304 research outputs found

    A survey of current, stand-alone OWL Reasoners

    Get PDF
    Abstract. We present a survey of the current OWL reasoner landscape. Through literature and web search we have identified 35 OWL reasoners that are, at least to some degree, actively maintained. We conducted a survey directly addressing the respective developers, and collected 33 responses. We present an analysis of the survey, characterising all reasoners across a wide range of categories such as supported expressiveness and reasoning services. We will also provide some insight about ongoing research efforts and a rough categorisation of reasoner calculi

    OWL Reasoners still useable in 2023

    Full text link
    In a systematic literature and software review over 100 OWL reasoners/systems were analyzed to see if they would still be usable in 2023. This has never been done in this capacity. OWL reasoners still play an important role in knowledge organisation and management, but the last comprehensive surveys/studies are more than 8 years old. The result of this work is a comprehensive list of 95 standalone OWL reasoners and systems using an OWL reasoner. For each item, information on project pages, source code repositories and related documentation was gathered. The raw research data is provided in a Github repository for anyone to use

    Web Reasoning and Rule Systems: 7th International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013, Proceedings

    No full text
    This book constitutes the refereed proceedings of the 7th International Conference on Web Reasoning and Rule Systems, RR 2013, held in Manheim, Germany in July 2013. The 19 revised research papers and 4 technical communications presented together with 2 invited talks and 1 tutorial talk were carefully reviewed and selected from 34 submissions. The scope of conference is decision making, planning, and intelligent agents, reasoning, machine learning, knowledge extraction and IR technologies, large-scale data management and reasoning on the web of data, data integration, dataspaces and ontology-based data access, non-standard reasoning, algorithms for distributed, parallelized, and scalable reasoning, and system descriptions and experimentation

    Description Logics Go Second-Order -- Extending EL with Universally Quantified Concepts

    Full text link
    The study of Description Logics have been historically mostly focused on features that can be translated to decidable fragments of first-order logic. In this paper, we leave this restriction behind and look for useful and decidable extensions outside first-order logic. We introduce universally quantified concepts, which take the form of variables that can be replaced with arbitrary concepts, and define two semantics of this extension. A schema semantics allows replacements of concept variables only by concepts from a particular language, giving us axiom schemata similar to modal logics. A second-order semantics allows replacement of concept variables with arbitrary subsets of the domain, which is similar to quantified predicates in second-order logic. To study the proposed semantics, we focus on the extension of the description logic EL\mathcal{EL}. We show that for a useful fragment of the extension, the conclusions entailed by the different semantics coincide, allowing us to use classical EL\mathcal{EL} reasoning algorithms even for the second-order semantics. For a slightly smaller, but still useful, fragment, we were also able to show polynomial decidability of the extension. This fragment, in particular, can express a generalized form of role chain axioms, positive self restrictions, and some forms of (local) role-value-maps from KL-ONE, without requiring any additional constructors

    Efficient Maximum A-Posteriori Inference in Markov Logic and Application in Description Logics

    Full text link
    Maximum a-posteriori (MAP) query in statistical relational models computes the most probable world given evidence and further knowledge about the domain. It is arguably one of the most important types of computational problems, since it is also used as a subroutine in weight learning algorithms. In this thesis, we discuss an improved inference algorithm and an application for MAP queries. We focus on Markov logic (ML) as statistical relational formalism. Markov logic combines Markov networks with first-order logic by attaching weights to first-order formulas. For inference, we improve existing work which translates MAP queries to integer linear programs (ILP). The motivation is that existing ILP solvers are very stable and fast and are able to precisely estimate the quality of an intermediate solution. In our work, we focus on improving the translation process such that we result in ILPs having fewer variables and fewer constraints. Our main contribution is the Cutting Plane Aggregation (CPA) approach which leverages symmetries in ML networks and parallelizes MAP inference. Additionally, we integrate the cutting plane inference (Riedel 2008) algorithm which significantly reduces the number of groundings by solving multiple smaller ILPs instead of one large ILP. We present the new Markov logic engine RockIt which outperforms state-of-the-art engines in standard Markov logic benchmarks. Afterwards, we apply the MAP query to description logics. Description logics (DL) are knowledge representation formalisms whose expressivity is higher than propositional logic but lower than first-order logic. The most popular DLs have been standardized in the ontology language OWL and are an elementary component in the Semantic Web. We combine Markov logic, which essentially follows the semantic of a log-linear model, with description logics to log-linear description logics. In log-linear description logic weights can be attached to any description logic axiom. Furthermore, we introduce a new query type which computes the most-probable 'coherent' world. Possible applications of log-linear description logics are mainly located in the area of ontology learning and data integration. With our novel log-linear description logic reasoner ELog, we experimentally show that more expressivity increases quality and that the solutions of optimal solving strategies have higher quality than the solutions of approximate solving strategies

    Forschungsbericht Universität Mannheim 2008 / 2009

    Full text link
    Die Universität Mannheim hat seit ihrer Entstehung ein spezifisches Forschungsprofil, welches sich in ihrer Entwicklung und derz eitigen Struktur deutlich widerspiegelt. Es ist geprägt von national und international sehr anerkannten Wirtschafts- und Sozialwissenschaften und deren Vernetzung mit leistungsstarken Geisteswissenschaften, Rechtswissenschaft sowie Mathematik und Informatik. Die Universität Mannheim wird auch in Zukunft einerseits die Forschungsschwerpunkte in den Wirtschafts- und Sozialwissenschaften fördern und andererseits eine interdisziplinäre Kultur im Zusammenspiel aller Fächer der Universität anstreben

    Neural and Symbolic AI - mind the gap! Aligning Artificial Neural Networks and Ontologies

    Get PDF
    Artificial neural networks have been the key to solve a variety of different problems. However, neural network models are still essentially regarded as black boxes, since they do not provide any human-interpretable evidence as to why they output a certain re sult. In this dissertation, we address this issue by leveraging on ontologies and building small classifiers that map a neural network’s internal representations to concepts from an ontology, enabling the generation of symbolic justifications for the output of neural networks. Using two image classification problems as testing ground, we discuss how to map the internal representations of a neural network to the concepts of an ontology, exam ine whether the results obtained by the established mappings match our understanding of the mapped concepts, and analyze the justifications obtained through this method
    • …
    corecore