈ V . Let u = Φ−1(p).

Then u is the unique solution such that B(u, v) = F (v) for all v ∈ V .

In general, suppose that the following five conditions are valid.





(1) (H, (·, ·)) is a Hilbert space.

(2) V is a closed subspace of H.

(3) B(·, ·) is a bilinear form on V, not necessarily symmetric.

(4) B(·, ·) is continuous on V.

(5) B(·, ·) is coercive on V.

(2.38)

Applying the Lax-Milgram Theorem, the variational problem (2.35) and the approximation

problem (2.36) are well-posed.

Next, consider that the trial space U and the test space V are not the same space,

e.g., the mixed variational formulation of the Stokes equation for steady flow of a viscous

fluid in Rd results in bilinear forms with U = H(div) and V = (L2(Ω))
d
. The following

theorem addresses the existence and uniqueness in this case by assuming that U and V are

reflexive Banach spaces. A Banach space X is called reflexive if its second dual X ′′ equals

X. For more information about the second dual of a Banach space, one can refer to [7]. It

is obvious that every Hilbert space is reflexive.
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Theorem 2.7 (inf-sup condition). [9] Let U , V be real reflexive Banach spaces with norms

|| · ||U and || · ||V , respectively. Let further B(·, ·) : U ×V →R be a bilinear form such that

there exist 0 < C1, C2 < ∞ with

(1) |B(u, v)| ≤ C1||u||U ||v||V ∀u ∈ U, v ∈ V,

(2) inf
0 6=u∈U

sup
0 6=v∈V

|B(u, v)|
||u||U ||v||V ≥ C2,

(3) sup
u∈U

B(u, v) > 0 ∀0 6= v ∈ V.

(2.39)

Then for every continuous linear functional F ∈ V ′ there exists a unique u0 ∈ U such that

B(u0, v) = F (v) ∀v ∈ V.

Proof. Step 1: For any arbitrary, fixed u ∈ U , define Tu(v) := B(u, v). Then Tu ∈ V ′. By

the definition of V ′, there exists a unique z ∈ V ′ such that < z, v >= Tu(v) = B(u, v) for

all v ∈ V ′.

Denote by z = Φ(u). Then Φ : u → z is continuous and linear:

Φ : U → V ′, ||Φ||U→V ′ = sup
0 6=u∈U

||Φ(u)||V ′
||u||U

= sup
0 6=u∈U

sup06=v∈V
|<Φ(u),v>|
||v||V

||u||U

= sup
0 6=u∈U

sup06=v∈V
|B(u,v)|
||v||V

||u||U

≤ sup
06=u∈U

sup0 6=v∈V
C1||u||U ||v||V

||v||V
||u||U

= C1.

Step 2: We show that the range of Φ, R(Φ) is closed in V ′. Condition (2.39) gives

||Φ(u)||V ′ = sup
0 6=v∈V

| < Φ(u), v > |
||v||V = sup

06=v∈V

|B(u, v)|
||v||V ≥ C2||u||U .

Let {un}∞n=1 ⊂ U such that {Φ(un)}∞n=1 is a Cauchy sequence in V ′. Then {un}∞n=1 is a

Cauchy sequence in U . Hence R(Φ) is closed in V ′. Also, it is easy to see that the null

space of Φ, N (Φ) = Φ−1({0}) is trivial, i.e. N (Φ) = {0}. This implies that Φ is injective.
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Step 3: We prove that R(Φ) = V ′.

Assuming not, then R(Φ) = R(Φ)
||·||V ′ 6= V ′. Taking 0 6= ψ ∈ R(Φ)⊥, by the Hahn-

Banach theorem, see [7], there exists v0 6= 0 ∈ V ′′ such that < v0, φ >= 0 for all φ =

Φ(u) ∈ R(Φ) but < v0, ψ >= 1. Since V is reflexive, v0 ∈ V and hence

0 =< φ, v0 >=< Φ(u), v0 >= B(u, v0) ∀u ∈ U,

a contradiction to (2.39) (3). Hence R(Φ) = V ′.

Step 4: By steps 2 and 3, Φ is a bijection; thus for any F ∈ V ′, there exists a unique

u0 ∈ U s.t. Φ(u0) = F . That is F (v) =< Φ(u0), v >= B(u0, v) for all v ∈ V .

Likewise, conditions for the well-posedness of an approximation problem are as follows:

Theorem 2.8 (discrete inf-sup condition). Let B : U × V →R be continuous, i.e.,

|B(u, v)| ≤ C1||u||U ||v||V ∀u ∈ U, v ∈ V.

Let Uh ⊂ U , Vh ⊂ V be subspaces of dimension N such that the inf-sup conditions hold,

i.e.,

inf
06=u∈Uh

sup
0 6=v∈Vh

|B(u, v)|
||u||U ||v||V ≥ C2(Uh, Vh) > 0. (2.40)

Then for every continuous linear functional F ∈ V ′ there exists a unique uh ∈ Uh such that

B(uh, v) = F (v) ∀v ∈ Vh.

Proof. Both Uh and Vh are reflexive Banach spaces since they are finite dimensional. Again,

define Φ : Uh → V ′
h such that < Φ(u), v >= B(u, v) for all v ∈ Vh. Then Φ is continuous,

linear and injective. The dual space, V ′
h, of Vh, has the same dimension as Vh since Vh is

finite dimensional. Then Uh and V ′
h are of dimension N , and the injection Φ : Uh → V ′

h is

also surjective. This completes the proof.

2.2.3 Error estimates for finite element methods

Let u be the solution to the variational problem and uh be the solution to the approximation

problem. Assume that the error e = u−uh is evaluated by ||u−uh||U . We first consider the
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symmetric variational problem in a Hilbert space with U = V . Suppose that conditions

(2.34) hold. Let u and uh be solutions to problem (2.35) and (2.36), respectively. Then

u− uh is B(·, ·)-orthogonal to the space Vh, i.e.,

B(u− uh, v) = 0 ∀v ∈ Vh. (2.41)

Define ||v||B = B(v, v) for all v ∈ V . We have the following minimization property:

||u− uh||B = min
v∈Vh

||u− v||B. (2.42)

Next, consider the nonsymmetric problem in a Hilbert space with U = V . The following

theorem holds.

Theorem 2.9 (Céa). Suppose that conditions (2.38) hold and that u solves (2.35). For

the finite element approximation problem (2.36) we have

||u− uh||V ≤ C1

C2

min
v∈Vh

||u− v||V , (2.43)

where C1 is the continuity constant and C2 is the coercivity constant of B(·, ·) on V .

Proof. Since B(u, v) = F (v) and B(uh, v) = F (v) for all v ∈ Vh, we have

B(u− uh, v) = 0 ∀v ∈ Vh.

For all v ∈ Vh,

C2||u− uh||2V ≤ B(u− uh, u− uh)

= B(u− uh, u− v) + B(u− uh, v − uh)

= B(u− uh, u− v) ( since v − uh ∈ Vh)

≤ C1||u− uh||V ||u− v||V .

Hence,

||u− uh||V ≤ C1

C2

||u− v||V ∀v ∈ Vh.

Therefore

||u− uh||V ≤ inf
v∈Vh

C1

C2

||u− v||V

=
C1

C1

min
v∈Vh

||u− v||V . (since Vh is closed)
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At last, we address the case where U 6= V .

Theorem 2.10. [3, 9] Suppose that the conditions in theorem 2.3 and theorem 2.4 hold.

Let u and uh be the solution of the variational problem and the approximation problem,

respectively. We have

||u− uh||U ≤
(

1 +
C1

C2(Uh, Vh)

)
min
w∈Uh

||u− w||U . (2.44)

Proof. By triangle inequality, we have

||u− uh||U = ||u− w + w − uh||U
≤ ||u− w||U + ||uh − w||U ∀w ∈ Uh.

Recall that uh satisfies

B(u, v) = B(uh, v) = F (v) ∀v ∈ Vh.

By discrete inf-sup condition (2.40) on Uh× Vh and the continuity condition on U × V , we

have

C2(Uh, Vh)||uh − w||U ≤ sup
06=v∈Vh

B(uh − w, v)

||v||V
= sup

06=v∈Vh

B(u− w, v)

||v||V ∀v ∈ Vh

≤ sup
06=v∈Vh

C1||u− w||U ||v||V
||v||V

= C1||u− w||U .

Hence

||u− uh||U ≤
(

1 +
C1

C2(Uh, Vh)

)
||u− w||U ∀w ∈ Uh.

Therefore

||u− uh||U ≤
(

1 +
C1

C2(Uh, Vh)

)
min
w∈Uh

||u− w||U . (since Uh is closed)
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Denote by m a nonnegative integer. For many boundary value problems, the trial

space U is usually chosen to be a subspace of the Sobolev space Hm(Ω). Moreover, the

finite dimensional trial space Uh usually consists of piecewise polynomials defined on a

partition of Ω. To give a qualitative analysis of the error ||u−uh||Hm(Ω), we need polynomial

approximation theory in Sobolev spaces. First of all, some definitions (cf. [4]) are presented:

Definition 2.13 (Finite Element). Let

(i) K ⊂ Rd be a domain with piecewise smooth boundary (the element domain),

(ii) P be a finite-dimensional space of functions on K (the shape functions) and,

(iii) N = {N1, N2, ..., Nk} be a basis for P ′ (the nodal variables).

Then (K,P ,N ) is called a finite element.

Definition 2.14 (Nodal basis). Let (K,P ,N ) be a finite element, and let {ψ1, ψ2, ..., ψk}
be a basis for P dual to N (Ni(ψj) = δij). This set is called the nodal basis for P.

Example 2.1 (the 1D Lagrange element). Let K = [a, b] and Pk =the set of all polynomials

on K of degree less or equal than k. Let N = {N0, N1, ..., Nk}, where Ni(v) = v(a + (b−a)i
k

)

for all v ∈ Pk and i = 0, 1, ..., k. Then {K,Pk,N} is a finite element.

Example 2.2 (the 2D Linear Lagrange triangular element). Let K be a triangle in R2

with three vertices z1, z2 and z3. Let P = P1. Let N = {N1, N2, N3}, where Ni(v) = v(zi)

for all v ∈ P1 and i = 1, 2, 3. Then {K,P1,N} is a finite element.

Example 2.3 (the 2D bilinear Lagrange rectangular element). In R2, define

Qk :=

{∑
j

pj(x)qj(y) : pj, qj are polynomials of degree ≤ k

}
.

Let K be any rectangle with vertices z1, z2, z3 and z4. Let N = {Ni, i = 1, 2, 3, 4}, where

Ni(v) = v(zi) for all v ∈ Q1 and i = 1, 2, 3, 4. Then {K,Q1,N} forms a finite element.

After defining the finite element, we need to partition the domain Ω into a mesh T in

order to construct the finite element subspace. The mesh T is defined as:

Definition 2.15 (Mesh). A mesh (or subdivision) T of a domain Ω is a finite collection

of open sets {Ki} such that

(1) Ki ∩Kj = ∅ if i 6= j and

(2)
⋃

Ki = Ω.
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Assume that each element K in the mesh is equipped with some type of shape functions, P ,

and nodal variables, N , such that (K,P ,N ) forms a finite element. Then a finite element

subspace Uh can be easily constructed. Usually, shape functions, P , consist of polynomials.

Then the finite element subspace Uh consists of piecewise polynomials. Next, we define the

local interpolant and global interpolant of a given function.

Definition 2.16 (Interpolant). Given a finite element (K,P ,N ), let the set {ψ1, ψ2, ..., ψn}
⊆ P be the basis dual to N . If v is a function for which all Ni ∈ N , i = 1, 2, ..., n, are

defined, then define the local interpolant by

IKv :=
n∑

i=1

Ni(v)ψi. (2.45)

Definition 2.17 (Global interpolant). Suppose Ω is a domain with a mesh T . Assume

each element K in the mesh is equipped with some type of shape functions, P, and nodal

variables, N , such that (K,P ,N ) forms a finite element. Let m be the order of highest

partial derivative involved in the nodal variables. For f ∈ Cm(Ω), the global interpolant is

defined by

IT f |Ki
= IKi

f (2.46)

for all Ki ∈ T .

Definition 2.18 (C` finite element space). We say that an interpolant has continuity order

m if IT f ∈ C`. The space, VT = {IT f}, is said to be a C` finite element space.

After presenting these definitions, we can qualitatively give an error bound for ||u −
IT u||U . Then an error bound for ||u− uh||U is automatically obtained since ||u− uh||U ≤
C||u−IT u||U by using the Céa Theorem or Theorem 2.6, respectively. We proceed by the

following steps.

Step 1. Approximation property of local interpolant

For any bounded region K ⊂ Rd, let K̂ = {(1/diam(K))x : x ∈ K}, where diam(K) is

the diameter of K. For simplicity, here we assume that K is convex and the origin lies in

K such that diam(K̂) = 1. Again, let Pk be the set of polynomials in d variables of degree

less than or equal to k. For any given function v ∈ Hm(K), the local interpolant IKv has

the following approximate property.
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Theorem 2.11. Let (K,P ,N ) be a finite element satisfying

(1) K is a convex polygonal domain,

(2) Pm−1 ⊆ P ⊆ Wm
∞(K) and

(3) N ⊆ (C`(K))′.

Suppose m− `− d/2 > 0. Then for 0 ≤ i ≤ m and v ∈ Hm(K) we have

|v − IKv|Hi(K) ≤ Cm,d,γ(K),σ(K̂)(diam(K))m−i|v|Hm(K). (2.47)

Here the constant Cm,d,γ(K),σ(K̂) depends only on m, d, γ(K) and σ(K̂), where γ(K) is given

by

γ(K) =
diam(K)

sup{ρ : a ball of radius ρ is contained in K} ,

and σ{K̂} is the operator norm of IK̂ : C`
(
K̂

)
→ Hm(K̂), which is bounded.

Proof. It can be shown (cf theorem 4.4.4 in [4]) that a similar approximation property

holds for more general case, in which the element K is a bounded polygonal domain, not

necessarily convex, star-shaped w.r.t. some ball, and the interpolation error is evaluated

by the W i
p semi-norm for 1 ≤ p ≤ ∞. Note that H i = W i

2, and convex domain K is always

star-shaped w.r.t. any ball contained in K. Therefore, (2.47) holds.

Remark The constant C increases w.r.t. γ(K). Therefore, small γ(K) is preferred.

Step 2. Approximation property of global interpolant

Consider polygonal domain Ω and mesh T = ∪T with given shape functions and nodal

variable duals. The approximation property of the global interpolant can be derived by

taking the sum of local interpolants and using Theorem 2.7. However, some conditions

must be satisfied in order to obtain a uniform bound for Cm,d,γ(K),σ(T̂ ) for all T ∈ T . To

see this, let (K,P ,N ) be a reference element, satisfying the conditions in Theorem 2.7.

First, we define affine equivalence between finite elements.

Definition 2.19 (Affine equivalence). Let (K,P ,N ) be a finite element and let F (x) =

Ax + b (with A nonsingular) be an affine map. The finite element (K̂, P̂ , N̂ ) is affine

equivalent to (K,P ,N ) if

(i) F (K) = K̂,

(ii) F ∗ P̂ = P,
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(iii) F∗N = N̂ ,

where F ∗ is defined by F ∗(f̂) := f̂ ◦ F and F∗ is defined by (F∗N)(f̂) := N(F ∗(f̂)).

For adaptive refinement, a uniform bound for Cm,d,γ(K),σ(T̂ ) needs to be derived for a

family of meshes. This requires that the family of meshes must be nondegenerate.

Definition 2.20. Let Ω be a given domain and mesh T = ∪T .

(1) Define the meshwidth

h(T ) = max
T∈T

diam(T ).

For each element T , define

ρ(T ) = sup{ρ : a ball of radius ρ is contained in T}.

(2) A family of meshes {T }∞j=1 is said to be nondegenerate if there exists a constant κ,

independent of j, such that

sup
T∈Tj

diam(T )

ρ(T )
≤ κ < ∞, j = 1, 2, ... (2.48)

Now suppose that all element are affine equivalent to the reference element K. And let

the family of meshes be nondegenerate. Then it can be shown that the constant in Theorem

2.7 can be uniformly bounded, see ([4]). At last, we obtain the following Theorem for the

global interpolant.

Theorem 2.12. [4] Let {T }∞j=1 be a nondegenerate family of meshes of a polyhedral domain

Ω in Rd. Let (K,P ,N ) be a reference element, satisfying the conditions of Theorem 2.7

for some ` and m. For all T ∈ Tj, j = 1, 2, .... let (T,PT ,NT ) be the affine-equivalent

element. Then there exists a positive constant C depending on the reference element, d, m

and the number κ in (2.48) such that for 0 ≤ i ≤ m,

||v − ITj
v||Hi(Ω) ≤ C (h(Tj))

m−i |v|Hm(Ω) j = 1, 2, ... (2.49)
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Proof. To prove (2.49), observe that for all j = 1, 2, ...

∑
T∈Tj

||v − ITj
v||2Hi(T ) ≤

∑
T∈Tj

C2
m,d,γ(T ),σ(T̂ )

(diam(T ))2(m−i)|v|2Hm(T )

≤
∑
T∈Tj

C2(h(Tj))
2(m−i)|v|2Hm(T )

≤ C2(h(Tj))
2(m−i)

∑
T∈Tj

|v|2Hm(T )

= C2(h(Tj))
2(m−i)|v|2Hm(Ω),

where C is the uniform bound of Cm,d,γ(T ),σ(T̂ ) for all elements T , which only depends on

the reference element, d, m and the number κ in (2.48).

Lastly, suppose the variational problem (2.21) is well posed on U and V , with the

trial space, U , a subspace of Sobolev space H i(Ω). Let the family of meshes {Tj}∞j=1

satisfy the conditions of Theorem 2.8. Let the discrete variational problem also be well-

posed. Moreover, assume that u ∈ Hm(Ω). Then by using Theorem 2.5 or Theorem 2.6,

respectively, and Theorem 2.8, we have

||u− uh||Hi(Ω) ≤ C(h(Tj))
m−i||u||Hm(Ω) j = 1, 2..., i ≤ m (2.50)

where the constant C depends on the reference element, d, m, the number κ in (2.48), the

continuity constant and the coercivity constant.

To end this section, consider that the solution u is not smooth enough, i.e., u ∈ Hs(Ω)

where s is not necessarily an integer. We briefly discuss how to extend the error estimate

(2.50) to fractional order Sobolev spaces by using operator-interpolation theory. For θ a

real number in the interval (0, 1), and i a non-negative integer, define the fractional order

Sobolev norm:

||u||2Hi+θ(Ω) := ||u||2Hi(Ω) +
∑

|α|=i

∫

Ω

∫

Ω

|Dα(x)−Dα(y)|2
|x− y|d+2θ

. (2.51)

We first define Banach spaces that interpolate between two given Banach spaces, B0

and B1. Then we show that the fractional order Sobolev space can be defined as the

interpolated space between two integer order Sobolev spaces, and give the equivalence



24 hp-Adaptive Refinement

between the interpolated operator norm and the norm defined in (2.51). Lastly, finite

element convergence estimates are presented for fractional order Sobolev spaces.

Given two Banach spaces, B0 and B1. For simplicity, assume that B1 ⊂ B0. For

example, B0 = H1(Ω) and B1 = H2(Ω). For any u ∈ B0 and t > 0, define

K(t, u) := inf
v∈B1

(||u− v||B0 + t||v||B1).

K measures how well u can be approximated by B1. For 0 < θ < 1 and 1 ≤ p < ∞, define

a norm

||u||[B0,B1]θ,p :=

(∫ ∞

0

t−pθK(t, u)p dt

t

)1/p

. (2.52)

The set

[B0, B1]θ,p = Bθ,p =
{
u ∈ B0 : ||u||[B0,B1]θ,p<∞

}
(2.53)

forms a Banach space with norm (2.52), see [8]. The key result of operator-interpolation

theory is as follow:

Theorem 2.13. Suppose that Ai and Bi are two pairs of Banach spaces as above, and that

T is a linear operator that maps Ai to Bi (i = 0, 1). Then T maps Aθ,p to Bθ,p. Moreover,

||T ||Aθ,p→Bθ,p
≤ ||T ||1−θ

A0→B0
||T ||θA1→B1

. (2.54)

Proof. Let Mi := ||T ||Ai→Bi
. For any v ∈ A1,

KB(t, Tu) ≤ ||Tu− Tv||B0 + t||Tv||B1

≤ M0||u− v||A0 + tM1||v||A0

≤ M0(||u− v||A0 + tM1/M0||v||A0).

Taking the infimum over v ∈ A1, we have

KB(t, Tu) ≤ M0KA(tM1/M0, u).
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Integrating this inequality, we have

||Tu||Bθ,p
=

(∫ ∞

0

t−pθKB(t, Tu)p dt

t

)1/p

≤
(∫ ∞

0

t−pθ (M0KA(tM1/M0, u))p dt

t

)1/p

=

(∫ ∞

0

Mpθ
1 Mp−pθ

0 s−pθ (KA(s, u))p ds

s

)1/p

= M1−θ
0 M θ

1

(∫ ∞

0

s−pθ (KA(s, u))p ds

s

)1/p

= M1−θ
0 M θ

1 ||u||Aθ,p
.

Consider the space, [H i(Ω), H i+1(Ω)]θ,2, where i is a nonnegative integer. Define the

fractional order Sobolev space as

[H i(Ω), H i+1(Ω)]θ,2 = H i+θ(Ω).

It can be shown that if Ω has Lipschitz boundary, then the norms (2.51) and (2.52) are

equivalent.

Lastly, consider a situation in which u is less smooth such that the global interpolant

Iu is not well defined. We might not be able to conclude anything regarding the error

convergence as (2.50). However, using space-interpolation theory, the following bound can

be derived.

Theorem 2.14. Let i < s, s = bsc + θ, θ ∈ (0, 1). Suppose that (2.50) hold for m =

bsc, bsc+ 1. Then for any u ∈ Hs(Ω),

||u− uh||Hi(Ω) ≤ Chs−i||u||Hs(Ω). (2.55)

Proof. Define an operator, T , that maps u to the error u− uh:

Tu := u− uh.
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Estimate (2.50) implies that T maps H i(Ω) to Hm(Ω), m = bsc, bsc+ 1, with

||T ||Hi(Ω)→Hm(Ω) ≤ c2h
m−i.

Thus, by setting Banach-space interpolation: A0 = Hbsc(Ω), A1 = Hbsc+1(Ω), and

B0 = B1 = H i(Ω), we conclude that

||T ||Hs(Ω)→Hi(Ω) ≤ Chbsc(1−θ)h(bsc+1)θ

= Chs.

This is equivalent to (2.55).



Chapter 3

Efficiency-based refinement strategies

In this chapter, adaptive refinement and two efficiency-based refinement strategies are

described. Study of efficiency-based refinement strategies is the main contribution of this

thesis. First, in section 3.1, assumptions on PDE problems, finite element methods, error

estimators, refinement processes and linear solvers are considered. Then the basic idea of

efficiency-based refinement strategies is discussed. By taking into account both work and

error reduction, refinement decisions are made by optimizing a certain efficiency measure.

Lastly, in section 3.2, two refinement strategies are presented: the ‘work times error’ (WEE)

and ‘accuracy per computational cost’ (ACE) strategies.

3.1 Assumptions on FEM, adaptive refinement pro-

cess, and linear solver

First, consider using a FEM to solve the BVP problem (2.20). Assume that the associated

variational problem is well-posed in trial space U and test space V . Let T be a partition

of the domain, Ω, into finite elements, i.e., Ω =
⋃

Ti∈T T i, with given shape functions

PTi
and nodal variable NTi

. Here we only consider the case that the shape functions

are polynomials. For any element Ti, denote by pi the maximum polynomial order of

all shape functions in PTi
. Then we say element Ti has order pi. Let Uh be the finite

element subspace. It is obvious that Uh consists of piecewise polynomials. Denote by m a

27
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nonnegative integer, and assume that || · ||U and || · ||Hm(Ω) are equivalent norms. For any

element Ti with order pi, by Theorem 2.11, under certain conditions, we can assume that

the following estimate holds

||u− ITi
u||Hm(Ti) ≤ ci (diam(Ti))

pi+1−m||u||Hpi+1(Ti). (3.1)

Here the constant ci depends on pi, d and the element Ti. Let uh be the finite element

approximation, and assume the discrete variational problem is also well posed such that

we have the following error estimate:

||u− uh||Hm(Ω) ≈ ||u− uh||U
≤ C||u− IT u||U
≈ C||u− IT u||Hm(Ω)

≤ C
∑
Ti∈T

ci (diam(Ti))
pi+1−m||u||Hpi+1(Ti),

(3.2)

where C is the constant in Theorem 2.9 or Theorem 2.10, respectively. Moreover, consider

that all elements have the same order p. Suppose that all elements are affine equivalent,

and the mesh is nondegenerate. Using Theorem 2.12 and Theorem 2.14, the following error

estimate holds

||u− uh||Hm(Ω) ≤ C(h(T ))s−m||u||Hs(Ω), (3.3)

where 0 ≤ m < s ≤ p + 1, with s a real number. Further assume that we obtain a

locally sharp a-posteriori error estimate E(uh, f) that is equivalent to ||u − uh||Hm(Ω).

The associated error functional is given by F(uh, f) = E2(uh, f). For example, the L2

functional is a natural a-posteriori error estimate for First-Order System Least Squares

(FOSLS) finite element methods, and equivalence to the H1 norm has been proved for

several relevant second-order PDE systems of elliptic type [11, 13, 14, 15]. The local value

of the error, E, on element Ti is denoted by εi. Assume that the local value of the error

also has similar asymptotic behaviour as (3.2), i.e., assume that for u ∈ Hsi(Ti) with

m < si ≤ pi + 1

εi ≈ ||u− uh||Hm(Ti) ≤ ci (diam(Ti))
si−m||u||Hsi (Ti). (3.4)

Remark. Note that if we assume element wise that ||u − uh||Hm(Ti) ≤ C||u − v||Hm(Ti)

for all v ∈ PTi
, then we could choose v to be the local interpolant and obtain (3.4) when
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si is an integer, and use operator-interpolation theory to obtain the result for less smooth

cases. However, we only know that the minimization property holds for ||u − uh||Hm(Ω)

over the whole domain Ω. This does not necessarily imply that the same minimization

property holds element wise. Here, we assume that our locally sharp error estimator has

the asymptotic behaviour which is described above.

Next, consider an adaptive hp refinement process of the following form. The refinement

process starts on the coarse grid, T0, and proceeds through levels ` = 1, 2, . . . , L until the

error measure, E`(uh, f), has a value less than a given bound. In each step, some elements

may be refined in h by splitting them equally in each dimension, resulting in 2d sub-

elements, and some elements may be refined in p by doubling the element order. This

refinement process generates a sequence of meshes, {Tj}L
j=1, with meshwidth h0 ≥ h1 ≥

. . . ≥ hL, and a sequence of finite element subspaces satisfying Uh0 ⊂ Uh1 ⊂ . . . ⊂ UhL
.

It is assumed that optimal solvers, e.g., algebraic multigrid (AMG) (cf. [10]), are used

for the discrete linear systems. Denote by K` the number of V-cycles required to converge

to the desired error, C0 the work units to setup a V-cycle, and C1 the work units per

V-cycle. Let ρ be the multigrid convergence factor. The number of V-cycles is given by

K` = d log(F`+1/F`)

log(ρ)
e. (3.5)

Let N` be the number of DOF on level `. The computational work for solving these systems

on level ` is, thus, assumed to be:

W` = (C0 + C1 K`) N`. (3.6)

For simplicity, in the following discussion, we assume the computational work to be a fixed

constant times the number of DOF, i.e.,

W` = cN`. (3.7)

We allow the domain to contain singularities, i.e., points (or lines or surfaces) in whose

neighbourhood the full convergence order of the finite element method cannot be attained

due to lack of smoothness of the solution. For simplicity, assume that those singularities

can only be located at coarse-level grid points (or grid edges or faces), and that their

power and location are known. If this information is not known in advance, the location
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and strength of singularities can be estimated by monitoring reduction rates of local error

functionals during a few steps of initial uniform refinement.

3.2 Two refinement strategies: WEE and ACE

The decision of which elements to refine is based on the information provided by the local

error estimator, and by heuristics that may take into account predicted error reduction

and work. In particular, we consider strategies where the elements are ordered in terms of

decreasing local error, such that elements with larger error are considered for refinement

first. Standard threshold-based approaches then may refine, for example, a fixed fraction

of the elements in every step, or a fixed fraction of the total error functional. Our goal is to

reach a pre-specified bound on the global error, E`(uh, f), with a minimal amount of total

work,
∑L

`=1 W`. Finding this optimal grid sequence may be difficult, even if we restrict the

process to h-refinement alone. Hence, we turn to seeking nearly optimal solutions by using

heuristics of greedy type. We consider refinement heuristics that determine the fraction

of elements to be refined based on optimizing an efficiency measure in every step. We

expect that a desirable grid sequence needs to be a high accuracy sequence, i.e., a grid

sequence for which the error, E`(N`), decreases with nearly optimal order as a function of

the number of DOF, N`, on grid level `.

On each level, order the elements such that the local error, εj, satisfies ε1 ≥ ... ≥ εN`
.

With r ∈ (0, 1] denoting the to-be-determined fraction of elements that will be refined,

let f(r) ∈ [0, 1] be the fraction of the total error functional in the refinement region,

γ(r) ∈ [0, 1] the predicted functional reduction, and η(r) ∈ [1, 2d] the ratio of the number

of DOF on level ` + 1 and level `, i.e., N`+1 = η(r) N`. The first refinement strategy,

‘work times error’ efficiency (WEE), was initially proposed in [11]. Here, the fraction, r,

of elements to be refined on the current level is determined by minimizing the following

efficiency measure:

work× error reduction = η(r)
√

γ(r), (3.8)

i.e.,

ropt = arg min
r∈(0,1]

η(r)
√

γ(r). (3.9)
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The motivation for this heuristic is as follows: more work on the current level is justified

when it results in increased error reduction that offsets the extra work. While this choice

does not guarantee that a globally optimal grid sequence is obtained, this local optimization

in each step results in an overall strategy of greedy type, which can be expected to lead to

a reasonable approximation to the optimal grid sequence.

A second strategy, ‘accuracy per computational cost’ efficiency (ACE) was suggested

by John Ruge . We define the predicted effective functional reduction factor

γ(r)eff = γ(r)1/η(r). (3.10)

The fraction, r, of elements to be refined on the current level is determined by minimizing

this effective reduction factor, which is the same as minimizing log(γ(r)eff), i.e.,

ropt = arg min
r∈(0,1]

log(γ(r))

η(r)
. (3.11)

The effective functional reduction factor, γ(r)eff, measures the functional reduction per

unit work. Indeed, compare two hypothetical error-reducing processes with functional

reduction factors γ1 and γ2, and work proportional to η1 and η2. Assume that process 2

requires double the work of process 1, η2 = 2 η1. Then the two processes would be equally

effective when γ2 = γ2
1 , because process 1 could be applied twice to obtain the same error

reduction as process 2, using the same total amount of work as process 2. Minimizing the

effective functional reduction in every step, thus, chooses the fraction, r, of elements to be

refined by locally minimizing the functional reduction per unit work.

Both the strategies of minimizing work times error reduction, and minimizing the ef-

fective functional reduction factor, are ways for optimizing the efficiency of the refinement

process at each level. Hence, we call the two proposed refinement strategies efficiency-

based.

The predicted functional reduction ratio, γ(r), and element growth ratio, η(r), can be

determined as follows for the case of h-refinement in Rd.

The element growth ratio, η(r), can be determined easily. We have N` elements on

level `. Of these, rN` are refined into 2d new elements each, while (1− r)N` elements are

left unrefined. Thus, the number of elements on level ` + 1 is N`+1 = (1− r)N` + 2d rN` =

(1− r + 2d r)N`. This yields

η(r) = 1− r + 2d r. (3.12)
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The predicted functional reduction factor, γ(r), depends on the error estimate and

the smoothness of the solution. As mentioned above, we consider the case that the error

estimate is equivalent to the H1 norm of u − uh, i.e., F(uh, f) ≈ ||u − uh||2H1(Ω) and

ε2
i ≈ ||u− uh||2H1(Ti)

.

Let hi be the diameter of element Ti. For elements Ti in which the solution is smooth

(at least in Hpi+1(τi) if order pi elements are used), we have

ε2
i ≤ Cih

2pi

i ||u||2Hpi+1(Ti)

≤ CiMpi+1h
2p
i hd

i .
(3.13)

Here, we can take Mpi+1 = ‖∑pi+1
|α|=0(D

αu)2‖∞,Ti
, such that ||u||2

Hpi+1(Ti)
≤ Mpi+1 hd

i . If τi is

split equally in each dimension, we have 2d new elements, Ti,1, Ti,2, ..., Ti,2d with the same

order pi. Then we can assume that

ε2
i,1 + ε2

i,2 + ... + ε2
i,2d

ε2
i

≈
(

1

2

)2p

. (3.14)

However, if u is less smooth in some element Ti, i.e., if we can only assume that

u ∈ Hsi(Ti) with si ∈ R, si < pi + 1, then we have

ε2
i ≤ Cih

2(si−1)
i ||u||2Hsi (Ti)

. (3.15)

For simplicity, we only consider the highly singular case here, for which si << pi + 1.

If, again, Ti is split in two in each dimension, assuming only element Ti,1 contains the

singularity, then εi,1 >> εi,j for all j = 2, 3, ..., 2d and ||u||Hsi (Ti,1) ≈ ||u||Hsi (Ti). We then

obtain that
ε2
i,1 + ε2

i,2 + ... + ε2
i,2d

ε2
i

≈ ε2
i,1

ε2
i

≈
(

1

2

)2(si−1)

. (3.16)

Suppose the solution is sufficiently smooth in the whole domain. For h refinement

with uniformly fixed element order p, the refinement process described above generates a

nondegenerate mesh sequence. Then the predicted functional reduction factor, γ(r), can be

obtained as follows. We apply (3.14) to the elements that are refined. A fraction 1− f(r)

of elements do not get refined, and so we assume that their errors are not reduced. This

results in

γ(r) = 1− f(r) +

(
1

2

)2p

f(r). (3.17)
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It is cumbersome to give a general expression for the singular case. However, assuming that

we know the power and location of the singularities in advance, one can easily compute

γ(r) using (3.14) and (3.16).

For p-refinement, the corresponding error reduction ratios are discussed in the next

chapter in the context of a 1D model problem.



Chapter 4

Numerical Performance in 1D

In this chapter, we study the performance of the proposed efficiency-based refinement

strategies for a standard model problem in 1D [3, 12]:

u′′ = α(α− 1)xα−2, u(0) = 0, u(1) = 1, (4.1)

with exact solution given by u = xα.

While the efficiency-based refinement strategies can be applied to various types of finite

element methods and associated error estimates, we choose to illustrate the refinement

strategies for model problem (4.1) using standard Galerkin finite element methods. We

choose this model problem because asymptotically optimal h and hp finite element grids

have been developed for them [3, 12], which can be used as a point of comparison for

the refinement strategies to be presented. In addition, there is a xα-type singularity at

x = 0 by choosing certain values for α. The refinement strategies presented can be equally

applied to other finite element methods, as is illustrated in next chapter, where we present

results for a 2D problem using the FOSLS finite element method [14, 11].

This chapter is organized as follows. In section 4.1, properties of hp-finite elements in

one dimension are discussed. The approximation properties for p-refinement are especially

addressed. Then, in section 4.2, properties of the 1D model problem and the finite element

method applied are considered. In section 4.3, the performance of the WEE and ACE

h-refinement strategies for the 1D model problem are analyzed. Modified WEE and ACE

refinement strategies for the singular case are considered in Section 4.4. Lastly, in section

34
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4.5, efficiency-based hp-refinement strategies are discussed and illustrated for the model

problem.

4.1 hp-finite elements in 1D

We choose a standard Galerkin finite element method to solve model problem (4.1). First,

we construct a finite dimensional subspace Sp,m(Ω, T ) of Hm(Ω), which consists of piece-

wise polynomials as follows. Let T be a partition of Ω = (a, b) into N(T ) open, disjoint

subintervals Ti, i.e., T = ∪iTi, Ti = (xi−1, xi), a = x0 < x1 < ... < xN(T ) = b. Denote by

hi = xi − xi−1 the width of element Ti, and h = max1≤i≤N hi the meshwidth of T .

Each element Ti ∈ T can be mapped onto T̂ = (−1, 1), the reference element. Denote

the map by Qi, i.e.,

Ti = Qi(T̂ ),

x = Qi(ξ) =
1

2
(1− ξ)xi−1 +

1

2
(1 + ξ)xi, ξ ∈ T̂ ,

ξ = Q−1
i (x) =

2x− xi − xi−1

xi − xi−1

, x ∈ Ti.

(4.2)

The space Sp,m(Ω, T ) is defined as follows:

Definition 4.1. Let Ω = (a, b) be an interval, T be a mesh and p = (p1, p2, ..., pN) a vector

of polynomial degrees pi (the degree vector), and let m ≥ 0 be an integer. Let Sp denote

the set of polynomials of degree p on the reference element T̂ . Then

Sp,m(Ω, T ) =
{

u ∈ Hm(Ω) : u|Ti
= si(Q

−1
i (x)), si ∈ Spi(T̂ )

}
. (4.3)

Since Qi is linear, u ∈ Sp,m(Ω, T ) implies that on Ti ∈ T , u is a polynomial of degree pi.

We define further

Definition 4.2. Let Ω = (a, b) be an interval, T be a mesh and p = (p1, p2, ..., pN) a vector

of polynomial degree pi (the degree vector), and let m ≥ 0 be an integer. Let Sp denote the

set of polynomials of degree p on the reference element T̂ . Then

Sp,m
0 (Ω, T ) = {u ∈ Sp,m(Ω, T ) : u(a) = u(b) = 0} . (4.4)
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Denote by ψi, i = 1, 2, ..., p+1 the basis functions (shape functions) of Sp. The selection

of shape functions depends on the degree m of smoothness of Sp,m(Ω, T ). Here, we only

consider the case where m = 1.

Shape functions

If m = 1, we select the set

ψ1(ξ) =
1− ξ

2
, ψ2 =

1 + ξ

2
,

ψi(ξ) =

√
2i− 3

2

∫ ξ

−1

Li−2(t) dt, 3 ≤ i ≤ p + 1.

(4.5)

Here, Li(x) are Legendre polynomials defined on T̂ = (−1, 1). The first Legendre polyno-

mials are given by

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2 − 1)/2,

L3(x) = (5x3 − 3x)/2,

L4(x) = (35x4 − 30x2 + 3)/8.

(4.6)

They satisfy the Legendre differential equation

(
(1− x2)L′i(x)

)′
+ i(i + 1)Li(x) = 0 in T̂ . (4.7)

Further, we have orthogonality

∫ 1

−1

Li(x)Lj(x) dx =





2
2i+1

for i = j,

0 otherwise .
(4.8)

Moreover, {Li(x)}∞i=0 is a basis of L2(T̂ ), i.e., any function u ∈ L2(T̂ ) can be expanded

into Legendre series

u(x) =
∞∑
i=0

aiLi(x). (4.9)
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where “=” is understood in the sense that

lim
p→∞

||u−
p∑

i=0

aiLi||L2(T̂ ) = 0. (4.10)

Multiplying (4.9) by Lj(x), integrating over T̂ and referring to (4.8) we find

ai =
2i + 1

2

∫ 1

−1

u(x)Li(x) dx. (4.11)

Lastly, the truncated Legendre expansion gives the best approximation in Sp. Let Qp(x)

be any polynomial of degree ≤ p in T̂ . For any u ∈ L2(T̂ ), we have

min
Qp∈Sp

||u−Qp||L2(T̂ ) = ||u−
p∑

i=0

aiLi||L2(T̂ ). (4.12)

Now, after selecting shape functions on Sp, we need to define nodal variables Np =

{N1, N2, ..., Np+1} such that {T̂ , Sp,Np} is a finite element.

Nodal Variables

If m = 1, we select the set

N1(v) = v(−1), N2(v) = v(1),

Ni(v) =

√
2i− 3

2

∫ 1

−1

v′(s)Li−2(s) ds, 3 ≤ i ≤ p + 1 ∀v ∈ Sp.

(4.13)

Then for any v ∈ Sp, it can be shown that v can be written as

v(x) =

p∑
i=0

Ni(v)ψi(x). (4.14)
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Proof. For any v ∈ Sp, we have

v(x) = v(−1) +

∫ x

−1

v′(t) dt

= v(−1) +

∫ x

−1

p−1∑
i=0

(
2i + 1

2

∫ 1

−1

v′(s)Li(s) ds

)
Li(t) dt

= v(−1) +
1

2
(v(1)− v(−1))(x + 1) +

p−1∑
i=1

∫ x

−1

(
2i + 1

2

∫ 1

−1

v′(s)Li(s) ds

)
Li(t) dt

= v(−1)
1− x

2
+ v(1)

1 + x

2
+

p+1∑
i=3

√
2i− 3

2

(∫ 1

−1

v′(s)Li−2(s) ds

) √
2i− 3

2

∫ x

−1

Li−2(t) dt

=

p∑
i=0

Ni(v)ψi(x).

Remark. The reason why we choose (4.5) as shape functions for Sp is that

∫ 1

−1

ψ′iψ
′
jdξ = δi,j, i, j ≥ 3.

The weak form of (4.1) contains product of first derivatives of ψi, and this choice makes the

resulting matrix sparse. One can also choose the standard 1D Lagrange elements described

in Chapter 2. These two types of elements are essentially equivalent, and thus give the

same approximate solution uh.

The standard shape functions ψj(ξ) and corresponding nodal variables Nj induce, via

the mapping Qi, element shape functions on Ti.

Definition 4.3. Let {ψj}pi+1
j=1 be the set of standard shape functions (of order m and degree

pi). Then the corresponding element shape functions of order ` and degree pi are defined

by

ν
[i]
j (x) := ψj(Q

−1
i (x)), x ∈ Ti, j = 1, 2, ..., pi + 1. (4.15)

And the corresponding nodal variables are given by

n
[i]
j (v(x)) = Nj(v(Qi(ξ))), j = 1, 2, ..., pi + 1. (4.16)
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After setting up basis functions and nodal variables elementwise, basis functions of the

space Sp,m(Ω, T ) can be deduced by extending all element shape functions to Ω. Here,

we only consider the case where m = 1. For any element Ti, we distinguish external

element shape functions ν
[i]
j (x), j = 1, 2 and internal element shape functions ν

[i]
j (x), j =

3, ..., pi + 1. It is easy to see that nodal variables corresponding to external element shape

functions give function values at nodes xi−1 and xi. Since in one dimensional space, by the

Sobolev Imbedding Theorem, H1(Ω) ↪→ C0, 1
2 (Ω), it follows that each extension of ν

[i]
j (x)

must be continuous. To achieve this, the corresponding nodal element shape functions of

neighboring elements must be joined at node xi, i = 1, 2, ..., N(T )−1. Every internal shape

function can be extended by zero to Ω to obtain a basis function. Thus, the dimension of

Sp,1(Ω, T ) can be given by

dim(Sp,1(Ω, T )) =

N(T )∑
i=1

(pi + 1)− (N(T )− 1). (4.17)

Approximation properties of Sp,1(Ω, T )

Assuming that u ∈ Hpi+1(Ti), Theorem 2.11 implies that the local interpolant ITj
u

satisfies:

||u′ − (ITi
u)′||L2(Ti) ≤ ci (hi)

pi||u||Hpi+1(Ti).

Here ci depends on pi. More precisely, it is shown in [3] that the following sharp estimate

holds:

Theorem 4.1 (Approximation properties of Sp,1(Ω, T )). Assume that u ∈ Hpi+1(Ti) for

Ti ∈ T . Let ITi
u be the local interpolant of u. Then ITi

u satisfies:

||u′ − (ITi
u)′||L2(Ti) ≤

1

2pi

√
(2pi)!

(hi)
pi||u||Hpi+1(Ti). (4.18)

This estimate can be applied to predict the error reduction for p-refinement in one

dimension if it is known in advance that solution u is smooth enough, e.g., (4.18) is used

in section 4.5 for hp-version WEE and ACE strategies.
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4.2 Model problem

Next, we formulate problem (4.1) into a variational problem using standard Galerkin

method. Let Ω = (0, 1), and let f(x) = α(α−1)xα−2. Define H1
D = {u ∈ H1(Ω) : u(0) = 0, u(1) = 1}.

Multiplying both sides of (4.1) by any given function v ∈ H1
0 (Ω) and integrating by parts

gives the variational problem:

find u ∈ H1
D such that

−
∫ 1

0

u′v′ dx =

∫ 1

0

fv dx ∀v ∈ H1
0 (Ω).

(4.19)

However, H1
D is not a linear subspace of H1(Ω) and the well-posedness theory of section

2.2.2 does not apply. To treat this case properly, let us assume that a function gD (in

general not unique) is defined on all of Ω = (0, 1), with gD ∈ H1(Ω) and gD|∂Ω = u. Then

we can write

u = w + gD. (4.20)

Substituting into (4.19), we obtain an equivalent variational problem as

find w ∈ H1
0 (Ω) such that

−
∫ 1

0

w′v′ dx =

∫ 1

0

(fv + g′Dv′) dx ∀v ∈ H1
0 (Ω).

(4.21)

It is easy to see that the right hand side of (4.21) defines a continuous linear functional on

H1
0 (Ω). The continuity of the bilinear form on H1

0 (Ω)×H1
0 (Ω) is a direct consequence of the

Cauchy-Schwarz inequality. Since a Poincaré inequality holds for all v ∈ H1
0 (Ω), i.e., there

exists a constant c such that ||v||L2(Ω) ≤ c||v′||L2(Ω) for all v ∈ H1
0 (Ω), the coercivity follows.

Therefore, problem (4.21) admits a unique solution w by the Lax-Milgram Theorem. It

follows that problem (4.19) has a unique solution given by u = w + gD.

Let Sp,1
D (Ω, T ) = Sp,1(Ω, T ) ∩ H1

D. A finite element approximation uh is obtained as

usual:

find uh ∈ Sp,1
D (Ω, T ) such that

−
∫ 1

0

u′hv
′ dx =

∫ 1

0

fv dx ∀v ∈ Sp,1
0 (Ω, T ).

(4.22)
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Proving the well-posedness of (4.22) involves, typically, the use of an interpolant, IhgD, of

the Dirichelet data into Sp,1(Ω, T ). Again, for any uh ∈ Sp,1
D (Ω, T ), let wh = uh − IhgD

such that wh ∈ Sp,1
0 (Ω, T ) (note that here we can not let wh = uh − gD since uh − gD may

not be in space Sp,1
0 (Ω, T )). We have

find wh ∈ Sp,1
0 (Ω, T ) such that

−
∫ 1

0

w′
hv
′ dx =

∫ 1

0

fv + (IhgD)′v′ dx ∀v ∈ Sp,1
0 (Ω, T ).

(4.23)

Noting that |·|H1(Ω) and ||·||H1(Ω) are equivalent norms in H1
0 (Ω), problem (4.23) admits

a unique solution wh satisfying

|w − wh|H1(Ω) = min
v∈Sp,1

0 (Ω,T )
|w − v|H1(Ω). (4.24)

This implies

|u− gD − (uh − IhgD)|H1(Ω) = min
v∈Sp,1

0 (Ω,T )
|u− gD − v|H1(Ω). (4.25)

Here, we can choose gD = u(1)ν
[N(T )]
2 , i.e., the function value of u at x = 1 multiplied by

the corresponding nodal element shape function. Then gD = IhgD since gD ∈ Sp,1(Ω, T ).

And Sp,1
D (Ω, T ) = Sp,1

0 (Ω, T ) + gD. From (4.25), we have

|u− uh|H1(Ω) = min
z∈Sp,1

D (Ω,T )
|u− z|H1(Ω). (4.26)

For our model problem (4.1), it turns out that u(xi)−uh(xi) = 0 at each grid point, [3, 12].

In addition, together with (4.26), the finite element approximation can be obtained easily,

namely, uh = Ihu. Let the error be estimated by the H1 seminorm of the actual error,

e = u− uh, i.e., F(uh, f) = ||u′ − u′h||2L2(Ω) and ε2
j = ||u′ − u′h||2L2(τj)

. The actual error will

be used as the error estimator throughout this chapter for the study of efficiency-based

refinement strategies. However, in real practise, the exact solution is usually unknown. In

this case, an equivalent locally sharp a posteriori error estimate needs to be derived. For

more details, one can refer to [3].

The smoothness of the exact solution of our model problem (4.1), u(x) = xα, depends

on α. First, α must be greater than 1
2

such that u ∈ H1(Ω). Otherwise, the variational
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problem (4.19) can not be solved in H1(Ω). In addition, we have

xα ∈ Hk+θ((0, 1)) ∀k < k + θ ≤ α +
1

2
< k + 1 (4.27)

with k an nonnegative integer and θ ∈ (0, 1).

One can refer to [3] for proof. This implies that u ∈ Hα+ 1
2 (T1), and is infinitely smooth

in elements Ti, i = 2, 3, ..., N(T ). Therefore, using (4.26), letting z = Ihu (actually, here

uh = Ihu), and using Theorem 4.1, following asymptotic behaviour of the error holds for

our model problem [3]:

ε1 ≤ ||u′ − (Ihu)′||L2(T1) ≤ C(α)
h

min(p1,α− 1
2
)

1

p2α−1
1

||u||
Hmin(p1,α− 1

2 )+1(T1)
,

εi ≤ ||u′ − (Ihu)′||L2(Ti) ≤
1

2pi

√
(2pi)!

(hi)
pi||u||Hpi+1(Ti), i = 2, ..., N(T ).

(4.28)

Then, for h-refinement, we can apply local error reduction ratio (3.16) for element T1 and

(3.14) for element Ti, i = 2, ..., N(T ) to predict the global error functional reduction γ(r).

Since (4.28) also shows how error bounds depend on p, error reduction w.r.t. p-refinement

can be predicted.

Remark 1. Asymptotic behaviours of the error in (4.28) for the singular element is shown

by using space-interpolation theory (cf [3]). It only holds for xα-type singularity. However,

error estimate for smooth elements holds generally in 1D.

Remark 2. Throughout his chapter, we say that the solution u is smooth in element Ti

provided that u ∈ Hpi+1(Ti). For our model problem, consider that a uniform polynomial

order p is used, then u is smooth if and only if α > p + 1
2
.

4.3 Performance of the WEE and ACE h-refinement

strategies in 1D

In this section, we apply the WEE and the ACE h-refinement strategies to our 1D model

problem (4.1) with polynomial order p = 1. On each level `, each element is allowed to be

refined at most once. Numerical results are presented for both smooth and singular cases.

We use the terminology and notation described in section 3.2.
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4.3.1 Performance of WEE and ACE for smooth solutions

We first consider the nonsingular case and choose α > 3/2 such that u ∈ H2((0, 1)). It

follows that using (3.17) the predicted functional reduction factor, γ(r), is given by

γ(r) = 1− 3

4
f(r). (4.29)

Note that, for a given error bound, our ultimate goal is to choose a grid sequence that

minimizes the total work,
∑L

`=1W`, which is the same as minimizing
∑L

`=1 N`, based on

our assumption that the work is proportional to N`. For a given error bound, the number

of elements on final grid NL is determined by the convergence rate of the global error w.r.t.

the DOF, which in fact is determined by the refinement strategy. For our model problem,

it has been shown in [12] that the rate of convergence is never better than (Np)−p, where

N is the number of elements and p is the degree of the polynomial.

Theorem 4.2. [12] Let E = (
∑

ε2
i )

1
2 . Then there is a constant, C = C(α, p) > 0, for any

grid {0 = x0 < x1 < ... < xN = 1}, such that

E ≥ C (Np)−p. (4.30)

For our example problem, an asymptotically optimal final grid, called a radical grid, is

described in [3, 12]:

xj = (j/N)(p+1/2)/(α−1/2), j = 0, ..., N. (4.31)

This grid is optimal in the sense that, in the limit of large N , it results in the smallest

error as a function of the number of DOF. If the WEE or the ACE strategy results in a

grid sequence with approximately optimal convergence rate of the global error w.r.t. DOF,

then the number of elements on the final grid must be close to the optimal number of

elements, which only depends on the given error bound. Because we want to minimize

work, it follows that, among the methods with approximately optimal convergence rate,

the methods for which the sequence {N`} increases fast are preferable. Large refinements

are, thus, advantageous.

We compare the numerical results of the WEE strategy and the ACE strategy, and the

radical grid, for α = 2.1 and p = 1 in Fig. 4.1 to Fig. 4.6. In the numerical results, we

carry out the refinement process until EL(uh, f) ≤ 2e−5 on final grid level L.
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Figure 4.1: Error versus DOF, α = 2.1 (no singularity), p = 1.
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(a) WEE: NL = 32, 741, EL = 1.859e − 5, L =
18, total work = 102, 313
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(b) ACE: NL = 32, 760, EL = 1.858e − 5, L =
16, total work = 65, 520

Figure 4.2: Local error functional, ε2
i , versus grid location on the final grid, α = 2.1 (no

singularity), p = 1.
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Figure 4.3: Refined fraction of error functional, f(ropt), versus level, `, and refined fraction

of elements, ropt, versus level, `, α = 2.1 (no singularity), p = 1.
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Figure 4.4: Number of elements, N`, versus level, `, α = 2.1 (no singularity), p = 1.
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Figure 4.5: Final error, EL, versus total work,
∑L

`=1 N`, α = 2.1 (no singularity), p = 1.
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Figure 4.6: Predicted functional reduction factor, γ(ropt), and actual functional reduction

factor, g, versus level, `, α = 2.1 (no singularity), p = 1.



Numerical Performance in 1D 47

From Fig. 4.1, it can be observed that both strategies result in a highly accurate grid

sequence. Thus, for a given error bound, the difference in the number of elements on the

final grid is very small. This can be verified on Fig. 4.2. Fig. 4.3 and Fig. 4.4 show that

the ACE strategy is slightly more efficient than the WEE strategy for our model problem

in the smooth case. There are two small refinements in the WEE refinement process, while

there are no small refinements for the ACE strategy. It follows that for a given error

bound on the final grid, the WEE strategy may require slightly more total work than the

ACE strategy, see Fig. 4.5. Fig. 4.2 shows that, for both strategies, the local errors in

all elements tend to be equally distributed. This explains why the values of f(ropt) and

ropt are close in Fig. 4.3. From Fig. 4.6 one can see that the predicted reduction factor

γ(ropt) is very accurate. This suggests a modification of the refinement process that can

be considered to increase performance: one does not need to solve the linear systems until

the new level is refined enough to have a significant number of additional elements in it.

In this way complexity is never a problem, and we can still have a highly accurate grid

sequence.

4.3.2 Performance of WEE and ACE for singular solutions

Next, we consider a singular example: let α = 0.6, so that u ∈ H1.1((0, 1)). In the numerical

results, we carry out the refinement process until EL(uh, f) ≤ 7e−4 on final grid level L.

For p = 1, the error reduction in the element that contains x = 0 can be approximately

given by
(

1
2

)0.2
, see (3.16, 4.28). The predicted reduction factor γ(r) is given by

γ(r) = 1− 3

4
f(r) +

[(
1

2

)0.2

− 1

4

]
f(

1

N`

). (4.32)

Here, we assume that the local error in the element that contains x = 0 is always the

largest.

The numerical results in Fig. 4.7 to Fig. 4.12 show that the two refinement strategies fail

for this singular case. Fig. 4.7 shows that the WEE strategy results in a highly accurate grid

sequence, while the ACE strategy becomes inaccurate by comparison with the radical grid.

For both strategies, the local error in the first element, which contains the singularity, is

always the largest, see Fig. 4.8. Hence, it is refined by the WEE and the ACE in every step.
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(a) WEE: NL = 6, 925, EL = 6.169e − 4, L =
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(b) ACE: NL = 24, 986, EL = 6.411e − 4, L =
106, total work = 365, 420

Figure 4.8: Local error functional, ε2
i , versus grid location on the final grid, α = 0.6

(singular case), p = 1.

This also confirms that the predicted reduction factor can be given by (4.32). The WEE

strategy generates a grid sequence with local errors being nearly equally distributed, but the
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Figure 4.9: Refined fraction of error functional, f(ropt), versus level, `, and refined fraction

of elements, ropt, versus level `, α = 0.6 (singular case), p = 1.
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Figure 4.10: Number of elements, N`, versus level, `, α = 0.6 (singular case), p = 1.

ACE strategy does not: more than 90% of the global error accumulates in only 10% of the

elements; see Fig. 4.8 and Fig. 4.9. Most refinement steps of the WEE strategy are small

refinements: only the first element (possibly with a few other elements) is continuously

being refined (see Figs. 4.9 and 4.10). This implies that the number of elements increases

slowly as a function of refinement level. It follows that the total work is very large. The

ACE strategy does choose a refinement region with large fraction of the error in it. However,
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Figure 4.11: Final error, EL, versus total work,
∑L

`=1 N`, α = 0.6 (singular case), p = 1.
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Figure 4.12: Predicted functional reduction factor, γ`(ropt), and actual functional reduction

factor, g`, versus level, `, α = 0.6 (singular case), p = 1.

this large fraction of error is only contained in a few elements. As a result, only a small

fraction of elements are refined. Thus, the required total work is still large; see Figs. 4.10
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and 4.11. Compared to the nonsingular case (Fig. 4.5), the slope of the error versus total

work plot in Fig. 4.11 is much less steep, especially in the initial phase of the refinement

process. The predicted reduction factors for both strategies are accurate, see Fig. 4.12.

This suggests that we can make the same modification as for the smooth case to increase

performance: one can wait on solving the linear systems until the number of elements has

increased sufficiently. In this way, one can assure that complexity is never a problem, but

calculating and minimizing the WEE and ACE functions many times may be costly as

well. In conclusion, for the highly singular case, the WEE strategy results in an accurate

grid sequence but is not efficient due to too many small refinements; the ACE strategy is

worse than the WEE strategy in this case, because the grid sequence is not accurate and

many small refinements are performed.

4.4 Modified WEE and ACE for singular solutions in

1D

In this section, modifications of WEE and ACE for singular solutions are considered.

First, putting a graded grid is proposed for improving numerical performance for singular

solutions. Next, we apply modified WEE and ACE strategies to our model problem. Then

comparisons between our proposed efficiency-based strategies and traditional threshold

based strategies are shown. Finally, we give numerical results for higher order p.

4.4.1 Modified WEE and ACE h-refinement strategies

The inefficiency of the WEE and ACE strategies for the highly singular solution is due to

many steps of small refinement for the singular elements. Therefore, we attempt to avoid

these steps by using a geometrically graded grid starting from the singular point, with the

aim of saving work while attempting to keep the grid sequence accurate.

As was discussed before, we assume that singularities can only be located at coarse-level

grid points, and that we know the location and the power of the singularities in advance.

We propose to do graded-grid refinement for elements containing a singularity, in such a

way that we obtain the same error reduction factor as in elements in which the solution
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is smooth. For example, for a singularity located at a domain boundary, the element at

the boundary is split in two, and then, within the same refinement step, the new element

at the singularity is repeatedly split in two again, until the predicted error reduction

factor matches the desired error reduction. We modify the predicted functional reduction

factor, γ(r), and the work increase ratio, η(r), accordingly. We expect the correspondingly

modified WEE and ACE strategies (MWEE and MACE) to generate a highly accurate

grid sequence in an efficient way. This results in the following modified efficiency-based

refinement strategies:

Modified WEE and ACE

1) Order the elements such that the local error, εj, satisfies ε1 ≥ ε2 ≥ ... ≥ εN`
.

2) Perform graded grid refinement for elements containing a singularity, i.e., if u ∈
Hsj(τj), then graded grid refinement with mj levels is used for any τj that needs to be

refined, with mj satisfying

(
1

2

)2mj(sj−1)

≈
(

1

2

)2p

⇒ mj = d p

sj − 1
e.

Note that we assume here that the error in the first, singular new element dominates the

sum of the errors in the other new elements of the graded grid. This is a good approximation

for a strong singularity. For elements in which the solution is smooth, single refinement is

performed: mj = 1. Let kj be the number of new elements after τj is refined: kj = mj + 1.

3) The predicted functional reduction factor, γ(r), and the work increase ratio, η(r),

are given by

η(r) = 1− r +

∑
j≤rN`

kj

N`

,

γ(r) = 1− f(r) +

(
1

2

)2p

f(r).

(4.33)

4) Find the optimal r defined in (3.9) for the MWEE strategy, and in (3.11) for the

MACE strategy.

5) Repeat.
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4.4.2 Performance of the modified WEE and ACE for singular

solutions
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Figure 4.13: Error versus DOF, α = 0.6 (singular case), p = 1.

We again choose α = 0.6 and p = 1 for our example problem. There is a singularity

at x = 0, with error reduction factor bound (1
2
)0.2. Therefore, for the element that con-

tains x = 0, we use 11−graded refinement (m = d 1
0.1
e). Numerical results are shown in

Figs. 4.13-4.18.

By comparing the numerical results for the modified strategies with the results for the

original methods, we see the following. Both the MWEE and MACE strategies results

in highly accurate grid sequences: the convergence rate is very close to the optimal rate

(Fig. 4.13). Local error functionals on the final MWEE grid are more equally distributed

than for the MACE grid. For the MWEE strategy, the local error functional in the singular

element is only 3 times larger than in the smooth elements. However, for the MACE

strategy, that ratio is as large as 1, 000 (Fig. 4.14). For the MWEE strategy, the number

of elements, N`, increases much faster than for the WEE strategy, which reduces the work

considerably (Fig. 4.15). However, there still exist a few small refinement steps. For the
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(a) MWEE: NL = 6, 975, EL = 6.125e − 4,
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(b) MACE: NL = 8, 517, EL = 5.443e − 4,
L = 12, total work = 17, 044

Figure 4.14: Local error functional, ε2
i , versus grid location on the final grid, α = 0.6

(singular case), p = 1.
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Figure 4.15: Refined fraction of error functional, f(ropt), versus level, `, and refined fraction

of elements, ropt, versus level, `, α = 0.6 (singular case), p = 1.

MACE strategy, it seems that the strategy tends to do uniform refinement after several

initial steps (Fig. 4.15(b)). Similar to the smooth solution case, the MWEE strategy may

need slightly more work to reach the same error bound than the MACE strategy due to a

few steps of small refinement (Fig. 4.17). However, since the MWEE strategy is slightly
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Figure 4.16: Number of elements, N`, versus level, `, α = 0.6 (singular case), p = 1.
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Figure 4.17: Final error, EL, versus total work,
∑L

`=1 N`, α = 0.6 (singular case), p = 1.

more accurate, the difference is very small. Again, the predicted functional reduction

factors are good approximations of the actual factors for both strategies (Fig. 4.18).
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Figure 4.18: Predicted functional reduction factor, γ(ropt), and actual functional reduction

factor, g, versus level, `, α = 0.6 (singular case), p = 1.

1 1.5 2 2.5 3 3.5 4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log
10

(N)

lo
g 10

(E
)

MWEE
MACE
graded threshold 1.0
graded threshold 0.8
graded threshold 0.2

(a)

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

er
ro

r 
on

 fi
na

l g
rid

total work

MWEE
MACE
graded threshold 1.0
graded threshold 0.8
graded threshold 0.2

(b)

Figure 4.19: : (a) Error versus DOF. (b) Final error, EL, versus total work,
∑L

`=1 N`.

(Both α = 0.6 (singular case), p = 1.)

4.4.3 Comparison with threshold-based refinement strategy

It is instructive to compare the MWEE and the MACE strategies with the threshold-based

refinement strategy that chooses to refine a fixed fraction of the error functional on each

level, i.e., f`(r) ≡ θ. The same graded grid refinement strategy is used for the elements
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that contain a singularity. We find the following for our example problem.

If we choose to refine a fixed fraction of the global error that is too small (less than the

average of f(ropt) in the modified efficiency-based strategies), e.g., θ = 0.2 in Fig. 4.19,

then the resulting grid sequence is almost of optimal accuracy, but the total work increases

significantly since N` increases slowly. A threshold value that is too large (larger than the

average of f`(ropt) in the modified efficiency-based strategies), e.g., θ = 1.0 in Fig. 4.19,

makes the number of elements, {N`}L
`=1, increase faster, but the large threshold results in

a less accurate grid sequence. This implies that more total work is required to reach the

same error bound. A threshold value that is close to the average of f(ropt) in the modified

efficiency-based strategies, namely, θ = 0.8 in Fig. 4.19, results in a refinement process

that performs similar to the efficiency-based refinement processes.

In conclusion, the efficiency-based refinement strategies automatically and adaptively

choose a nearly optimal fraction of the error to be refined. As a result, they generate nearly

optimal grid sequences in an efficient way, and there is no need to determine the optimal

value of a threshold parameter.

4.4.4 Results for p = 2

In this section, we briefly illustrate how the (M)WEE and (M)ACE strategies perform for

finite element polynomial order p = 2.
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Figure 4.20: Efficiency-based refinement strategies for a smooth problem with p = 2 (α =

3.1). (a) Error versus DOF. (b) Final error, EL, versus total work,
∑L

`=1 N`.
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Figure 4.21: Efficiency-based refinement strategies for a singular problem with p = 2

(α = 0.6). (a) Error versus DOF. (b) Final error, EL, versus total work,
∑L

`=1 N`.

First, consider a smooth case with α = 3.1, such that u ∈ H3 and u /∈ H4. Error versus

DOF and total work are plotted for WEE and ACE in Fig. 4.20. Both strategies lead to

global refinement in every step for this example, and produce a sequence of grids that are

very close to optimal radical grids.

Fig. 4.21 shows results for a highly singular case, with α = 0.6, such that u ∈ H1 and

u /∈ H2. WEE and ACE produce small refinements, but this is remedied by the MWEE

and MACE strategies, resulting, as before, in much less work for the modified strategies. It

has to be noted, however, that the MWEE and MACE grids contain many more elements

than optimal graded grids. This is probably due to the fact that the singularity is very

strong for α = 0.6 and p = 2, such that a geometrically graded grid with a grading factor of
1
2

does not decrease the grid size fast enough in the vicinity of the singularity. Nevertheless,

we can conclude that, within the constraint of refinement based on splitting cells in two,

the MWEE and MACE strategies lead to an efficient refinement process.

4.5 Efficiency-based hp-refinement strategies in 1D

Assuming that we know a good approximation for the p-refinement error reduction factor

for each element, we can apply the efficiency-based refinement strategies to hp-refinement

processes. As we discussed before, the difficulty for hp-refinement strategies lies in pre-

dicting the p-error reduction ratio correctly. For our simple model problem, two approx-
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imations for the p-error reduction ratio are considered. One is obtained in [12], and is a

sharp approximation specific to our model problem. The other one is obtained by using the

minimization property of the finite element solution and the interpolation error, namely,

the second part of formula (4.28). This p-ratio may be less sharp but more general, and

may be used for other BVPs.

In this section, we first describe the hp-version of the WEE and ACE refinement strate-

gies, with modified versions corresponding to singular cases. Then both strategies are

applied to our model problem for a singular case. Numerical results are presented and

compared with an optimal geometric hp-grid.

4.5.1 hp-version of the (M)WEE and (M)ACE refinement strate-

gies

Consider an hp-finite element method for our simple example problem (4.1). Again, let

T = {0 = x0 < x1 < ... < xN = 1} be the grid and let p = {p1, p2, ..., pN} be the

degrees of the polynomials in the elements. Let uh ∈ Sp,1
D (Ω, T ) be the Galerkin finite

element solution of (4.1) and ε2
i (pi) = ||u′ − u′h||20,Ti

the local error functional in element

Ti = [xi−1, xi] with polynomial of degree pi. Then we have the following theorem:

Theorem 4.3. [12] Let ε2
i (pi) be the local error of the finite element solution of problem

(4.1), and let

τi = [xi−1, xi], θi =

√
xi −√xi−1√
xi +

√
xi−1

.

Then

ε2
1(p1) ≈ h2α−1

1

p4α−2
1

. (4.34)

If θi (2 ≤ i ≤ N(T )) is not close to 1, then

ε2
i (pi) ≈

{
h

α−1/2
i

(
1− θ2

i

2θi

)α−1
θpi

i

pα
i

}2

. (4.35)

Since higher order polynomials do not provide significant improvement in error reduc-

tion in the singular element, we only consider h-refinement for the first element, which



60 hp-Adaptive Refinement

contains the singularity. Then we have the error functional reduction factor bound (1
2
)2α−1

as in (3.16) and (4.28). For an element Ti that does not contain a singularity, note that

θj is small, and again we obtain the same h-reduction factor bound, (1
2
)2pj , as before (see

(3.14) and (4.28). Moreover, if we double the degree of the polynomial pi, we obtain the

p-reduction factor bound as follows:

εi(2pi)

εi(pi)
≈

(
θpi

i

2α

)2

. (4.36)

We can then develop an hp-version of the MWEE strategy as follows:

hp-version MWEE and MACE

1) Order the elements such that the local error, εj, satisfies ε1 ≥ ε2 ≥ ... ≥ εN`
.

2) Let pmax be the maximal polynomial order to be used in the refinement process.

Three types of refinement are used, depending on the element. We use a graded grid

with p = 1 for the elements containing a singularity, in such a way that the predicted

error-reduction factor attains 1
4
. (Note that a target reduction factor of up to 1

2pmax could

be used, but we choose 1
4

for simplicity in our numerical tests.) For elements without

a singularity, p-refinement (doubling p) is used if the solution is locally smooth enough

(which, in general, can be detected a posteriori by comparing predicted and observed

error-functional reduction ratios) and p < pmax. Otherwise, h−refinement is used and the

degree p is inherited by both sub-elements. As before, we assume that the work of solving

the linear systems is proportional to the number of DOF. Then, doubling p or splitting the

element into two elements with order p has the same computational complexity.

3) Calculate the MWEE or MACE efficiency functions and find the optimal fraction of

elements to be refined, ropt.

4) Refine elements τj, 1 ≤ j ≤ roptN`.

5) Repeat.

For a general problem different from (4.1), it may be difficult to find a sharp approxi-

mation formula for the error reduction in the case of p-refinement. Hence we are interested

in seeking a more general but possibly less sharp p-error reduction factor. Recall that for

elements Ti in which the solution is smooth (at least in Hpi+1(Ti) if order pi elements are
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used), we can use formula (4.28) to get

ε2
i (pi) ≤

(
hi

2

)2pi 1

(2pi)!
||u||2Hpi+1(Ti)

. (4.37)

Assuming that 1
(2pi)!

||u||2
Hpi+1(Ti)

≤ M , where M is a constant, we obtain the following

general p-error reduction factor

ε2
i (2pi)

ε2
i (pi)

≈
(

hi

2

)2pi

, (4.38)

for elements Ti that do not contain a singularity.

Just as in the case of h-refinement, we seek some kind of optimal grid for comparison.

Suppose the locations of the grid points are given by

xi = qN(T )−i, 0 < q < 1, j = 1, 2, ..., N(T ). (4.39)

Let θi = θ =
1−√q

1+
√

q
,∀i : 1 ≤ i ≤ N(T ). It was shown in [12] that the optimal degree

distribution of p for these grid locations tends to a linear distribution with slope

so = (α− 1/2)
log q

log θ
. (4.40)

Furthermore, the optimal geometric grid factor q and linear slope so combination is given

by

qopt = (
√

2− 1)2, sopt = 2α− 1. (4.41)

4.5.2 Numerical results and comparisons

We apply the hp-version MWEE and MACE strategies with the two p−refinement re-

duction factors given by (4.36) and (4.38) to our model problem 4.1 with α = 0.6, and

compare the numerical results with the optimal geometric grid with q = qopt and q = 1
2
;

see Figs. 3.22 and 3.23. In the numerical results, we carry out the refinement process until

EL(uh, f) ≤ 5e−3 on final grid level L.

Observe that the hp-finite element methods result in much faster error convergence

rates than the h-finite element method. Both the hp-MACE and hp-MWEE strategies
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result in a highly accurate grid sequence with rate-of-error convergence very close to the

geometrical grid with grading number q = 0.5. Also, the refinement process is efficient, i.e.,

the number of DOF increases fast w.r.t. the refinement level. Surprisingly, hp−refinement

strategies using the more general, but less accurate, error reduction factor (4.38), result in

a better grid sequence than with the more accurate Babuška factor, (4.36). The results are

even better than the optimal geometric grid sequence when the number of DOF is small.
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Note that for all elements which do not contain a singularity, the general p-reduction

factor is always less than the h-reduction factor. It follows that p-refinement is always

considered first for such elements before reaching pmax. However, why using the general

factor results in a better grid than using the more accurate factor is still not clear. More

work needs to be done to verify whether the general factor (4.38) works well for more

general problems. Furthermore, the convergence rate of the optimal geometric grid is

faster than the MWEE and MACE and the geometrical grid with q = 0.5. Unlike the case

of the h-version, the difference is noticeable here.



Chapter 5

2D results: FOSLS Finite Element

Methods

In this chapter, we explore the use of the proposed efficiency-based refinement strategies

in two spatial dimensions. In these initial considerations, we only discuss problems with

sufficiently smooth solutions.

To illustrate the broad applicability of our refinement strategies, we solve a 2D Poisson

equation using a first-order system least-squares (FOSLS) finite element method, rather

than the Galerkin method that was used for the 1D test problems. We choose FOSLS

mainly because FOSLS possesses one advantageous feature that other FEMs do not pos-

sess: FOSLS functionals provide an easily computable, and locally sharp a-posteriori error

estimate that can be used for adaptive refinement.

This chapter is organized as follows. In section 5.1, concepts of FOSLS finite element

methods are introduced. We review the FOSLS methodology, and discuss how FOSLS

functionals can be used in adaptive refinement. Then, in section 5.2, FOSLS for second-

order elliptic PDEs is specifically discussed. Lastly, in section 5.3, we apply the proposed

efficiency-based refinement strategies to a 2D Poisson equation and present numerical re-

sults.

64
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5.1 First-Order System Least Squares (FOSLS) finite

element methods

5.1.1 The FOSLS methodology

We briefly review the FOSLS methodology here. For details, one can refer to [13, 14, 15].

We start with a (typically second order elliptic type) PDE, or a system of PDEs together

with appropriate boundary conditions:




Lw = f in Ω ⊂ Rd, d = 2, 3,

Rw = g on Γ = ∂Ω,
(5.1)

where L is a linear differential operator and R is a linear boundary operator.

By introducing new variables, the FOSLS methodology yields a system of first-order

(linear) PDEs, 



Liu = fi, i = 1, 2, ..., M, in Ω,

Riu = gi, i = 1, 2, ..., N, on Γ,
(5.2)

which is equivalent to the original problem (5.1). The resulting FOSLS L2-functional is

the scaled sum of L2-norms of the residuals of system (5.2):

G(u, f) =
M∑
i=1

||ai(Liu− fi)||2L2(Ω) +
N∑

i=1

||bi(Riu− gi)||2L2(Γ). (5.3)

Here ai and bi are weight functions to improve the FOSLS functional convergence, e.g., see

[16]. For simplicity, we can assume ai = bi = 1. We only consider the L2 case here, even

though the L2 norm can be replaced by other suitable norms, e.g., the H−1 norm, see [17],

or the H
1
2 norm for boundary terms, see [15]. The FOSLS minimization problem is

u = arg min
v∈W

G(v, f), (5.4)

where W is a proper Hilbert space with suitable norm ||| · |||, often (equivalent to) a

product of H1 spaces. To derive the weak form, assuming that u solves (5.4), we have for

any function v ∈ W,
dG(u + λv, f)

dλ
|λ=0 = 0. (5.5)
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Therefore

N∑
i=1

2 (ai(Liu− fi), aiLiv)0,Ω +
M∑
i=1

2 (bi(Riu− gi), biRiv)0,Γ = 0 ∀v ∈ W. (5.6)

Hence, define

B(u,v) =
N∑

i=1

(aiLiu, aiLiv)0,Ω +
M∑
i=1

(biRiu, biRiv)0,Γ , (5.7)

and

F(v) =
N∑

i=1

(aifi, aiLiv)0,Ω +
M∑
i=1

(bigi, biRiv)0,Γ . (5.8)

The weak form of the minimization problem (5.4) is

find u ∈ W such that

B(u,v) = F(v) ∀v ∈ W.
(5.9)

Assume that the bilinear form B(·, ·) is continuous and coercive in W, i.e., there exist

constants C1 and C2 such that

B(u,v) ≤ C1|||u||| |||v|||,
C2|||u|||2 ≤ B(u,u), ∀u,v ∈ W.

(5.10)

Then, by the Lax-Milgram theorem (Theorem 2.6), the weak problem (5.9) is well posed.

The inclusion of the boundary residual in (5.3) allows the use of minimization spaces W

that are not constrained to satisfy the boundary condition, i.e., such conditions are enforced

weakly through the variational principle. This is advantageous whenever the boundary

condition is difficult to satisfy computationally and represents a beneficial feature of least-

squares based methods. If, on the other hand, the boundary condition can be easily

imposed, one can consider (5.3) with the boundary term omitted. Then, the functions

belonging to the space W should be required to satisfy the boundary condition, i.e., the

boundary condition is enforced strongly or directly on candidate minimizers. In this case,

the admissible set may not be a linear space. In order to formulate the well-posedness,

one can extend the boundary data to all of Ω by introducing gD. By introducing a new
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variable w = u − gD, one can formulate an equivalent FOSLS problem in a subspace of

W with zero boundary conditions. However, as we discussed in Chapter 3, the discrete

weak problem involves using an interpolant of gD. Hence, the use of IhgD may affect

the convergence of the finite element solution, especially in higher dimensional spaces, see

(4.25).

Denote by Wh a finite dimensional subspace (often consisting of piecewise polynomials).

The corresponding discrete variational problem is given

find uh ∈ Wh such that

B(uh,v) = F(v) ∀v ∈ Wh.
(5.11)

Together with (5.9), this implies that

|||u− uh||| ≤ C min
v∈Wh

|||u− v||| (5.12)

5.1.2 Local FOSLS functionals

The FOSLS functional is a sum of integrals and, hence, can be evaluated over any subdo-

mains of Ω. Again, let T = ∪T be a partition of Ω. We call

GT (u,v) =
M∑
i=1

||ai(Liu− fi)||2L2(T ) +
N∑

i=1

||bi(Riu− gi)||2L2(∂T ). (5.13)

the local FOSLS functional. Obviously, the FOSLS functional can be written as the sum

of all local functionals over all elements:

G(u, f) =
∑
T∈T

GT (u, f). (5.14)

Here, we discuss how local functionals can be used for adaptive refinement. We first

consider GT (u,v) as a candidate a-posteriori error estimate. It has been suggested that the

value of the local least-squares functional on an element in a given mesh can be used as an

a-posteriori error estimate, see [11, 18]. For any given function uh in the finite-dimensional

space Wh ∈ W, the coercivity bound implies that

G(uh, f) = G(uh, Lu) = G(uh − u, 0) = B(uh − u,uh − u) ≥ C2|||uh − u|||. (5.15)
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This implies

|||uh − u|||2 ≤ 1

C2

∑
T∈T

GT (uh, f). (5.16)

If all of the local error estimates G(uh, f) are small, then the global error is also small.

In the literature, there are many examples (cf [4, 13, 14, 15]) showing that a proof

analogous to the continuity bound can be used to establish a similar bound on the local

functional, i.e., we have

GT (uh, f) = BT (uh − u,uh − u) ≤ C1|||uh − u|||2T (5.17)

for any T , which implies

|||uh − u|||2T ≥
1

C1

GT (uh, f) (5.18)

for any T ∈ T .

Bounds (5.16) and (5.18) indicate that the local FOSLS functional GT (uh, f) can be

used as an a-posteriori error estimate. In fact, these two bounds do not depend on how

the approximation uh ∈ Wh is obtained. For standard Galerkin methods, bounds of this

type usually depend on the fact that uh must be a discrete finite element solution, and

moreover they can be very tedious to derive, see [3].

We show how the local FOSLS functional can be used to obtain a local a-priori error

estimate in order to provide an (fine) initial mesh for adaptive refinement.

For a given element T , define the estimate

ηT :=
√

min
vh∈Wh

GT (vh, f), (5.19)

which is entirely local to T , and thus can be evaluated efficiently in parallel, see [11]. Then,

for any partition T that contains T , we have

ηT ≤ GT (vh, f), ∀vh ∈ Wh
T . (5.20)

Together with (5.18), this implies that

ηT ≤ GT (uh, f) ≤ C1|||uh − u|||2T (5.21)
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for any partition T with associated finite element space Wh
T and finite element approxi-

mation uh. A global a-priori lower bound for the value of the FOSLS functional for the

given partition T can then be calculated:

∑
T∈T

η2
T ≤ G(uh, f). (5.22)

Thus, for a given initial grid T0, one can use the indicator in (5.19) to refine T0 adaptively

until the refined grid T1 satisfies
∑

T∈T η2
T is less than an acceptable bound. Then, one can

solve the associated discrete variational problem and use local FOSLS functionals GT (uh, f)

as an a-posteriori error estimate for further refinement.

5.2 Introduction to FOSLS for second-order PDEs

Before we illustrate applicability of our refinement strategies using FOSLS, we study

FOSLS for solving second-order elliptic partial differential equations. For details, one

can refer to [13, 14].

Assume Ω is a bounded, open, connected domain in Rd (d = 2 or 3) with Lipschitz

boundary ∂Ω. Consider the following second-order elliptic BVP:




−∇ · (A∇p) + Xp = f, in Ω,

p = 0, on ΓD,

n · A∇p = 0, on ΓN ,

(5.23)

where A(x) is a d× d symmetric matrix with entries in L∞(Ω), X is an at most first-order

linear differential operator, ΓD ∩ ΓN = Γ is a partitioning of the boundary of Ω, and n is

the outward unit vector normal to the boundary. A is assumed to be uniformly symmetric

positive definite and scaled appropriately: there exist positive constants

0 < λ ≤ 1 ≤ Λ (5.24)

such that

λξT ξ ≤ ξT Aξ ≤ ΛξT ξ (5.25)

for all ξ ∈ Rd and almost all x ∈ Ω.
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Following the FOSLS methodology, the flux variable is introduced as

u = A∇p. (5.26)

Then problem (5.23) can be rewritten as a first-order system of PDEs as follows:




u− A∇p = 0, in Ω,

−∇ · u + Xp = f, in Ω,

p = 0, on ΓD,

n · u = 0, on ΓN .

(5.27)

Under appropriate assumptions on ΓD and X, the associated weak form of the system

(5.27) is uniquely solvable in H1(Ω) for any f ∈ H−1(Ω) or uniquely solvable in H1(Ω)/R
(cf. [20]) iff f satisfies the compatibility condition

∫
Ω

f = 0 for the case when ΓD = ∅.
Define the subspaces

W0(div; Ω) = {v ∈ H(div; Ω) : n · v = 0 on ΓN},
V = {q ∈ H1(Ω) : q = 0 on ΓD}.

Consider the FOSLS functional of system (5.27):

Ggrad-div(v, q; f) = ||v − A∇q||2(L2(Ω))2 + || − ∇ · v + Xq − f ||2L2(Ω) (5.28)

for (v, q) ∈ W0(div; Ω) × V . Under a certain assumption (cf.[13]), it is shown that

Ggrad-div(v, q; 0) is equivalent to the H(div; Ω) × H1(Ω) norm on W0(div; Ω) × V . This

implies optimal convergence for finite element subspaces of H(div, Ω)×H1. However, since

the associated bilinear form is not elliptic w.r.t. the (H1(Ω))d+1 norm, additive multigrid

algorithms applied to the discrete functionals are not optimally convergent.

This functional is modified by adding a compatible curl constraint and imposing addi-

tional boundary conditions on the first-order system (5.27), e.g., see [14]. Let ∇× denote

the curl operator. Note that if u is sufficiently smooth, then the properly scaled solution

A−1u is curl free, i.e., ∇×(A−1u) = 0, and the homogeneous Dirichlet boundary condition

on ΓD implies that the tangential flux satisfies

n× (A−1u) = 0, on ΓD. (5.29)
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The augmented system for (5.27) is then





u− A∇p = 0, in Ω,

−∇ · u + Xp = f, in Ω,

∇× A−1u = 0, in Ω,

p = 0, on ΓD,

n× u = 0, on ΓN ,

n× (A−1u) = 0, on ΓD.

(5.30)

The associated FOSLS functional is given by

Ggrad-div-curl(v, q; f) = ||v − A∇q||2(L2(Ω))2 + || − ∇ · v + Xq − f ||2L2(Ω)

+||∇ × (A−1v)||2(L2(Ω))2d−3 .
(5.31)

Let

H(curl A; Ω) =
{
v ∈ (L2(Ω))d : ∇× (A−1v) ∈ (L2(Ω))2d−3

}
. (5.32)

This is a Hilbert space with norm

||v||H(curl A;Ω) =
(
||v||2(L2(Ω))d + ||∇ × (A−1v)||2(L2(Ω))2d−3

)1/2

. (5.33)

Define the subspaces

W0(curl A; Ω) =
{
v ∈ H(curl A; Ω) : n× (A−1v) = 0 on ΓD

}
,

and

W = W0(div; Ω) ∩W0(curl A; Ω).

Then it follows that Ggrad-div-curl(v, q; 0) is equivalent to the (H(div; Ω) ∩H(curl A; Ω)) ×
H1(Ω) for all (v, p) ∈ W × V . Moreover, in [14], the functional Ggrad-div-curl(v, q; 0) is

equivalent to the H1(Ω)d+1 norm on W × V under some additional hypotheses on A and

Ω, see [14].

Let Th be a regular partition of Ω into finite elements. Assume two finite element

subspaces Wh ⊂ W and Vh ⊂ V are defined on T . Let (uh, ph) be the finite element solu-

tions. Suppose the conditions in Theorem 2.12 are satisfied such that the approximation



72 hp-Adaptive Refinement

properties of the finite element interpolant hold. Then by the Céa Theorem, the general

error estimate for finite element methods holds. More precisely, suppose that p ∈ Hr+1(Ω)

and u ∈ Hk+1(Ω)2, where r is the polynomial order of Vh and k is the polynomial order of

Wh.Let s = min(k, r). Then

||p− ph||H1(Ω) + ||u− uh||H1(Ω)d ≤ Chs(||p||Hs+1(Ω) + ||u||Hs+1(Ω)d). (5.34)

Also, one can show that if u and p belong to fractional Sobolev spaces, the estimates in

Theorem 2.14 also hold.

5.3 Numerical performance in 2D

(a) (b)

Figure 5.1: Adaptively refined grids using the ACE refinement strategy for 2D problems

with p = 2. (a) Single arc on a unit square domain. (b) Double arc on a unit square

domain.

The following 2D finite element problem is considered to illustrate the efficiency-based

refinement strategies. We solve the Poisson equation with inhomogeneous Dirichlet bound-

ary condition 



−∆p = f in Ω,

p = g on ∂Ω,

Ω = (0, 1)× (0, 1),

(5.35)
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with the right-hand side f and boundary conditions g chosen such that the solution is

given by

p(r, θ) =





1 r ≤ r0,

h(r) r0 ≤ r ≤ r1,

0 r1 ≤ r.

(5.36)

Here, (r, θ) are the usual polar coordinates and h(r) is the unique polynomial of degree five

such that p ∈ C2(Ω). We choose r0 = 0.7 and r1 = 0.8. The solution of this test problem

takes on the unit value in the lower left corner of the domain, and is zero elsewhere, except

for a steep gradient in the thin strip 0.7 ≤ r ≤ 0.8. Fig. 5.1(a) shows the grid obtained

after several refinement steps for this model problem.

BVP (5.35) is rewritten as a first-order system BVP





−∇ · U = f in Ω,

U = ∇p

∇× U = 0

p = g on ∂Ω,

~τ · U =
∂g

∂τ

Ω = (0, 1)× (0, 1),

(5.37)

where U is a vector of auxiliary unknowns, and ~τ is the unit vector tangent to ∂Ω. The

FOSLS error estimator is given by F(ph, Uh; f) = ‖∇ ·Uh + f‖2
L2(Ω) + ‖Uh−∇ph‖2

(L2(Ω))2 +

‖∇×Uh‖2
L2(Ω). We treat the inhomogeneous boundary conditions strongly, i.e., we extend

g to all of Ω such that g ∈ H2(Ω) and transform the BVP into a BVP with homogeneous

boundary condition. This can be done since g ∈ H3/2(Ω). The same argument as in chapter

3 shows that the FOSLS variational problem and discrete problem are well posed. We also

have G(ph, Uh; f) ≈ ||p− ph||2H1(Ω) + ‖U −Uh‖2
(H1(Ω))2 . As discussed before, for any element

T , we choose εT = G(ph, Uh; f). And we assume that εT ≈ ||p−ph||2H1(T ) +‖U−Uh‖2
(H1(T ))2

holds such that all assumptions on εT in Chapter 3 hold.
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Figure 5.2: Efficiency-based refinement strategies for the 2D model problem with p = 1.

(a) Error versus DOF. (b) Final error, EL, versus total work,
∑L

`=1 N`.
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Figure 5.3: Efficiency-based refinement strategies for the 2D model problem with p = 2.

(a) Error versus DOF. (b) Final error, EL, versus total work,
∑L

`=1 N`.

It should be noted here that the WEE measure may be problematic in dimensions

higher than one. This can be seen as follows. The WEE measure determines ropt by

minimizing MWEE ≡ η(r)
√

γ(r) over r ∈ [1/N, 1]. For smooth solutions, η(1/N) ≈ 1 and

γ(1/N) ≈ 1, such that MWEE(1/N) ≈ 1. For r = 1, however, it can be observed that

η(1) = 2d and γ(1) = (1
2
)2p, such that MWEE(1) = 2d−p. This means that MWEE > 1

when d > p. MWEE(r) is often a very smooth function, so ropt is likely to be close to 1/N

when d > p, resulting in small refinements, which are inefficient. We, thus, expect that the
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WEE strategy may not be efficient when d > p. We investigate this issue in the numerical

results presented below. Also, it can be noted that this problem does not occur for the

ACE strategy.

We present numerical results (obtained by Josh Nolting using FOSPACK) for the 2D

model problem using C0 elements with p = 1 and p = 2 in Figs. 5.2 and 5.3, respectively.

The figures show error versus DOF and total work for the WEE and ACE refinement

strategies, compared with global refinement in every step.

For p = 1, the ACE strategy results in an efficient algorithm, but, as expected, the

WEE strategy produces many small refinement steps for this case where d > p, and is,

thus, not efficient (Fig. 5.2). Fig. 5.3 shows that, for p = 2 (d = p), both the ACE and

WEE strategies produce an efficient refinement process.

Fig. 5.1(b) shows the resulting grid when the ACE strategy is applied to a slightly more

complicated test problem, in which two circular steps are superimposed (u = 1 in the lower

left corner, u = 2 in the lower right corner, u = 3 where the two steps overlap, and u = 0

in the top part of the domain). The adaptive refinement process adequately captures the

error generated at the steep gradients.

Remark. One can see there exist hanging nodes in Fig. 5.1. We give constrained values

to the hanging nodes by using interpolation of appropriate free nodes such that the ap-

proximate solutions are C0. It is shown in literature that the general error convergence

result holds for grids with hanging nodes under certain conditions, e.g., see [3].



Chapter 6

Conclusions

Two efficiency-based adaptive refinement strategies for finite element methods, WEE and

ACE, were discussed. The two strategies take both error reduction and work into ac-

count. The two strategies were first compared for a 1D model problem. For the case of

h-refinement with smooth solutions, the efficiency-based strategies generate a highly accu-

rate grid sequence and an efficient refinement process. However, for singular solutions, the

refinement process becomes inefficient due to many steps of small refinements. Use of a

graded grid for elements with a singularity leads to significant improvement. For both the

WEE and ACE strategies, this modification saves a lot of work, and also results in a highly

accurate grid sequence. For the hp-refinement case, similar conclusions are obtained. How-

ever, for general problems, the difficulty here may lie in how to find a good approximation

for the p-error reduction factor. Application to problems with spatial dimension larger

than one shows that the WEE strategy is inefficient when the dimension, d, is larger than

the finite element order, p. The ACE strategy, however, produces an efficient refinement

process for any combination of d and p.

Future work will include application of these grid refinement strategies to problems with

singularities in multiple spatial dimensions. Also, an idea to be explored in the future is to

enhance the refinement strategies by allowing double or triple refinement for some elements,

and determining, in each step, the optimal number of elements to be refined once, twice

and thrice. More realistic measures for computational work must be considered, that may,

for instance, take into account matrix assembly costs and multigrid convergence factors,

77
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and their dependence on the finite element order and the spatial dimension of the problem.

Another topic of interest is the parallelization of the efficiency-based refinement strate-

gies. Binning strategies need to be considered in order to reduce the work for minimizing

the efficiency measures, and to reduce the communication between processors [11]. Also,

load balancing issues are important for parallel adaptive methods (see, e.g., [19]). After

initial solution of a coarse level problem on a single processor, the domain may be par-

titioned such that each parallel processor receives a subdomain with approximately the

same amount of error. This may be a fruitful strategy for load balancing in that, as the

grid becomes finer, the optimal refinement approaches global refinement, which requires

minimal load balancing. This will be explored in future research.
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