25,974 research outputs found

    Weighted k-Server Bounds via Combinatorial Dichotomies

    Full text link
    The weighted kk-server problem is a natural generalization of the kk-server problem where each server has a different weight. We consider the problem on uniform metrics, which corresponds to a natural generalization of paging. Our main result is a doubly exponential lower bound on the competitive ratio of any deterministic online algorithm, that essentially matches the known upper bounds for the problem and closes a large and long-standing gap. The lower bound is based on relating the weighted kk-server problem to a certain combinatorial problem and proving a Ramsey-theoretic lower bound for it. This combinatorial connection also reveals several structural properties of low cost feasible solutions to serve a sequence of requests. We use this to show that the generalized Work Function Algorithm achieves an almost optimum competitive ratio, and to obtain new refined upper bounds on the competitive ratio for the case of dd different weight classes.Comment: accepted to FOCS'1

    On two problems in Ramsey-Tur\'an theory

    Full text link
    Alon, Balogh, Keevash and Sudakov proved that the (k−1)(k-1)-partite Tur\'an graph maximizes the number of distinct rr-edge-colorings with no monochromatic KkK_k for all fixed kk and r=2,3r=2,3, among all nn-vertex graphs. In this paper, we determine this function asymptotically for r=2r=2 among nn-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an nn-vertex KkK_k-free graph GG with α(G)=o(n)\alpha(G)=o(n). The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    Measuring Belief and Risk Attitude

    Get PDF
    Ramsey (1926) sketches a proposal for measuring the subjective probabilities of an agent by their observable preferences, assuming that the agent is an expected utility maximizer. I show how to extend the spirit of Ramsey's method to a strictly wider class of agents: risk-weighted expected utility maximizers (Buchak 2013). In particular, I show how we can measure the risk attitudes of an agent by their observable preferences, assuming that the agent is a risk-weighted expected utility maximizer. Further, we can leverage this method to measure the subjective probabilities of a risk-weighted expected utility maximizer

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    • …
    corecore