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I. Introduction: The Least Squares method of estimation of parameters of linear 
(regression) models performs well provided that the residuals (disturbances or errors) are 
well behaved (preferably normally or near-normally distributed and not infested with large 
size outliers) and follow Gauss-Markov assumptions. However, models with the 
disturbances that are prominently non-normally distributed and contain sizeable outliers 
fail estimation by the Least Squares method. An intensive research has established that in 
such cases estimation by the Least Absolute Deviation (LAD) method performs well. This 
paper is an attempt to survey the literature on LAD estimation of single as well as multi-
equation linear econometric models.  

Estimation of the parameters of a (linear) regression equation is fundamentally a 
problem of finding solution to an over-determined and inconsistent system of (linear) 
equations. The over-determined and inconsistent system of equations cannot have any 
solution that exactly satisfies all the equations. Therefore, the ‘solution’ leaves the 
equations (not necessarily all) unsatisfied by some quantity (of either sign) called the 
residual, disturbance or error. It is held that these residuals should be as small as possible 
and this fact determines the quality of the ‘solution’. It is accomplished by minimization 
of a particular norm of the residual vector, ,e  in the sample. 

II. The Origins: The method to solve an over-determined system of (linear) algebraic 
equations dates back to KF Gauss and PS Laplace as mentioned by Taylor (1974). These 
mathematicians suggested (and used) the method of Least Squares, which minimizes the 
sum of square of residuals in the equation (tantamount to minimization of Euclidean norm 
of the residuals). They also suggested (and used) the method of Least Absolutes, which 
minimizes the sum of absolute residuals in the equations (which amounts to minimization 
of absolute norm of the residuals). In the sense of Minkowski norm, the methods of Least 
Squares (L2) and Least absolute (L1) are expressed as  
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  for p= 2 and p = 1, respectively. 

The Least Squares method is computationally convenient because minimization of 
Euclidean norm is amenable to calculus methods. This convenience led to its popularity. 
On the other hand, there are mathematical difficulties in working with absolute value 
functions on account of their lack of amenability to calculus methods.  
 



 2 

III. Justification to LAD Estimation: Econometricians generally take for granted that the 
error terms in the econometric models are generated by distributions having a finite 
variance. However, since the time of Pareto the existence of error distributions with 
infinite variance is known. Works of many econometricians, namely, Meyer & Glauber 
(1964), Fama (1965) and Mandlebroth (1967), on economic data series like prices in 
financial and commodity markets confirm that infinite variance distributions exist 
abundantly. The distribution of firms by size, behaviour of speculative prices and various 
other recent economic phenomena also display similar trends. Further, econometricians 
generally assume that the disturbance term, which is an influence of innumerably many 
factors not accounted for in the model, approaches normality according to the Central 
Limit Theorem. But Bartels (1977) is of the opinion that there are limit theorems, which 
are just likely to be relevant when considering the sum of number of components in a 
regression disturbance that leads to non-normal stable distribution characterized by 
infinite variance. Thus, the possibility of the error term following a non-normal 
distribution exists. 

 
An infinite variance means fat tails. Fat tails also may mean a lot of outliers in the 

disturbances. Since the method of least squares places heavy weights on the error terms, 
we look to an alternative, more robust estimator, which minimizes the absolute values and 
not the squared values of the error term. The Least Absolute Deviation (LAD) estimator, 
suggested by Gauss and Laplace, is such an estimator that minimizes the absolute value 
of the disturbance term. This estimator measures the error term as the absolute distance of 
the estimated values from the true values and belongs to the median family of estimators.  

 
Edgeworth (1887, 1888, 1923), Rhodes (1930) and Singleton (1940) emphasized 

L1 approximation (estimation). They pointed out that random sampling and normal 
distribution, which are needed to justify the method of Least Squares as an optimal 
method, often do not materialize. In other circumstances least squares may give undue 
weights to extreme observations. The method proposed by Edgeworth applies to only two 
variables. The methods of Rhodes and Singleton, while extending the proposals of 
Edgeworth to more than two dimensions, become extremely unwieldy as the dimension of 
the model increases. 
 
IV. The Advent of Operations Research and its Impact on LAD Estimation: The post 
World War II era opened with the development Operations Research and Linear 
Programming. With the development of mathematical methods to solve ‘corner-optimum’ 
problem (that defied optimization by the classical calculus methods), feasibility of 
parameter estimation by minimization of the sum of absolute residuals received a major 
breakthrough. Charnes, Cooper & Ferguson (1955) showed that a certain management 
problem involving a minimization of absolute values could be transformed to standard linear 
programming form by employing the device of representing a deviation as the difference 
between two non-negative variables. The paper by Charnes et al. (1955) is considered to be 
a seminal paper for giving a new lease of life to L1 regression. Fisher (1961) showed how a 
curve can be fitted with minimum absolute deviation (rather than squared deviations) using 
linear programming. His article reviewed the formulation of this application of linear 
programming. Fisher showed how  to fit a linear function 
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where y’s and Z’s are 2K non-negative variables that are to be determined. And the 
residuals for observation i be expressed as  
        1 1

ˆ
i i i iX X E V− = − ; ( )1, 2,...,i n=                                                                  …  (3) 

where E’s and V’s are 2n non-negative variables to be determined. Using (1), (2) and (3), 
the system of n linear equations can be obtained 
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Since the problem of finding positive values of E’s, V’s, y’s and Z’s satisfying system (4) 
and minimizing the linear form 

                  ( )
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is a linear programming problem in 2(n+K) variables in n constraints, the simplex method 
of Dantzig may be applied directly and the solution obtained. For automatic computation 
a suitable unit basis for the first stage can be formed from the set of E’s and V’s.  At the 
minimum R=S. 

 
Fisher opined that the method of fitting a linear regression function by minimizing 

the sum of absolute deviation is also flexible. In support of this, he pointed out that the 
regression function (1) could be constrained further by adding additional conditions as 
additional equations to the system of constraints (4). If it is desired to specify certain 
parameters of (1) as positive, the original parameters without conversion to a difference 
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can be used as a variable in the linear programming problem. A non-linear regression 
function is additive in the sense that it can be written in the form 

X1=f2(X2) +  ……. + fK(XK). 
It can be transformed into a linear function by making transformations of the independent 
variable as is done in least squares regression. If unequal weighting of the observed data is 
desired in the fitting, the desired weights, rather than unit weighting, should be inserted as 
coefficients in the objective function (5).  

 
Ashar & Wallace (1963) studied the statistical properties of regression parameters 

estimated by minimization of L1 norm. Huber (1964) explored the properties of L1 
regression in its robustness to wild fluctuations in the magnitude of residual elements. 

 
Meyer & Glauber (1964) for the first time directly compared L1 and L2 regression 

estimators. They estimated their investment model by minimization of L1 as well as L2 
norm and tested the regression equations obtained on post-sample data by using those 
equations to forecast the nine (in some cases eleven) observations subsequent to the period 
of fit. They found that with very few exceptions, the equations estimated by L1 
minimization outperformed the ones estimated by L2 minimization even on criteria (such 
as sum of squared forecast errors) with respect to which, L2 regression is ordinarily 
thought to be remarkably suitable or optimal. 

 
Rice & White (1964) compared L1,, L2 and L∞ (minimization of maximum 

deviation) norms for a single equation model. In their paper they observed that for the 
important problem of smoothing and estimation in the presence of wild points (outliers), 
the L1 norm appears to be markedly superior among the Lp (1 P≤ ≤ ∞ ) norms. 

 
Usow (1967) studied the L1 approximation for discrete functions and the 

discretization effects while the functions in original are continuous. This paper is more 
concerned with approximation of functions using L1 norm rather than estimation of 
regression parameters and their statistical properties, though its mathematical approach 
has a significant bearing on the development of statistical theory relating to properties of 
L1 regression. 

 
In 1973 Barrodale & Roberts presented an algorithm for L1-approximation by 

modifying the simplex method of linear programming, which is computationally superior 
to the alogorithms given by Usow and Robers & Robers. The algorithm is an improved 
version of the primal algorithm described by Barrodale & Young in 1966. In the 
improved version, Barrodale & Roberts were able to significantly reduce the total number 
of iterations required by discovering how to pass through several neighbouring simplex 
vertices in a single iteration. 

 
Authors like Wagner and  Robinowitz (for example) have suggested that the dual 

of the problem should be solved when m is large. However, it is found that an application 
of bounded-variable simplex method of Dantzig to the dual problem leads to a less 
efficient algorithm in general than solving the primal problem by their version of the 
standard form of the simplex method. 
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Although several alternatives to the standard form of the simplex method can be 
used to solve a linear programming problem (two forms of the revised simplex method, 
the primal-dual algorithm, the dual simplex algorithm, etc.), the denseness of the 
condensed tableau, the availability of an initial basic feasible solution, and the simplicity 
with which the idea of passing through several vertices in a single iteration can be 
implemented, combine together to make the standard form of the simplex method the most 
economical algorithm for l1-problem. 

 
The study conducted by Oveson (1968) in his Doctoral research on the LAD 

estimator gave a new thrust to the investigation into the properties and applicability of the 
estimator. It was almost fully established that in the presence of errors generated by thick-
tailed distribution, L1 regression performed better than L2 regression. 

 
In 1969 Robers and Ben-Israel applied a new method for linear programming to 

the dual formulation of the l1-problem. Their new method (which they called interval 
linear programming) is capable of solving any bounded-variable linear programming 
problem, and so it is natural to apply it to the l1-problem in particular. 

 
In 1971 Abdelmalek described an algorithm, which determines best l1- 

approximations as the limit of best lp-approximations as +→ 1P . His technique thus 
obtains a solution to a linear problem by solving a sequence of non-linear problems. 

 
Pollard (1991) presented an alternative approach for studying the asymptotic 

theory of LAD estimator in a simple regression context. The approach was built on the 
convexity of the LAD criterion function to construct a quadratic approximation whose 
minimand is close enough to the LAD estimator for the latter to share the same 
asymptotic normal distribution. 

 
Taylor (1974) gave the condition under which the L1 norm estimator is unbiased 

and consistent and discussed some of the problems encountered when trying to establish a 
distribution theory, under the assumptions that (i) ei are independent, identically 
distributed random variables with a continuous distribution function F and median zero, 
and (ii) 1lim ( )n X X Q−

→∞ ′ =  is a positive definite matrix. Nyquist & Westlund (1977) 
compared the two estimators (L1 and L2 norm estimators) with regard to their statistical 
properties.  

 
In 1978, Bassett & Koenker developed the asymptotic theory of Least absolute 

error regression. Their article resolved a long-standing open question concerning the LAD 
(alias LAE)) estimator by establishing its asymptotic normality under general conditions, 
thereby extending a result of PS Laplace to the general linear model. The result confirmed 
that for the general linear model the LAD estimator is a natural analog of the sample 
median. The authors proved that in the general linear model with independent and 
identically distributed errors and distribution function F, the estimator which minimizes 
the sum of absolute residuals is demonstrated to be consistent and asymptotically 
Gaussian with covariance matrix ,12 −QW where 1lim ( )n X X Q−

→∞ ′ =  and W2 is the 
asymptotic variance of the ordinary sample median from samples with distribution F.  
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This indicated that for any error distribution for which median is more efficient than the 
mean as an estimator of location, the least absolute error estimator has smaller asymptotic 
ellipsoids than the least squares estimator and therefore is more efficient than LS 
estimator. In the paper, a number of equivariance properties of LAD estimator was stated 
and proved. It was proved that the LAD estimator is affine equivariant, scale and shift 
equivariant and equivariant to reparameterization of design. Though Least Squares 
estimator shares the same properties, typically robust alternatives to least squares are not 
equivariant in one or more of the above senses. 

 
It was also observed that in a scatter of sample observations in 2

�  with the LAD 
solution line slicing through the scatter, as long as the moving observations lie on the 
same side of the original line, the solution is unaffected. This property is not shared by 
least squares, and although obvious in the case of median, it seems to capture part of the 
intuitive flavour of LAD’s median-type robustness and insensitivity to outlying 
observations. 

 
Phillips (1991) presented the asymptotic theory for the LAD estimator (of a 

regression model) by using generalized functions of random variables and generalized 
Taylor series expansions. The approach was justified by the smoothing that was delivered 
in the limit by the asymptotics, whereby the generalized functions were forced to appear 
as linear functionals wherein they became real valued. He studied models with fixed 
random regressors, and autoregressions with infinite variance errors and a unit root. His 
approach enabled the development of higher order asymptotic expansion of the 
distribution of the LAD estimator. The results obtained also showed that the LAD 
estimator converges at a faster rate in the unit root model for 0 2α< <  than the OLS 
estimator. 

 
Sakata (2001) proposed a general estimation principle based on the assumption 

that instrumental variables (IV) do not explain the error term in a structural equation. He 
opined that unlike the IV estimators such as two-stage least squares estimator, the 
estimators based on the proposed principle are independent of the normalization 
constraint. Based on this new principle, he proposed the L1IV estimator, which is an IV 
estimation counterpart of the LAD estimator. The author investigated the asymptotic 
properties of the L1IV estimator. A consistent estimator of its asymptotic covariance 
matrix and a consistent specification test based on the L1IV estimator were proposed. The 
problem of identification in L1IV estimation was also discussed.   
 
V. Iterative Algorithms for LAD Estimation: Once LAD estimation is justified and its 
edge over the OLS estimation (in an appropriate condition) is established, an efficient 
algorithm to obtain LAD estimates has a practical significance. A progress in this 
direction was made by Spyropoulos, Kiountouzis & Young (1973) and Abdelmalek 
(1974).  Schlossmacher (1973) and Fair (1974) also proposed an improved algorithm for 
L1 estimation that is very similar to iterative weighted least squares.  Given a linear 
econometric model, Y Xa e= +   

Step I:   Obtain the LS estimates of â , Ŷ and ê using the formulae 
1ˆ ( ) ;a X X X Y−′ ′=       ˆ ˆ;Y Xa=     ˆê Y Y= −  
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Step II:   Compute    
1ˆ
ˆij

i

W
e

=         for    i=j ,    else   ˆ
ijW  = 0       i,  j = 1,2, …,n. 

Step III:  Compute     1ˆ ˆˆ ( ) ;a X WX X WY−′ ′=   ˆ ˆ;Y Xa=     ˆê Y Y= −  
Step IV: If the values of â  are stable (convergence has been reached to the pre-assigned  

accuracy) then stop, otherwise go to step II. 
 

The asymptotic variance-covariance matrix  of  â   is given (Taylor, 1974) by 

               ( ){ } ( )
2 1ˆˆ 0.25 0v f X X

− −′= ,           where,          ˆ ˆ ˆ( ) ( 1) { ( )}p q
f o p q n e e= − − −                                      

here p and q are integers such that 1
2
n

p q≥ + =  for even n or 0.5
2
n

p q= + =  for odd n. 

Further that  1 2 ....s ne e e e≤ ≤ ≤ ≤  are ordered L1 residuals. Although the best values  of p 
and q cannot be ascertained, it has been suggested that 3n/4  and n/4 are the most 
appropriate values of p and q respectively as these values are not much affected by 
extreme values. 
 

A common problem with the iterative least squares procedure is that, in any given 
iteration, some of the residuals may be zero or very close to zero, thereby, making 
construction of weights difficult. Fair and Schlossmacher dealt with this problem in 
different ways. When a residual was less than 0.00001, Fair set it equal to 0.00001 while 
Schlossmacher ignored the observation, at least for the given iteration, by setting the 
weight equal to zero. Although the two solutions are to some extent contradictory, both 
authors reported satisfactory results in their empirical work. 

 
There is yet another method suggested by Anscombe (1967). The method 

minimizes squared deviations for small errors, absolute deviations for moderate errors and 
rejects observations with large errors. The estimator is obtained by minimizing the 

weighted least squares function ( )2

1

n

i i i
i

w y x a
=

′−
 , where, iw = 1 if 1îe m≤ ; or iw = 1 im e  

if 1m < 2îe m≤ ; or iw = 0 if îe > 2m ; 1m  and 2m  are either pre-assigned multiples of the 
standard deviation of ei or pre-assigned constants.  The steps to be followed for 
minimizing Equation (3.29) iteratively are: 

Step I: Calculate either the LS or LAD estimates for a  say α̂  
Step II: First calculate the errors ˆî i ie y xα′= −  and then the corresponding weights. 

Step III: Using weighted least squares ( ) 1
â X WX X Wy

−′ ′=     

where     W   = diagonal   ( )1 2, ........ nW W W , estimate a . 

Step IV: Replace α̂  by â   
Step V: Repeat the process II through V until  abs(α̂ - â ) < ε , a very small pre-

assigned positive number (for accuracy of estimation). 
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Along these efforts, a number of works using Monte Carlo method of simulation to 
compare the sampling properties of L1 regression with new alternatives to L2 norm 
estimators were done. Blattberg & Sargent (1971) pointed out that if the disturbances 
follow a two-tailed exponential distribution with density function 

                               ( ) ( )
��

�
�
�

�
�
�

−= −

λ
λ i

i

e
ef exp2 1                                                  …  (6) 

then maximization of the likelihood function is equivalent to minimization of 
1

n

i
i

e
=

  and 

so the least absolute deviation estimator becomes the maximum likelihood estimator. The 
superiority of L1 norm estimator over L2 norm estimator in finite samples, when errors 
follow the density in (6) was confirmed in a Monte Carlo study by Smith and Hall (1972). 

 
Huber (1973) put forward an estimator that minimizes appropriately weighted 

squared deviations for small residuals, and absolute deviations for large residuals.                 
The  estimator minimizes 

               ( )
1

n

i i
i

f y x a
=

′−
  

where, ( ) 21
2i if e e=      for     ie  < δ  

                    = 21
2ieδ δ−     for   ie δ≥ , and δ   is a pre- assigned constant.  

 
A set of normal equations that can be solved iteratively starting with either LS or 

LAD estimator for a  has been suggested by Huber. However, for any given observation 
the appropriate functions can change from iteration to iteration. 

 
Combining recent advances in interior point methods for solving linear programs 

with a new statistical preprocessing approach for l1-type problems, Portnoy & Koenker 
(1997) obtained a 10 to 100 fold improvement in computational speeds over current 
(simplex-based) l1 algorithms in large problems, demonstrating that l1 methods can be 
made competitive with l2 methods in terms of computational speed throughout the entire 
range of problem sizes.  
 

The iterative computational methods of estimation mentioned above often yield  
results that are close to optimum. It may be useful to apply random walk methods of 
optimization to refine the results further. The random walk method is based on generating 
a sequence of improved approximations to the minimum, each derived from the preceding 
approximation. Thus if ia  is the approximation to the minimum obtained in the (i-1)th 
stage (or step or iteration), the new or improved approximation in the ith stage is found 
from the relation 
            1i i ia a uλ+ = +  
where λ  is a prescribed scalar step length, and iu  is a unit random vector generated in 
the ith stage. The detailed procedure of this method is given by the following steps. 
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1. Start with an initial point ia and a scalar step length that is sufficiently large in 

relation to the final accuracy desired. Find the functional value ( )1 1F F a= . 
2. Set the iteration number  i =1. 
3. Generate a set of n random numbers and formulate the unit random vector iu . 

4. Find the new value of the objective function as  ( )1F F a uλ= + . 

5. Compare the values of F and F1. If F  < Fi,  set 1ia a uλ= + , and F1=F , and repeat 
step 3 through 5. If F ≥ F1 , just repeat step 3 through 5. 

6. If a sufficiently large number of iterations (N) cannot produce a better point, 1ia + , 
reduce the scalar length λ  and go to step 3. 

7. If an improved point could not be generated even after reducing the value of λ  
below a small number ε , take the current point ia  as the desired optimum point, 
and stop the procedure. 

 
In the random walk method described above, we proceed to generate a new unit 

random vector 1iu + as soon as we find that  iu is successful in reducing the function value 
for a fixed step length λ . However, we may expect to achieve a further decrease in the 
function value by taking a longer step length along the direction iu . Thus the random 
walk method can be improved if each successful direction is exploited until it fails to be 
useful. This can be achieved by using any of the one-dimensional minimization method. 
According to this procedure, the new point 1ia +  is found as  

*
1i i i ia a uλ+ = +  

where *
iλ is the optimal step length found along the direction iu so that 

*
1 ( min ( )

i
i i i i i i iF F a u F a u

λ
λ λ+ = + = + . 

It has been found (Dasgupta, 2004) that the random walk method improves the 
estimates obtained by Fair-Schlossmacher algorithm. 

 
VI. Extensions of the LAD Estimator: Powell (1984) proposed an alternative to 
maximum likelihood estimation of the parameters of the Censored Regression Model. He 
generalized the Least Absolute Deviations estimation for the standard linear regression 
model. The estimator was found by minimizing ( ),max 0,i iy x sβ−
 . 

In the paper, he showed that the Censored Least Absolute Deviation (CLAD) 
estimator is robust to heteroskedasticity and is consistent and asymptotically normal for a 
wide class of error distribution. Consistency of the asymptotic covariance matrix was also 
proved. As a consequence, tests of hypothesis concerning the unknown regression 
coefficient can be constructed which are valid in large samples. He also opined that the 
Censored LAD estimator can be computed using “direct search” methods developed for 
nonlinear programming.  

 
Weiss (1991) established that it was possible to use the LAD estimator to estimate 

the parameters of a nonlinear dynamic model. He considered a model given by 
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                           ( )0,t t ty g x eβ= +  
where  g = a known function 
          ( )1,....., ,t t t p tx y y z− −=  

          tz =  vector of exogenous variables 

          ( )0 1kβ = ×  vector of unknown parameter 

           te =  unobserved error term which satisfies median ( ) 0t te I =  

           tI σ= −  algebra (information set at period t) generated by { }( )0l ix i− ≥  and                                

                  { }( )1l ie i− ≥ . 
The Nonlinear Least Absolute Deviations (NLAD) estimator was defined  as the solution 
of the problem: 

                               ( ) ( )
1

1
min{ } min{ , }

T

T t t
t

Q y g x
Tβ β

β β
=

≡ −
  

The author investigated the model and proved theoretically that the NLAD estimator β̂  
was consistent and asymptotically normal under certain assumptions.  

 
Chen (1996) investigated the linear regression model  

                   0i i iY x eβ′= +  ;         1 ,i n≤ ≤     1n ≥  
under the assumptions that the random error ei belongs to a certain class F of distributions 
in ∞
� , that each ei has a unique median zero and for each ei there must be at least linear 

accumulation of probability in the vicinity of zero. He showed that the sufficient 

condition  ( )
1

1
1

1max log

n

n i n i j j i
j

d x x x x O n

−

≤ ≤
=

� �
′ ′≡ =� �
	 


    for strong consistency of the 

LAD estimate ˆ
nβ  of  0β  given by Chen et al. (1992)  fails. The author proved that for 

any constant sequence ,nD ↑ ∞  the condition  ( )logn nd O D n=  is no longer sufficient.  
  

Breidt, Davis & Trindade (2000) studied the Least Absolute Deviation 
estimation for All-Pass time series models. An All-Pass time series model is an 
autoregressive moving average model in which all the roots of the autoregressive 
polynomial are reciprocals of roots of the moving average polynomial and vice versa. 
The uncorrelated (white noise) time series generated by the All-Pass models are not 
independent in the non-Gaussian case. The authors  opined that an approximation to the 
likelihood of the model in the case of Laplace (two-sided exponential) noise yields a 
modified absolute deviation criterion, which can be used even if the underlying noise is 
not Laplacian. They established the asymptotic normality for LAD estimators of the 
model parameters under general conditions. Behaviour of the estimators in finite samples 
was also studied via simulation. 

 
Kim and Muller (2000) presented the asymptotic properties of two-stage quantile 

regression estimators. In their paper, they derived the asymptotic representation of the 
estimators and proved the asymptotic normality with quantile regression predictions. The 
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asymptotic variance matrix and asymptotic bias were discussed. They also analysed the 
asymptotic normality and the asymptotic covariance matrix with LS predictions. The 
results obtained permitted valid inferences in structural models estimated by using 
quantile regressions, in which the possible endogeneity of some explanatory variables 
was treated via ancillary predictive equations. Simulation results illustrated the usefulness 
of this approach. 

 
Furno (2000) compared the performance of LAD and OLS in the linear 

regression model with random coefficient autocorrelated (RCA) errors. The presence of 
thick tailed error distribution led to the estimation of the RCA model by Least Absolute 
Deviation  (LAD) estimator. It is known that when error follows a double exponential 
distribution, LAD coincides with maximum likelihood. In all other cases, the estimator is 
less affected by observations coming from tails, since it minimizes the absolute value and 
not the squared value of the residuals. In case of leptokurtic error distribution, the LAD 
estimator is particularly useful. Furno proved that the LAD estimator for randomly 
autocorrelated errors is asymptotically normal. The more general random coefficient 
ARMA models for the error term was also considered in the study and the resulting 
heteroskedasticity was analysed.  Monte Carlo experiments revealed that LAD improved 
upon OLS in case of RCA errors, both in terms of bias reduction and efficiency gains. 
However, in the case of constant autocorrelation model, the results confirmed that LAD 
is not advantageous, especially in small samples, since its sampling distribution differs 
from the asymptotic one.  

 
Hitomi & Kagihara (2001) proposed a NSLAD (nonlinear Smoothed LAD) 

estimator that is practically computable and has the same asymptotic properties as the 
NLAD estimator in Weiss’ (1991) nonlinear dynamic model. Monte Carlo experiments 
were conducted to compare the performance of the NSLAD and the nonlinear least-
squares (NLS) estimators. In the study two types of error distributions were considered – 
standard normal distribution where the NLS estimator becomes MLE and the Laplace 
distribution where the NLAD estimator is MLE. The results reported indicate that as the 
sample size increases the bias becomes negligible and the difference between NSLAD 
and NLS estimators ceases. While the NLS estimator was found to have a smaller 
standard deviation when the error term’s distribution was standard normal, the NSLAD 
estimator had a smaller standard deviation when the error term followed Laplace 
distribution. No difference was found in the performance of the two estimators with 
respect to median and quartiles. Although NLS had a marginal edge over NSLAD as far 
as computation time was concerned, NSLAD was found to take relatively lesser time 
when the error term followed Laplace distribution. 
 
VII. Estimation of Multi-equation Models by Minimization of (squared) Euclidean 
Norm: By the middle of 1960’s, multi equation econometric models and techniques used 
for estimating their parameters had already gained a solid ground. The method of limited 
information maximum likelihood (LIML) was developed in the late 1940’s (Haavelmo, 
1947). But the use of least squares method for estimation of parameters of a multi-
equation econometric model had to wait until Theil (1953) used repeated least squares to 
estimation of parameters of a regression equation in the multi-equation model. Basmann 
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(1957) used least squares repeatedly for estimating parameters of a multi-equation linear 
econometric model. Theil (1961) developed the method of Two-Stage Least Squares 
(2SLS).  

 
It would be befitting to describe the nature and the issues related with the 

estimation of multi-equation (linear) models which will help us in pin-pointing the nodes 
at which the least squares technique may be replaced by LAD.  

 
A multi-equation (linear) system may be described as YA + XB + E = 0, where, 

Y(n,m) is a matrix representing m number of endogenous variables each in n number of 
observations, X(n,k) is a matrix representing k number of predetermined variables each in 
n observations, E(n,m) is a matrix representing m number of stochastic vectors (error 
terms in the model) each in n elements and 0(n,m) is a null matrix in n rows and m 
columns.  Associated with Y and X there are the coefficient matrices, A(m,m) and B(k,m) 
respectively, called the structural coefficients matrices. It is assumed that the model YA + 
XB + E = 0 is complete, which implies that the model has as many (linearly independent) 
equations as the number of endogenous variables and the matrix A is a regular (not 
singular) matrix. While Y is a matrix of stochastic vectors ( Y = Y + ε , where Y is the 
matrix of true endogenous variables and  ε,  different from E, is the matrix of 
disturbances), some, but not all, of the vectors in X may be stochastic (Xj = Xj + νj). In 
case X is a non-stochastic vector, it is called an exogenous variable. It is also pertinent to 
note that the structural coefficient matrix A has a special structure such that the elements 
in its principal diagonal are all minus unity (-1) or aij = -1 ∀ i = j. Further, depending on 
the nature of the model, A may be diagonal (that is A= I− , a negatively signed identity 
matrix), lower triangular (where aij = 0 ∀   i < j)  or upper triangular (where aij = 0 ∀  i > j) 
characterizing a recursive model, block-diagonal, or finally a regular one (which 
characterizes a true simultaneous model).   

 
Empirically, we collect data on Y and the exogenous variables (that may make a 

full or partial X). Thus, empirical Y has two strains of error or Y = Y + ε +E. It is assumed 
that νj (in the pre-determined variables comprising X) and Ej are orthogonal (linearly 
independent). 

 
The objective is to estimate A and B. First, we simplify the model by a 

transformation of its equations (called structural equations) into another type of equations 
(called reduced form equations) in which Y - XP - η = 0. This transformation is effected 
by post-multiplying our structural model YA + XB + E = 0 by the inverse of the 
coefficients matrix A. That is: 
YAA-1 + XBA-1 + EA-1 = 0A-1     or     Y - XΠ - η = 0, where, Π= -BA-1 and  η =  -EA-1. 

 
The reduced form model Y-XΠ- η = 0 may be rewritten as Y = XΠ + η. Having 

assumed that the stochastic terms in X, if any, and E  are orthogonal, it is obvious that 
vectors in η and ν are orthogonal across η and ν. This result prompts us to estimate Π by a 
suitable method such as the method of ordinary least squares(OLS). The OLS estimator of 
Π is given by: 

P  =     (X’X)-1 X’Y    or  P  =   {(X’X)-1 X’}Y. 
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In P  = {(X’X)-1 X’}Y,  factor {(X’X)-1 X’} has a special interpretation. It is the 
generalized inverse (more exactly, the least squares g-inverse) of X. That is, 

1[ ]gX X X X− −′ ′= , such that  X g− X = {(X’X)-1 X’}X = (X’X)-1 X’X = I and XX g− = 
X{(X’X)-1 X’} = Id,  an idempotent matrix. Having obtained P , one may obtain the 
expected Y by the relationship Ŷ   = X P . 

 
However, the original objective was to estimate A and B, and instead, we have 

estimated Π = -BA-1. The question is: can we obtain, through some algebraic 
manipulation, the estimated A and B (that is, Â  and B̂ ), and if the answer is in an 
affirmative, then under what conditions can we obtain Â and B̂ ? This is the problem of 
identification. 

 
It is obvious that if each column of A as well as B could be known, A and B in full 

can be known. Hence, we will try to answer the question posed above for a particular 
equation (say, rth one) in the model YA + XB + E = 0. Since Π = -BA-1 , it implies P = 

1ˆˆ −− AB or ˆP̂A = B̂− . For the rth  equation, only the respective rth columns  of  Â  and B̂  
would be used. Thus, for the rth  equation we solve the system of equations given by ˆrPa  = 

rb̂− , where râ  and rb̂  are referring to the rth columns of the expected A and B matrices 
respectively. 

 
Since A is an m x m matrix and B is a k x m matrix, Π = -BA-1 is a k x m matrix. 

Therefore, the expression ˆrPa  = rb̂−  is a system of k (linear) equations involving m+k 
unknowns. It is obvious that we cannot (uniquely) determine  m+k unknowns and thus the 
system of equations ˆrPa  = rb̂−  is indeterminate. 

 
We may proceed further by augmenting the system with m number of additional 

(independent) equations in srâ ∈ râ  or trb̂ ∈ rb̂   (or both). The most straightforward way 

to do that is to set some rµ  unknowns ( srâ ∈ râ  or trb̂ ∈ rb̂ or both) equal to zero. It 
amounts to zero restriction on some rµ   structural coefficients in the rth  structural  

equation. It is obvious that rµ   ≥  m, else the problem is indeterminate. In case rµ  = m, we 
have as many equations as the unknowns, and further assuming that no equation is linearly 
dependent on the others, the unknowns (remaining after the zero restriction) can uniquely 
be determined. In this case we say that the equation ˆrPa  = rb̂−  is exactly identified. 
However, if rµ  > m, we have the equations larger in number than the unknowns, and the 
system of equations is over-determined. Generally, such an over-determined system is also 
inconsistent. That is to say that the solutions (values of the unknowns obtained from such 
an over-determined system of equations) do not satisfy all the equations. In this case we 
say that the equation ˆrPa  = rb̂−  is over-identified.  
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To formalize what we have mentioned above, let us categorize the elements of  râ  

and rb̂  into two (disjoint) categories, namely, the unknown ones and the known ones. We 

will use the subscripts 1 and 2 (respectively) to identify them. Thus, [ râ ]1 and [ rb̂ ]1 are the 

partitioned  vectors (columns) of  [ râ ] and [ rb̂ ], whose elements are some (say, m1 and k1 

respectively) unknown quantities. Similarly, [ râ ]2 and [ rb̂ ]2  are the partitioned  vectors 

(columns) of  [ râ ] and [ rb̂ ], whose elements are (m2 = m-m1 and k2 = k-k1 respectively) 
known quantities. Note that in order to avoid the under-identifiability of the rth structural 
equation it is necessary that k1 + m1 = rµ   ≥  m.   

 
We have mentioned earlier that the elements in the principal diagonal of matrix A 

are all minus unity (aii  = -1 ∀  i). Presently, we are concerned with the rth column of the 
matrix A. Thus, the rth  element of  [ râ ] = arr  = -1. In our scheme of categorized partition, 
therefore, the element arr would belong to [ râ ]2. Further, due to zero restriction on the 

coefficients all the rest elements of [ râ ]2 are zero and all the elements of [ rb̂ ]2  are zero. 
 
In the said scheme of categorized partition it would be helpful (Mishra, 1997) to 

use the permutation matrix operation on [ râ ] and [ rb̂ ]. Let G(m,m) be the permutation 
matrices obtained by permutating the columns of  the identity matrix I(m,m) and let 
H(k,k) be the permutation matrix obtained by permutating the rows of the identity matrix 
I(k,k) such that:  

G[ râ ] = 
2

1

]ˆ[
]ˆ[

r

r

a
a

   and     H[ rb̂ ] = 
2

1

]ˆ[

]ˆ[

r

r

b

b
 

Therefore, the system of equations ˆrPa  = rb̂−  is transformed (rearranged) as follows: 

H P G-1G[ râ ] = H[ rb̂ ]. 
Due to pre-multiplication of P  by H, the rows of P are permutated in correspondence 
with H[ rb̂ ] and due to post-multiplication of P by G-1, the columns of P are permutated 
in accordance with  G[ râ ].  Let us rename H P G-1 as Q. It is to be noted that Q is 
numerically known since P , G and H are all known. Then, 

Q
2

1

]ˆ[
]ˆ[

r

r

a
a

 =  
2

1

]ˆ[
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r

b

b
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r

r

b

b
. 

 
In this scheme, Q11 is a k1 x m1 matrix, Q12 is a k1 x m2 matrix, Q21 is a  k2 x m1 

matrix and Q22 is a k2 x m2 matrix. This gives us two equations: 
[Q11] [ râ ]1 + [Q12] [ râ ]2 =  [ rb̂ ]1 

[Q21] [ râ ]1 + [Q22] [ râ ]2  =  [ rb̂ ]2 
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Since [ râ ]2  and  [ rb̂ ]2 are known (more specifically, only one element of  [ râ ]2  is -1 and 

other elements are zero, and all the elements of  [ rb̂ ]2 are zero), [Q21]-g[[ rb̂ ]2 - [Q22] [ râ ]2 ] 

= [ râ ]1. In particular,  since [ rb̂ ]2 = [ 0 ], we have  [ râ ]1 =  -[Q21]-g[Q22] [ râ ]2 . Once [ râ ]1 

is obtained,  one may subsequently obtain [ rb̂ ]1 in [Q11] [ râ ]1 + [Q12] [ râ ]2 =  [ rb̂ ]1 by 
substitution. 

 

 In case [Q21] is a square matrix of full rank (the rth equation is exactly 
identifiable), [Q21]-g = [Q21]-1. Obtaining [ râ ]1 = -[Q21]-1[Q22] [ râ ]2  and subsequently 

[ rb̂ ]1 by substitution (applicable only if the rth structural equation is exactly identifiable) is 
called the method of Indirect Least Squares.   

 
However, if [Q21] is not a square matrix or it is deficient in rank [Q21]-1 would not 

exist. The restriction of rµ  ≥m together with the assumption that [Q21] is of a rank m1 
guarantees that [Q21]-g (or the least squares generalized inverse of [Q21]) exists (Theil, 
1971, pp. 268-273). That is to say that the least squares solution of  [ râ ]1 exists. In the 
worst case, when the rank of [Q21] is < m1, only the proper Moore-Penrose inverse of 
[Q21] or [Q21]+ exists.  In that case [ râ ]1 cannot be known or estimated uniquely. 

 
We have seen that in case [Q21] is a square matrix, [Q21]-1 exists (provided that 

[Q21] has a full rank of m1). Since [Q21] is a k2 x m1 matrix, its being a square matrix 
implies that k2 = m1. Now k2 means the number of elements in [ rb̂ ]2 all set to zero, which 
in turn implies the number of pre-determined variables appearing in the model YA + XB + 
E = 0, but absent from the rth equation. Similarly, m1 means the number of endogenous 
variables with unknown structural coefficients that appear in the rth equation. We have 
seen that exactly one more endogenous variable (yr) appears in the rth equation, but its 
coefficient is minus unity (-1) due to which fact arr = -1. Therefore, it is said that the 
necessary condition for exact identification of the rth equation is that the number of 
endogenous variables appearing in it is equal to the number of pre-determined variables 
absent from it plus one. The sufficient condition for exact identification is, of course, that 
[Q21] has a full rank of m1. 

 
In case of an over-identification where k2 ≥  m1 the number of endogenous 

variables appearing in the particular equation (the rth one) must be less than the number of 
pre-determined variables absent from the model plus one. This is the necessary condition 
for over-identification. The sufficient condition is that [Q21] has a full rank of m1. 

 
Therefore, the rth equation would be under-identified if and only if either (or both) 

of the two conditions is (are) satisfied: (i) k2 < m1 (ii) rank of [Q21] is deficient or 
rank([Q21]) < m1. It is obvious that in the case where k2 < m1, rank([Q21]) ≤   k2 < m1. 
Therefore, k2 < m1 guarantees under-identification. However, the rank of [Q21] might be  
deficient (rank([Q21]) < m1) even if k2   ≥  m1 provided that  there are enough number of 
linear dependencies in the equation system  [Q21] [ râ ]1 +  Q22][ râ ]2  =  [ rb̂ ]2.  
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We have seen that in case of over-identification k2 > m1, due to which the system 
of equations described by [Q21] [ râ ]1 +  Q22][ râ ]2  =  [ rb̂ ]2  has the number of equations 
larger than the number of unknowns to be determined. Consequently, [Q21]-1 is not 
defined. It is natural to think of obtaining  [Q21]-g and [ râ ]1 = -[Q21]-g[Q22] [ râ ]2 . 
However, Henri Theil and R L Basmann appear not to have been attracted by this route to 
estimation of [ râ ]1 and subsequently obtaining [ rb̂ ]1 in [Q11] [ râ ]1 + [Q12] [ râ ]2 =  [ rb̂ ]1. 

Instead, they obtain expected Y (say, Ŷ )  by the reduced form equations (that is Ŷ = X P ).  
Then, in any particular (over-identified) equation, say the rth equation, each ys (with un-
determined coefficients, s ≠ r) is replaced by the corresponding sŷ  such that 

0ˆ =+ rr XbaY . Since yr  in the rth
 equation appears with a known coefficient (arr = -1), yr  is 

not replaced by rŷ . Then estimation of ar  and br by OLS is permissible as the error in yr  

(dependent endogenous variable) is no longer correlated with the errors in the explanatory 
variables (Ys  or Xr) and the Gauss-Markov conditions are satisfied. By OLS, therefore, the 
unknown coefficients in ar  and br  appearing in 0ˆ =+ rr XbaY  are estimated.  Thus, first 
OLS is used to obtain P and subsequently, OLS is used once again on 0ˆ =+ rr XbaY  to 
obtain the unknown coefficients in ar  and br. On account of applying OLS at two stages, 
the method is called the Two-Stage Least Squares (2SLS). From the procedure and the 
conditions governing its application it is clear that 2SLS is an Instrumental variable 
approach to estimation of 0=+ rrrr bXaY , where each ys (with un-determined 
coefficients, s ≠ r) is replaced by  the instrumental variable sŷ . It follows from this the 
2SLS estimator is (usually) biased but consistent. 

 
It is natural to explore the possibility of obtaining [ râ ]1 and  [ rb̂ ]1 in an over-

identified structural equation by using the least squares inverse of [Q21], that is [Q21]-g as 
mentioned earlier. However, it took a long time to attract one’s attention since Basmann 
(1957) and Theil (1961) developed 2SLS. Khazzoom (1976) investigated into 
generalization of ILS (evidently ignored by Theil and Basmann) for an over-identified 
equation. Khazzoom estimates reduced form equations of a multi-equation linear 
econometric model by OLS but (in the second stage) instead of estimating the (modified) 
structural equations by OLS (or the Instrumental variable method) as done in the 2SLS, 
he applies generalized inverse of the relevant submatrix of reduced form coefficients to 
obtain the structural coefficients. More explicitly, for the model YA+XB+E=0 (the 
reduced form equations being Y=X Π + U, Π = -BA-1 and P= Π̂ ), in the relationship Paj 
= - bj for any (jth) structural equation, we have 

11 12 1 1

21 22 2 2

P P a b

P P a b
� � � � � �

= −� � � � � �
� � � � � �

 where a1 and b1 are unknown structural coefficients, 

a2 = (0 0 … 0 -1)’ and b2 = (0 0 … 0 0)’. From this we obtain 1 21 2 22 2ˆ ( )ga P b P a−= − +  and 

1 11 1 12 2
ˆ ˆ( )b P a P a= − + .  

 
VIII. Estimation of Multi-equation Models by LAD: So far we have seen how the 
method of Least squares is applied to estimation of the structural coefficients in a multi-
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equation (linear) model. Now we turn to the application of LAD to estimation of the same. 
The L1 norm (LAD) estimation entered the domain of multi-equation model with the paper 
published by Glahe & Hunt (1970). Since then works on searching a suitable, fast and 
convenient numerical method (algorithm)) for L1 norm estimator continued. Glahe & Hunt  
compared the estimated parameters with those estimated through L2 estimation and use of 
Monte Carlo Methods for their performance appraisal. 

 
In their paper, a distribution sampling study comprising of four major experiments 

has been described. All the experiments have been based upon the exactly specified, over-
identified simultaneous equation model 

Y1 + A12Y2 + B11Z1 + B12Z2 + B10 = E1                                           
Y1 + A22Y2 + B23Z3 + B24Z4 + B20 = E2                                           

where Y1 and Y2 are jointly determined endogenous variables; Z1, Z2, Z3 and Z4 are 
exogenous variables; E1 and E2 are the random error terms which are assumed to be 
normally and independently distributed with a zero mean and standard deviation of ten 
(except in the experiment involving heteroskedasticity). 

 
A single structure for the basic model presented above was used throughout. For 

the exogenous variables, economic time series data covering the period 1960-1964 were 
chosen. The values chosen were quarterly values for farm income (Z1), farm equipment 
price index (Z2), personal income (Z3) and adjusted money supply (Z4). Except for the 
experiment involving multi-collinearity, the data were randomly shuffled to purge the 
inherent multi-collinearity present in most economic time series data. 

 
The structural equations were transformed to the reduced form equation to 

generate data. A random normal deviate generator was used to generate errors for sample 
sizes ten and twenty. With these data the values for the endogenous variables were 
calculated. Keeping the vectors of exogenous variables constant for each set of data, fifty 
sets of data were generated for each sample size.      

 
In each experiment six estimators were tested. These estimators were direct least 

squares (DLS), direct least absolute (DLA), two-stage least squares (TSLS), two-stage 
least absolute (TSLA), least squares no restrictions (LSNR), and least absolute no 
restrictions (LANR). (Direct application of least squares or the method of least absolute to 
the reduced form yielded LSNR and LANR estimators). The first two pairs were used to 
compute moments of the distribution of each parameter estimate, for sample sizes ten and 
twenty, based upon the fifty replications. All three pairs were used to compute conditional 
predictions of each of the jointly determined variables. 

 
Each of the four major experiments conducted was divided into sub-categories 

where small sample sizes of ten and twenty were tested. The first experiment was 
conducted  using the classical simultaneous equation model. Normally and independently 
distributed error terms with mean = zero and standard deviation = 10, uncorrelated 
exogenous variables and correct specification of the model were used. The second 
experiment considered a level of multi-collinearity among the explanatory variables. 
Heteroskedasticity was considered in the third experiment. The variance considered was a 
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monotonic function increasing over time given by ( )22 iou += σσ where 5=oσ  and 
.1,....,1,0 −= Ni  In the fourth experiment misspecified model was investigated. The 

model was misspecified by including an additional exogenous variable and a parameter 
with a true value of zero in the estimation sequence. The endogenous variables were 
generated in the same manner. The computational method used in L1 estimation was based 
on Usow L1 Fit Algorithm, developed by Usow. 

 
The study was concerned with two major objectives - the estimation of structural 

parameters and conditional prediction. Examining the means and standard deviations of 
the estimates of structural parameters some summary statistics were prepared. Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE) were used for an evaluation of the 
performance of the estimators on the basis of smallest bias and smallest standard 
deviation. Rankings of the actual results by smallest RMSE and MAE were prepared and 
from those rankings summaries and summary statistics were calculated. 

 
To test the consistency of the total rankings of the estimators, Kendall’s 

coefficients of concordance, W, was used. The hypothesis that there was no difference 
between estimators (when paired) in the number of times one estimator produced smaller 
MAE’s than another one in each experiment was tested using the Cochran Q test. The 
hypothesis was accepted at 0.05 level. The Wilcoxin matched-pairs signed-ranks test was 
used to compare the L1 and L2 estimators to determine whether or not one was 
significantly different from another one. To check for the normality of sample 
distributions of the studentized ratios of structural-coefficient estimates, Kolmogoroff-
Smirnov test as explained by Birnbaum was used. The ratio used has been given by 

( ) KK
KT θθ σθθ ˆ

*
ˆ ˆˆ −= , where *θ  is the hypothesized value of θ . 

 
The result of the four experiments showed that the two direct methods were best 

overall estimators for making conditional predictions, whether MAE or RMSE criterion 
were used and was true for both sample sizes. When errors were normally distributed and 
no substantial multicollinearity was present, none of the reduced form estimators was 
“poor”. But in the presence of multicollinearity DLS fell off sharply in predictive ability. 
When other problems existed, LSNR or LANR proved to be more reliable since they were 
the methods with least variability of the six studied. 

 
It was also observed that LANR performed as well as LSNR and both 

outperformed the solved reduced-form methods. The structural estimators, DLA and 
TSLA, did not outperform DLS and TSLS. They did succeed in doing as well as the least 
squares estimators in many respects. The authors, therefore, concluded that L1 norm 
estimator should prove equal or superior to L2 norm estimators for model using a structure 
similar to the one used in the study. They, however, held that with an increase in sample 
size the superiority of the L1 norm estimator loses its edge over L2 norm estimator. 

 
Amemiya (1980) developed the two-stage least absolute deviation estimator, 

which is rather analogous to two-stage least squares by Theil (1961). Amemiya (1982) 
further extended the method to provide it a mathematical and statistical basis in the 
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direction of consistency and related statistical properties. In this paper (of 1982) he 
defined a class of estimators called the two-stage least absolute deviation estimators 
(2SLAD) and derived their asymptotic properties. The problem of finding the optimal 
member of the class was also considered.  

 
Amemiya (1982) also pointed out that in structural equations and reduced form 

equations as given below: 
YA+XB+E= ZC+E and 

Y=Xπ +V; where Z = (Y,X) and C = 
A

B
� �
� �
	 


 

how one defines the LAD (least absolute deviation) estimator analogue of 2SLS (two-
stage least squares estimator) in the estimation of  C ? Amemiya points out that the 
authors of all previous studies (before Amemiya wrote that article) on the subject defined 
LAD as the value of C that minimized 

1 1aS Y P ZC′= −
  , where ( ) 1
P X X X X

−′ ′=  

It was rather natural to define LAD that way since then. Theil interpreted 2SLS so as to 

minimize ( )2

1 1LS Y P ZC′= −
 . However, if one wanted to use an interpretation of 2SLS 

as the instrumental variable estimator minimizing ( )2

1LS P Y P ZC′ ′= −
 , one would 

define 2SLAD analogously to minimize 1AS P Y P ZC′ ′= −
 . Combining the above two 

ideas, 2SLAD can be defined as a class of estimators obtained by minimizing 
( )1qAS qY q P Y P ZC′ ′= + − −
  

where q is the parameter to be determined by the researcher. The minimization of  

( ){ }2
1qLS qY q P Y P ZC′ ′= + − −
  

yields 2SLS for any value of q whereas minimization of its absolute analogue ( )qAS  
depends crucially on the value of q. If q=0, it yields the estimator which is asymptotically 
equivalent to 2SLS. Thus, in the asymptotic sense the class of 2SLAD estimator contains 
2SLS as a special case. This finding by Amemiya has  a very powerful generalizing effect 
on the estimators. 

 
In the article, Amemiya proved the strong consistency and the asymptotic 

normality of the LAD estimator in the standard regression model. Though the asymptotic 
normality was proved by Bassett and Koenker prior to Amemiya, the method used by 
Amemiya is simple to understand and more easily generalizable to other models such as 
simultaneous equation models or non-linear regression models. 

 
Given the standard regression model  Y Xa E= + , where X is a nxk matrix of 

bounded constants such   that 1lim ( )n X X−
→∞ ′   is a finite positive-definite matrix and E  is 

a n-vector of i.i.d random variables, the LAD estimator has been defined to be a value of 

â  that minimizes 
1 1

ˆ
n n

i i i
i i

S Y X a E
= =

′= − −
 
 , where tX ′  is the ith row of X. The second 

term of the right-hand side of the equation does not affect the minimization since it is 
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independent of â . It was added to facilitate proof of consistency without assuming the 
existence of a finite first moment. The strong consistency of LAD was proved by showing 
that 1n S−   converges almost surely uniformly in â  to a function which attains the 
minimum at a , the true value. Strong consistency of 2SLAD for any value of q>0 
followed from the strong consistency of LAD. Asymptotic normality of 2SLAD was 
proved only for the case where E and V are normally distributed. 

 
In the 2SLAD estimation studied, it was assumed that the minimization of the sum 

of absolute deviation is applied only to a specific equation to be estimated and not to all 
the reduced form equations. In other words, LAD was applied only in the second stage of 
regression and not in the first. The author, however, opined that if V as well as E follows a 
non-normal distribution, it would be better to apply LAD to the reduced form equation as 
well as to the structural equation to be estimated. 

Applying LAD to each of the reduced form equations,  ˆ,Y X Vπ π= +  was 

obtained and then minimizing 1
1

ˆ ˆ
n

i i i
i

Y X A X aπ
=

′ ′− −
 , the double two-stage least absolute 

deviation estimator (D2SLAD) was developed. It was shown that even under the fully 
non-normal case D2SLAD is far inferior to 2SLAD for q between 0.2 and 0.5 for realistic 
values of the parameters. This result showed that in applying the LAD estimation to 2SLS, 
it is much more important to use LAD in the second stage than in the first stage. 

 
Since π̂ is a strongly consistent estimator of π , the strong consistency of D2SLAD 

followed easily from the strong consistency of LAD. Asymptotic normality of D2SLAD, 
however, has not been proved. 

 
Asymptotic variance of 2SLAD and D2SLAD in a partially non-normal case 

(where E follows a mixture of normal distributions and V is normal) and fully non-normal 
case (where both E and V follow a mixture of non-normal distributions) were obtained. It 
was observed that when all the error terms follow a mixture of normal distributions, 
2SLAD with a small value of q somewhere between 0 and 0.5 is recommended and it does 
not pay to use the more complicated D2SLAD. 

 
Amemiya suggested Monte Carlo experiments to be carried out in order to study 

the properties of 2SLAD estimator (by minimization of qAS ) which may be compared with 

the properties of the estimator obtained by minimization of qLS  and SqA for q=0.  
 

IX. Comparative Studies: Earlier, a reference has been made to the work of Glahe & 
Hunt who compared the results of LS-based with LAD-based estimators of structural 
equations. Fair (1994) estimated the US model by 2SLS, 2SLAD, 3SLS (Three Stage 
Least Squares) and FIML (Full Information Max Likelihood) methods (see, Theil, 1971). 
Median unbiased (MU) estimates were also obtained for eighteen lagged dependent 
variable coefficients. The 2SLS asymptotic distribution was compared to the exact 
distribution and was found to be close. A comparative study of four sets of estimates, that 
is, 2SLS, 2SLAD, 3SLS and FIML was made. The results obtained showed that the 
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estimates are fairly close to each other with the FIML being the farthest apart. The 3SLS 
estimator was found to be more efficient than the 2SLS estimator. The 2SLS standard 
errors were on an average 28 percent larger than the 3SLS standard errors.  And the 3SLS 
standard errors were on average smaller (19 percent) than the FIML standard errors. To 
compare the different sets of coefficient estimates, the sensitivity of the predictive 
accuracy of the model to the different sets was also examined. The RMSEs were found to 
be very similar across all the five sets of estimates. No one set of estimates dominated the 
other and in general the differences were found to be quite small. The author also 
compared the US model to the VAR5/2, VAR4 and AC models. The US model was found 
to do well in the tests relative to the VAR and AC models. 

 
In view of the possibilities of replacing OLS with LAD estimator at either or both 

stages (parallel to 2SLS) of estimation of the structural equations of a multi-equation 
linear model, Mishra & Dasgupta (2003) conducted Monte Carlo experiments to 
compare 2SLS (alias LS-LS) with LS-LAD, LAD-LS and LAD-LAD estimates of 
structural coefficients while the disturbances in the structural equations were normal, 
Beta1, Beta2, Gamma and Cauchy distributed with and without the presence of outliers.  

 
We have already described the work of Khazzoom (1976) who generalized 

Indirect Least Squares estimator for (exactly or over-) identified equations. It appears that 
Khazzoom’s work is relatively less acknowledged.  However, it deserves comparison with 
other methods of estimation. One may also conjecture that if LAD performs better than 
OLS in estimating the matrix of reduced form coefficients, application of generalized 
inverse on such matrix (of reduced form coefficients) would be better than the GILS 
suggested by Khazzoom. A more generalized name – Generalized Indirect Least Norm 
(GILN) - may be given to the family of such methods for the minimand norm may be 
Euclidean (as suggested by Khazzoom, alias GILN2) or absolute, giving GILN1. Mishra & 
Dasgupta also compared GILN1 with GILN2, 2SLS, LS-LAD, LAD-LS and LAD-LAD 
estimates of structural coefficients. The results showed that LAD-LAD estimator performs 
better then 2SLS if errors are non-normal or outliers are present. 
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