5 research outputs found

    A Bonferroni Mean Based Fuzzy K Nearest Centroid Neighbor Classifier

    Get PDF
    K-nearest neighbor (KNN) is an effective nonparametric classifier that determines the neighbors of a point based only on distance proximity. The classification performance of KNN is disadvantaged by the presence of outliers in small sample size datasets and its performance deteriorates on datasets with class imbalance. We propose a local Bonferroni Mean based Fuzzy K-Nearest Centroid Neighbor (BM-FKNCN) classifier that assigns class label of a query sample dependent on the nearest local centroid mean vector to better represent the underlying statistic of the dataset. The proposed classifier is robust towards outliers because the Nearest Centroid Neighborhood (NCN) concept also considers spatial distribution and symmetrical placement of the neighbors. Also, the proposed classifier can overcome class domination of its neighbors in datasets with class imbalance because it averages all the centroid vectors from each class to adequately interpret the distribution of the classes. The BM-FKNCN classifier is tested on datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository and benchmarked with classification results from the KNN, Fuzzy-KNN (FKNN), BM-FKNN and FKNCN classifiers. The experimental results show that the BM-FKNCN achieves the highest overall average classification accuracy of 89.86% compared to the other four classifiers

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition

    Get PDF
    Hyperspectral image (HSI) is usually corrupted by various types of noise, including Gaussian noise, impulse noise, stripes, deadlines, and so on. Recently, sparse and low-rank matrix decomposition (SLRMD) has demonstrated to be an effective tool in HSI denoising. However, the matrix-based SLRMD technique cannot fully take the advantage of spatial and spectral information in a 3-D HSI data. In this paper, a novel group sparse and low-rank tensor decomposition (GSLRTD) method is proposed to remove different kinds of noise in HSI, while still well preserving spectral and spatial characteristics. Since a clean 3-D HSI data can be regarded as a 3-D tensor, the proposed GSLRTD method formulates a HSI recovery problem into a sparse and low-rank tensor decomposition framework. Specifically, the HSI is first divided into a set of overlapping 3-D tensor cubes, which are then clustered into groups by K-means algorithm. Then, each group contains similar tensor cubes, which can be constructed as a new tensor by unfolding these similar tensors into a set of matrices and stacking them. Finally, the SLRTD model is introduced to generate noisefree estimation for each group tensor. By aggregating all reconstructed group tensors, we can reconstruct a denoised HSI. Experiments on both simulated and real HSI data sets demonstrate the effectiveness of the proposed method.This paper was supported in part by the National Natural Science Foundation of China under Grant 61301255, Grant 61771192, and Grant 61471167, in part by the National Natural Science Fund of China for Distinguished Young Scholars under Grant 61325007, in part by the National Natural Science Fund of China for International Cooperation and Exchanges under Grant 61520106001, and in part by the Science and Technology Plan Project Fund of Hunan Province under Grant 2015WK3001 and Grant 2017RS3024.Peer Reviewe

    Weighted Generalized Nearest Neighbor for Hyperspectral Image Classification

    No full text
    corecore