1,114 research outputs found

    Weight-based firefly algorithm for document clustering

    Get PDF
    Existing clustering techniques have many drawbacks and this includes being trapped in a local optima. In this paper, we introduce the utilization of a new meta-heuristics algorithm, namely the Firefly algorithm (FA) to increase solution diversity. FA is a nature-inspired algorithm that is used in many optimization problems.The FA is realized in document clustering by executing it on Reuters-21578 database.The algorithm identifies documents that has the highest light intensity in a search space and represents it as a centroid.This is followed by recognizing similar documents using the cosine similarity function.Documents that are similar to the centroid are located into one cluster and dissimilar in the other.Experiments performed on the chosen dataset produce high values of Purity and F-measure.Hence, suggesting that the proposed Firefly algorithm is a possible approach in document clustering

    Adaptive firefly algorithm for hierarchical text clustering

    Get PDF
    Text clustering is essentially used by search engines to increase the recall and precision in information retrieval. As search engine operates on Internet content that is constantly being updated, there is a need for a clustering algorithm that offers automatic grouping of items without prior knowledge on the collection. Existing clustering methods have problems in determining optimal number of clusters and producing compact clusters. In this research, an adaptive hierarchical text clustering algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly Algorithm (AFA) consists of three components: document clustering, cluster refining, and cluster merging. The first component introduces Weight-based Firefly Algorithm (WFA) that automatically identifies initial centers and their clusters for any given text collection. In order to refine the obtained clusters, a second algorithm, termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such an approach allows the relocation of a pre-assigned document into a newly created cluster. The third component, Weight-based Firefly Algorithm with Relocate and Merging (WFARM), aims to reduce the number of produced clusters by merging nonpure clusters into the pure ones. Experiments were conducted to compare the proposed algorithms against seven existing methods. The percentage of success in obtaining optimal number of clusters by AFA is 100% with purity and f-measure of 83% higher than the benchmarked methods. As for entropy measure, the AFA produced the lowest value (0.78) when compared to existing methods. The result indicates that Adaptive Firefly Algorithm can produce compact clusters. This research contributes to the text mining domain as hierarchical text clustering facilitates the indexing of documents and information retrieval processes

    Document clustering based on firefly algorithm

    Get PDF
    Document clustering is widely used in Information Retrieval however, existing clustering techniques suffer from local optima problem in determining the k number of clusters.Various efforts have been put to address such drawback and this includes the utilization of swarm-based algorithms such as particle swarm optimization and Ant Colony Optimization.This study explores the adaptation of another swarm algorithm which is the Firefly Algorithm (FA) in text clustering.We present two variants of FA; Weight- based Firefly Algorithm (WFA) and Weight-based Firefly Algorithm II (WFAII).The difference between the two algorithms is that the WFAII, includes a more restricted condition in determining members of a cluster.The proposed FA methods are later evaluated using the 20Newsgroups dataset.Experimental results on the quality of clustering between the two FA variants are presented and are later compared against the one produced by particle swarm optimization, K-means and the hybrid of FA and -K-means. The obtained results demonstrated that the WFAII outperformed the WFA, PSO, K-means and FA-Kmeans. This result indicates that a better clustering can be obtained once the exploitation of a search solution is improved

    Document clustering for knowledge discovery using nature-inspired algorithm

    Get PDF
    As the internet is overload with information, various knowledge based systems are now equipped with data analytics features that facilitate knowledge discovery.This includes the utilization of optimization algorithms that mimics the behavior of insects or animals.This paper presents an experiment on document clustering utilizing the Gravitation Firefly algorithm (GFA).The advantage of GFA is that clustering can be performed without a pre-defined value of k clusters.GFA determines the center of clusters by identifying documents with high force.Upon identification of the centers, clusters are created based on cosine similarity measurement.Experimental results demonstrated that GFA utilizing a random positioning of documents outperforms existing clustering algorithm such as Particles Swarm Optimization (PSO) and K-means

    Improving K-means clustering with enhanced Firefly Algorithms

    Get PDF
    In this research, we propose two variants of the Firefly Algorithm (FA), namely inward intensified exploration FA (IIEFA) and compound intensified exploration FA (CIEFA), for undertaking the obstinate problems of initialization sensitivity and local optima traps of the K-means clustering model. To enhance the capability of both exploitation and exploration, matrix-based search parameters and dispersing mechanisms are incorporated into the two proposed FA models. We first replace the attractiveness coefficient with a randomized control matrix in the IIEFA model to release the FA from the constraints of biological law, as the exploitation capability in the neighbourhood is elevated from a one-dimensional to multi-dimensional search mechanism with enhanced diversity in search scopes, scales, and directions. Besides that, we employ a dispersing mechanism in the second CIEFA model to dispatch fireflies with high similarities to new positions out of the close neighbourhood to perform global exploration. This dispersing mechanism ensures sufficient variance between fireflies in comparison to increase search efficiency. The ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets are employed to evaluate efficiency of the proposed FA models on clustering tasks. The minimum Redundancy Maximum Relevance (mRMR)-based feature selection method is also adopted to reduce feature dimensionality. The empirical results indicate that the proposed FA models demonstrate statistically significant superiority in both distance and performance measures for clustering tasks in comparison with conventional K-means clustering, five classical search methods, and five advanced FA variants

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Parameterisation of a Maxwell model for transient tyre force by means of an extended firefly algorithm

    Get PDF
    Developing functions for advanced driver assistance systems requires very accurate tyre models, especially for the simulation of transient conditions. In the past, parametrisation of a given tyre model based on measurement data showed shortcomings, and the globally optimal solution obtained did not appear to be plausible. In this article, an optimisation strategy is presented, which is able to find plausible and physically feasible solutions by detecting many local outcomes. The firefly algorithm mimics the natural behaviour of fireflies, which use a kind of flashing light to communicate with other members. An algorithm simulating the intensity of the light of a single firefly, diminishing with increasing distances, is implicitly able to detect local solutions on its way to the best solution in the search space. This implicit clustering feature is stressed by an additional explicit clustering step, where local solutions are stored and terminally processed to obtain a large number of possible solutions. The enhanced firefly algorithm will be first applied to the well-known Rastrigin functions and then to the tyre parametrisation problem. It is shown that the firefly algorithm is qualified to find a high number of optimisation solutions, which is required for plausible parametrisation for the given tyre model
    • …
    corecore