569 research outputs found

    Weighted interlace polynomials

    Full text link
    The interlace polynomials introduced by Arratia, Bollobas and Sorkin extend to invariants of graphs with vertex weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G)=q(G-a)+q(G^{ab}-b)+((x-1)^{2}-1)q(G^{ab}-a-b) that lacks the last term. It follows that interlace polynomial computations can be represented by binary trees rather than mixed binary-ternary trees. Binary computation trees provide a description of q(G)q(G) that is analogous to the activities description of the Tutte polynomial. If GG is a tree or forest then these "algorithmic activities" are associated with a certain kind of independent set in GG. Three other novel properties are weighted pendant-twin reductions, which involve removing certain kinds of vertices from a graph and adjusting the weights of the remaining vertices in such a way that the interlace polynomials are unchanged. These reductions allow for smaller computation trees as they eliminate some branches. If a graph can be completely analyzed using pendant-twin reductions then its interlace polynomial can be calculated in polynomial time. An intuitively pleasing property is that graphs which can be constructed through graph substitutions have vertex-weighted interlace polynomials which can be obtained through algebraic substitutions.Comment: 11 pages (v1); 20 pages (v2); 27 pages (v3); 26 pages (v4). Further changes may be made before publication in Combinatorics, Probability and Computin

    Interlace Polynomials for Multimatroids and Delta-Matroids

    Full text link
    We provide a unified framework in which the interlace polynomial and several related graph polynomials are defined more generally for multimatroids and delta-matroids. Using combinatorial properties of multimatroids rather than graph-theoretical arguments, we find that various known results about these polynomials, including their recursive relations, are both more efficiently and more generally obtained. In addition, we obtain several interrelationships and results for polynomials on multimatroids and delta-matroids that correspond to new interrelationships and results for the corresponding graphs polynomials. As a tool we prove the equivalence of tight 3-matroids and delta-matroids closed under the operations of twist and loop complementation, called vf-safe delta-matroids. This result is of independent interest and related to the equivalence between tight 2-matroids and even delta-matroids observed by Bouchet.Comment: 35 pages, 3 figure

    Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth

    Full text link
    We consider the multivariate interlace polynomial introduced by Courcelle (2008), which generalizes several interlace polynomials defined by Arratia, Bollobas, and Sorkin (2004) and by Aigner and van der Holst (2004). We present an algorithm to evaluate the multivariate interlace polynomial of a graph with n vertices given a tree decomposition of the graph of width k. The best previously known result (Courcelle 2008) employs a general logical framework and leads to an algorithm with running time f(k)*n, where f(k) is doubly exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context of tree decompositions, we give a faster and more direct algorithm. Our algorithm uses 2^{3k^2+O(k)}*n arithmetic operations and can be efficiently implemented in parallel.Comment: v4: Minor error in Lemma 5.5 fixed, Section 6.6 added, minor improvements. 44 pages, 14 figure

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page

    Binary matroids and local complementation

    Full text link
    We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.Comment: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication versio

    Interlacing Ehrhart Polynomials of Reflexive Polytopes

    Full text link
    It was observed by Bump et al. that Ehrhart polynomials in a special family exhibit properties similar to the Riemann {\zeta} function. The construction was generalized by Matsui et al. to a larger family of reflexive polytopes coming from graphs. We prove several conjectures confirming when such polynomials have zeros on a certain line in the complex plane. Our main new method is to prove a stronger property called interlacing

    Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports

    Get PDF
    In this paper we present a survey about analytic properties of polynomials orthogonal with respect to a weighted Sobolev inner product such that the vector of measures has an unbounded support. In particular, we are focused in the study of the asymptotic behaviour of such polynomials as well as in the distribution of their zeros. Some open problems as well as some new directions for a future research are formulated.Comment: Changed content; 34 pages, 41 reference
    • …
    corecore