19,212 research outputs found

    Weighted multi-task learning in classification domain for improving brain-computer interface

    Get PDF
    One of the major limitations of brain computer interface (BCI) is its long calibration time. Due to between sessions/subjects nonstationarity, typically a big amount of training data needs to be collected at the beginning of each session in order to tune the parameters of the system for the target user. In this paper, a number of novel weighted multi-task transfer learning algorithms are proposed in the classification domain to reduce the calibration time without sacrificing the classification accuracy of the BCI system. The proposed algorithms use data from other subjects and combine them to estimate the classifier parameters for the target subject. This combination is done based on how similar the data from each subject is to the few trials available from the target subject. The proposed algorithms are evaluated using dataset 2a from BCI competition IV. According to the results, the proposed algorithms lead to reduce the calibration time by 75% and enhance the average classification accuracy at the same time

    Weighted transfer learning for improving motor imagery-based brain-computer interface

    Get PDF
    One of the major limitations of motor imagery (MI)-based brain-computer interface (BCI) is its long calibration time. Due to between sessions/subjects variations in the properties of brain signals, typically a large amount of training data needs to be collected at the beginning of each session to calibrate the parameters of the BCI system for the target user. In this paper, we propose a novel transfer learning approach on the classification domain to reduce the calibration time without sacrificing the classification accuracy of MI-BCI. Thus, when only few subject-specific trials are available for training, the estimation of the classification parameters is improved by incorporating previously recorded data from other users. For this purpose, a regularization parameter is added to the objective function of the classifier to make the classification parameters as close as possible to the classification parameters of the previous users who have feature spaces similar to that of the target subject. In this study, a new similarity measure based on the kullback leibler divergence (KL) is used to measure similarity between two feature spaces obtained using subject-specific common spatial patterns (CSP). The proposed transfer learning approach is applied on the logistic regression classifier and evaluated using three datasets. The results showed that compared to the subject-specific classifier, the proposed weighted transfer learning classifier improved the classification results particularly when few subject-specific trials were available for training (p<0.05). Importantly, this improvement was more pronounced for users with medium and poor accuracy. Moreover, the statistical results showed that the proposed weighted transfer learning classifier performed significantly better than the considered comparable baseline algorithms

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters

    MEG Decoding Across Subjects

    Full text link
    Brain decoding is a data analysis paradigm for neuroimaging experiments that is based on predicting the stimulus presented to the subject from the concurrent brain activity. In order to make inference at the group level, a straightforward but sometimes unsuccessful approach is to train a classifier on the trials of a group of subjects and then to test it on unseen trials from new subjects. The extreme difficulty is related to the structural and functional variability across the subjects. We call this approach "decoding across subjects". In this work, we address the problem of decoding across subjects for magnetoencephalographic (MEG) experiments and we provide the following contributions: first, we formally describe the problem and show that it belongs to a machine learning sub-field called transductive transfer learning (TTL). Second, we propose to use a simple TTL technique that accounts for the differences between train data and test data. Third, we propose the use of ensemble learning, and specifically of stacked generalization, to address the variability across subjects within train data, with the aim of producing more stable classifiers. On a face vs. scramble task MEG dataset of 16 subjects, we compare the standard approach of not modelling the differences across subjects, to the proposed one of combining TTL and ensemble learning. We show that the proposed approach is consistently more accurate than the standard one
    • …
    corecore