8,922 research outputs found

    Least absolute deviation estimation of linear econometric models: A literature review

    Get PDF
    Econometricians generally take for granted that the error terms in the econometric models are generated by distributions having a finite variance. However, since the time of Pareto the existence of error distributions with infinite variance is known. Works of many econometricians, namely, Meyer & Glauber (1964), Fama (1965) and Mandlebroth (1967), on economic data series like prices in financial and commodity markets confirm that infinite variance distributions exist abundantly. The distribution of firms by size, behaviour of speculative prices and various other recent economic phenomena also display similar trends. Further, econometricians generally assume that the disturbance term, which is an influence of innumerably many factors not accounted for in the model, approaches normality according to the Central Limit Theorem. But Bartels (1977) is of the opinion that there are limit theorems, which are just likely to be relevant when considering the sum of number of components in a regression disturbance that leads to non-normal stable distribution characterized by infinite variance. Thus, the possibility of the error term following a non-normal distribution exists. The Least Squares method of estimation of parameters of linear (regression) models performs well provided that the residuals (disturbances or errors) are well behaved (preferably normally or near-normally distributed and not infested with large size outliers) and follow Gauss-Markov assumptions. However, models with the disturbances that are prominently non-normally distributed and contain sizeable outliers fail estimation by the Least Squares method. An intensive research has established that in such cases estimation by the Least Absolute Deviation (LAD) method performs well. This paper is an attempt to survey the literature on LAD estimation of single as well as multi-equation linear econometric models.Lad estimator; Least absolute deviation estimation; econometric model; LAD Estimator; Minimum Absolute Deviation; Robust; Outliers; L1 Estimator; Review of literature

    edge2vec: Representation learning using edge semantics for biomedical knowledge discovery

    Full text link
    Representation learning provides new and powerful graph analytical approaches and tools for the highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have mostly focused on homogeneous graphs, an important current challenge is extending this methodology for richly heterogeneous graphs and knowledge domains. The biomedical sciences are such a domain, reflecting the complexity of biology, with entities such as genes, proteins, drugs, diseases, and phenotypes, and relationships such as gene co-expression, biochemical regulation, and biomolecular inhibition or activation. Therefore, the semantics of edges and nodes are critical for representation learning and knowledge discovery in real world biomedical problems. In this paper, we propose the edge2vec model, which represents graphs considering edge semantics. An edge-type transition matrix is trained by an Expectation-Maximization approach, and a stochastic gradient descent model is employed to learn node embedding on a heterogeneous graph via the trained transition matrix. edge2vec is validated on three biomedical domain tasks: biomedical entity classification, compound-gene bioactivity prediction, and biomedical information retrieval. Results show that by considering edge-types into node embedding learning in heterogeneous graphs, \textbf{edge2vec}\ significantly outperforms state-of-the-art models on all three tasks. We propose this method for its added value relative to existing graph analytical methodology, and in the real world context of biomedical knowledge discovery applicability.Comment: 10 page

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent

    Full text link
    While machine learning has achieved remarkable results in a wide variety of domains, the training of models often requires large datasets that may need to be collected from different individuals. As sensitive information may be contained in the individual's dataset, sharing training data may lead to severe privacy concerns. Therefore, there is a compelling need to develop privacy-aware machine learning methods, for which one effective approach is to leverage the generic framework of differential privacy. Considering that stochastic gradient descent (SGD) is one of the mostly adopted methods for large-scale machine learning problems, two decentralized differentially private SGD algorithms are proposed in this work. Particularly, we focus on SGD without replacement due to its favorable structure for practical implementation. In addition, both privacy and convergence analysis are provided for the proposed algorithms. Finally, extensive experiments are performed to verify the theoretical results and demonstrate the effectiveness of the proposed algorithms

    Sequential Monte Carlo EM for multivariate probit models

    Full text link
    Multivariate probit models (MPM) have the appealing feature of capturing some of the dependence structure between the components of multidimensional binary responses. The key for the dependence modelling is the covariance matrix of an underlying latent multivariate Gaussian. Most approaches to MLE in multivariate probit regression rely on MCEM algorithms to avoid computationally intensive evaluations of multivariate normal orthant probabilities. As an alternative to the much used Gibbs sampler a new SMC sampler for truncated multivariate normals is proposed. The algorithm proceeds in two stages where samples are first drawn from truncated multivariate Student tt distributions and then further evolved towards a Gaussian. The sampler is then embedded in a MCEM algorithm. The sequential nature of SMC methods can be exploited to design a fully sequential version of the EM, where the samples are simply updated from one iteration to the next rather than resampled from scratch. Recycling the samples in this manner significantly reduces the computational cost. An alternative view of the standard conditional maximisation step provides the basis for an iterative procedure to fully perform the maximisation needed in the EM algorithm. The identifiability of MPM is also thoroughly discussed. In particular, the likelihood invariance can be embedded in the EM algorithm to ensure that constrained and unconstrained maximisation are equivalent. A simple iterative procedure is then derived for either maximisation which takes effectively no computational time. The method is validated by applying it to the widely analysed Six Cities dataset and on a higher dimensional simulated example. Previous approaches to the Six Cities overly restrict the parameter space but, by considering the correct invariance, the maximum likelihood is quite naturally improved when treating the full unrestricted model.Comment: 26 pages, 2 figures. In press, Computational Statistics & Data Analysi

    Multilevel Aggregation Methods for Small-World Graphs with Application to Random-Walk Ranking

    Get PDF
    We describe multilevel aggregation in the specific context of using Markov chains to rank the nodes of graphs. More generally, aggregation is a graph coarsening technique that has a wide range of possible uses regarding information retrieval applications. Aggregation successfully generates efficient multilevel methods for solving nonsingular linear systems and various eigenproblems from discretized partial differential equations, which tend to involve mesh-like graphs. Our primary goal is to extend the applicability of aggregation to similar problems on small-world graphs, with a secondary goal of developing these methods for eventual applicability towards many other tasks such as using the information in the hierarchies for node clustering or pattern recognition. The nature of small-world graphs makes it difficult for many coarsening approaches to obtain useful hierarchies that have complexity on the order of the number of edges in the original graph while retaining the relevant properties of the original graph. Here, for a set of synthetic graphs with the small-world property, we show how multilevel hierarchies formed with non-overlapping strength-based aggregation have optimal or near optimal complexity. We also provide an example of how these hierarchies are employed to accelerate convergence of methods that calculate the stationary probability vector of large, sparse, irreducible, slowly-mixing Markov chains on such small-world graphs. The stationary probability vector of a Markov chain allows one to rank the nodes in a graph based on the likelihood that a long random walk visits each node. These ranking approaches have a wide range of applications including information retrieval and web ranking, performance modeling of computer and communication systems, analysis of social networks, dependability and security analysis, and analysis of biological systems
    • …
    corecore