76,442 research outputs found

    Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention

    Get PDF
    A novel paradigm in the service sector i.e. services through the web is a progressive mechanism for rendering offerings over diverse environments. Internet provides huge opportunities for companies to provide personalized online services to their customers. But prompt novel web services introduction may unfavorably affect the quality and user gratification. Subsequently, prediction of the consumer intention is of supreme importance in selecting the web services for an application. The aim of study is to predict online consumer repurchase intention and to achieve this objective a hybrid approach which a combination of machine learning techniques and Artificial Bee Colony (ABC) algorithm has been used. The study is divided into three phases. Initially, shopping mall and consumer characteristic’s for repurchase intention has been identified through extensive literature review. Secondly, ABC has been used to determine the feature selection of consumers’ characteristics and shopping malls’ attributes (with > 0.1 threshold value) for the prediction model. Finally, validation using K-fold cross has been employed to measure the best classification model robustness. The classification models viz., Decision Trees (C5.0), AdaBoost, Random Forest (RF), Support Vector Machine (SVM) and Neural Network (NN), are utilized for prediction of consumer purchase intention. Performance evaluation of identified models on training-testing partitions (70-30%) of the data set, shows that AdaBoost method outperforms other classification models with sensitivity and accuracy of 0.95 and 97.58% respectively, on testing data set. This study is a revolutionary attempt that considers both, shopping mall and consumer characteristics in examine the consumer purchase intention.N/

    LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST

    Get PDF
    Subcellular location of a protein is one of the key functional characters as proteins must be localized correctly at the subcellular level to have normal biological function. In this paper, a novel method named LOCSVMPSI has been introduced, which is based on the support vector machine (SVM) and the position-specific scoring matrix generated from profiles of PSI-BLAST. With a jackknife test on the RH2427 data set, LOCSVMPSI achieved a high overall prediction accuracy of 90.2%, which is higher than the prediction results by SubLoc and ESLpred on this data set. In addition, prediction performance of LOCSVMPSI was evaluated with 5-fold cross validation test on the PK7579 data set and the prediction results were consistently better than the previous method based on several SVMs using composition of both amino acids and amino acid pairs. Further test on the SWISSPROT new-unique data set showed that LOCSVMPSI also performed better than some widely used prediction methods, such as PSORTII, TargetP and LOCnet. All these results indicate that LOCSVMPSI is a powerful tool for the prediction of eukaryotic protein subcellular localization. An online web server (current version is 1.3) based on this method has been developed and is freely available to both academic and commercial users, which can be accessed by at

    RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information

    Get PDF
    The attainment of complete map-based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome-scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)-based modules have been developed using traditional amino acid-, dipeptide- (i+1) and four parts-amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search-based module has been developed using position-specific iterated-basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position-specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher-order dipeptide composition, N- and C-terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf-PSORT, PA-SUB, Plant-Ploc and ESLpred. To assist the plant research community, an online web tool 'RSLpred' has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred

    Jeeva: Enterprise Grid-enabled Web Portal for Protein Secondary Structure Prediction

    Get PDF
    This paper presents a Grid portal for protein secondary structure prediction developed by using services of Aneka, a .NET-based enterprise Grid technology. The portal is used by research scientists to discover new prediction structures in a parallel manner. An SVM (Support Vector Machine)-based prediction algorithm is used with 64 sample protein sequences as a case study to demonstrate the potential of enterprise Grids.Comment: 7 page

    Machine Learning Playground

    Get PDF
    Machine learning is a science that “learns” about the data by finding unique patterns and relations in the data. There are a lot of libraries or tools available for processing machine learning datasets. You can upload your dataset in seconds and quickly start using these tools to get prediction results in a few minutes. However, generating an optimal model is a time consuming and tedious task. The tunable parameters (hyper-parameters) of any machine learning model may greatly affect the accuracy metrics. While most of the tools have models with default parameter setting to provide good results, they can often fail to provide optimal results for reallife datasets. This project will be to develop a GUI application where a user could upload a dataset and dynamically visualize accuracy results based on the selected algorithm and its hyperparameters

    Community Aliveness: Discovering Interaction Decay Patterns in Online Social Communities

    Full text link
    Online Social Communities (OSCs) provide a medium for connecting people, sharing news, eliciting information, and finding jobs, among others. The dynamics of the interaction among the members of OSCs is not always growth dynamics. Instead, a decay\textit{decay} or inactivity\textit{inactivity} dynamics often happens, which makes an OSC obsolete. Understanding the behavior and the characteristics of the members of an inactive community help to sustain the growth dynamics of these communities and, possibly, prevents them from being out of service. In this work, we provide two prediction models for predicting the interaction decay of community members, namely: a Simple Threshold Model (STM) and a supervised machine learning classification framework. We conducted evaluation experiments for our prediction models supported by a ground truth\textit{ground truth} of decayed communities extracted from the StackExchange platform. The results of the experiments revealed that it is possible, with satisfactory prediction performance in terms of the F1-score and the accuracy, to predict the decay of the activity of the members of these communities using network-based attributes and network-exogenous attributes of the members. The upper bound of the prediction performance of the methods we used is 0.910.91 and 0.830.83 for the F1-score and the accuracy, respectively. These results indicate that network-based attributes are correlated with the activity of the members and that we can find decay patterns in terms of these attributes. The results also showed that the structure of the decayed communities can be used to support the alive communities by discovering inactive members.Comment: pre-print for the 4th European Network Intelligence Conference - 11-12 September 2017 Duisburg, German

    Analyzing image-text relations for semantic media adaptation and personalization

    Get PDF
    Progress in semantic media adaptation and personalisation requires that we know more about how different media types, such as texts and images, work together in multimedia communication. To this end, we present our ongoing investigation into image-text relations. Our idea is that the ways in which the meanings of images and texts relate in multimodal documents, such as web pages, can be classified on the basis of low-level media features and that this classification should be an early processing step in systems targeting semantic multimedia analysis. In this paper we present the first empirical evidence that humans can predict something about the main theme of a text from an accompanying image, and that this prediction can be emulated by a machine via analysis of low- level image features. We close by discussing how these findings could impact on applications for news adaptation and personalisation, and how they may generalise to other kinds of multimodal documents and to applications for semantic media retrieval, browsing, adaptation and creation
    • 

    corecore