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subcellular localization of rice proteins combining
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The attainment of complete map-based sequence for rice (Oryza sativa) is clearly a major mile-
stone for the research community. Identifying the localization of encoded proteins is the key to
understanding their functional characteristics and facilitating their purification. Our proposed
method, RSLpred, is an effort in this direction for genome-scale subcellular prediction of
encoded rice proteins. First, the support vector machine (SVM)-based modules have been devel-
oped using traditional amino acid-, dipeptide- (i11) and four parts-amino acid composition and
achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity
search-based module has been developed using position-specific iterated-basic local alignment
search tool and achieved 68.35% accuracy. Another module developed using evolutionary infor-
mation of a protein sequence extracted from position-specific scoring matrix achieved an accu-
racy of 87.10%. In this study, a large number of modules have been developed using various
encoding schemes like higher-order dipeptide composition, N- and C-terminal, splitted amino
acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on
an independent set of rice proteins where it outperformed widely used prediction methods such
as TargetP, Wolf-PSORT, PA-SUB, Plant-Ploc and ESLpred. To assist the plant research commu-
nity, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice
proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.
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1 Introduction

Rice (Oryza sativa L.) is the single most important agri-
cultural resource that feeds more than half of the world’s

population. The recently sequenced rice genome [1] has
opened new challenges ahead for the plant research com-
munity in terms of assigning a biological role to these
sequences, the function of only a few thousand of which can
be defined with great confidence based on sequence similar-
ity with genes of known function. It is the first crop plant to
be sequenced and will therefore have a great impact in agri-
culture. Gaining an understanding of the biological func-
tions of novel genes is a more ambitious goal than obtaining
just their sequences; however, the wealth of information on
nucleotide sequences that is being generated through the
International Rice Genome Sequencing Project (IRGSP) far
outweighs what is currently available on the amino acid
sequences of known proteins. To narrow this huge gap be-
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tween the enormous amount of raw sequence data of the rice
genome and the experimental characterization of the corre-
sponding proteins, scientists therefore have to find compu-
tational ways to efficiently analyze these data. Genome func-
tional annotation including the assignment of a function for
a potential gene(s) in the raw sequence(s) is now the hot
topic in rice bioinformatics. Subcellular location is one of the
key functional characteristics of potential gene products such
as proteins as they must be localized correctly at the sub-
cellular level to have normal biological function. Moreover, it
also provides information on the involvement of a protein in
specific metabolic pathways [2–3]. Compared with the
experimental methods, computational prediction methods
provide fast, automatic and accurate assignment of sub-
cellular location to a protein, especially for high-throughput
analysis of large-scale genome sequences. Therefore, a fully
automatic and reliable prediction system for subcellular
localization of rice proteins would be very useful.

In the past, various methods have been developed to
predict subcellular localization based on different features of
a protein sequence. The similarity search-based tools have
been used traditionally for functional annotation of proteins
where a sequence is searched against an experimentally
annotated database and a function is assigned to the protein
[4]. However, this approach fails when an unknown query
protein does not have significant homology to proteins of
known functions [5]. Another way to predict subcellular
localization of proteins is to identify sequence motifs such as
signal peptide or nuclear localization signal [6]. This
approach has been limited by the observation that not all of
the proteins residing in a compartment have universal
motifs [7]. To overcome these limitations, many machine
learning technique-based methods such as artificial neural
networks and support vector machines (SVM) have been
developed to predict the subcellular localization of proteins.
Currently, some widely used tools for subcellular localization
are NNPSL [5], SubLoc [8], LOCtree [9] and PA-SUB [10] for
both prokaryotes and eukaryotes, PSORT I [2] and PSORTB
[11] for prokaryotic organisms, ESLpred [7], iPSORT [12],
Wolf PSORT (updated version of PSORT II) [13], Euk-Ploc
[14], LOCSVMPSI [15] and TargetP [16] for eukaryotes,
HSLpred [17] and Hum-Ploc [18] specifically for human pro-
teins and Plant-Ploc [19] specifically for plant proteins, all
having good accuracy (.70%). Out of these, TargetP, PA-
SUB, LOCtree, Wolf PSORT and LOCSVMPSI have also one
module trained on plant networks for prediction of sub-
cellular location of plant proteins. Most of these methods can
be classified into two classes: one is based on the N-terminal
sorting signals [3] and the other is based on amino acid
composition. N-terminal sorting signals have a clear biologi-
cal implication [20]. However, in large genome analysis pro-
jects, genes are usually automatically assigned, and these
assignments are often unreliable for the 5’-regions [5]. This
can result in leader sequences being missed or only partially
included, thereby causing problems for prediction algo-
rithms depending on them. Therefore, most of the methods

are based on the amino acid composition rather than the N-
terminal sorting signals alone. In the present study, we have
also used various other approaches of amino acid composi-
tion like the higher-order dipeptide composition approach as
used in some of the earlier studies [17, 21] combined with the
N-terminal and C-terminal compositions as well as the
similarity search-based position-specific iterated-basic local
alignment search tool (PSI-BLAST) [22] and the position-
specific scoring matrix (PSSM) of a protein sequence gener-
ated from the profiles of PSI-BLAST.

Recent advances in the prediction of protein-targeting
signals have stressed the need for organism-specific predic-
tion tools [23]. Moreover, by assessing on an independent
dataset of proteins, our group has also demonstrated that
organism-specific prediction methods are more accurate as
compared to the performance of methods developed for gen-
eral eukaryotic organisms [17]. To the best of our knowledge,
there is no method available for the prediction of subcellular
localization of rice proteins. Secondly, the availability of vast
rice genome data now demands a reliable and accurate meth-
od for subcellular localization prediction of its encoded prot-
eins. RSLpred is a systematic attempt in this direction, which
is a SVM-based prediction method for four major target loca-
tions viz. chloroplast, cytoplasm, mitochondria and nucleus.
The SVM modules were developed using various features of a
protein sequence and the performance of these models was
evaluated using fivefold cross-validation technique.

In addition, by using an independent dataset of query
rice proteins, we have also compared the performance of our
organism-specific method (RSLpred) with other widely used
methods (TargetP, PA-SUB, Wolf PSORT and Plant-Ploc) for
prediction of subcellular localization of plant proteins as well
as with the general methods for predicting eukaryotic pro-
teins like ESLpred. It was observed that RSLpred could pre-
dict the subcellular localization of rice proteins with far bet-
ter accuracy as compared to the available methods. Finally, a
web-based server was developed based on all the 13 ap-
proaches followed in this study to provide service to the re-
search community, where the users have the option to select
any of these feature-based modules for the prediction of
subcellular localization of query rice proteins.

2 Materials and methods

2.1 The dataset(s)

2.1.1 Main data for training/testing

Due to scarcity of annotated rice protein sequences, whole of
the UniProt Knowledgebase (release 5.0) was searched for
the available sequences. We identified rice proteins with
specific subcellular locations according to the annotation
information in the CC (comments or notes) fields of UniProt
Knowledgebase, of which subcellular location information
was available for only 825 proteins. These 825 proteins of
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known subcellular localization information were divided into
11 groups according to their subcellular localization viz.
chloroplast, cytoplasm, cytoskeleton, ER, extra-cellular/
secreted, Golgi apparatus, mitochondria, nucleus, peroxi-
some, plasma membrane and vacuole. Proteins annotated
with two or more subcellular locations were not included in
the current dataset. For example, a protein entry annotated
with ‘SUBCELLULAR LOCATION: NUCLEAR AND CYTO-
PLASMIC’ in the CC field was not included. All protein
entries computationally selected were then manually exam-
ined. However, amount of data available for some groups was
too small for statistical analysis to be performed (Table 1).

Because the number of rice mitochondrial sequences
extracted from UniProt Knowledgebase was too small to
allow reliable network training, 242 mitochondrial se-
quences from other related plant species (Arabidopsis thali-
ana) were included in the final dataset (Table 1). Previous
studies have not been able to reveal significant species-corre-
lated differences between mitochondrial proteins, as a cluster
analysis of mTP [24] using self-organized maps [25] did not
reveal any significant species-specific features of mitochon-
drial proteins. Even the use of non-plant mitochondrial pro-
teins in the training of plant mitochondrial proteins and
conversely, the use of plant mitochondrial proteins in the
training of non-plant mitochondrial proteins is reasonable
[16]. Therefore, our inclusion of mitochondrial proteins from
one of the other related plant species in our final dataset of
rice mitochondrial proteins for training purpose seems jus-
tified. Further, the sequence redundancy was reduced by
using PROSET software [26] such that no two sequences had
.90% sequence identity in the final dataset. Although the
90% cutoff is not sufficient to avoid homology bias, con-
sidering the current limited number of location-known rice
proteins in the Uniprot Knowledgebase, it was taken as a

Table 1. Number of sequences within each subcellular location
group

Subcellular
location

Number of
sequences
available

Final dataset

Chloroplast 140 84
Cytoplasm 150 103
Mitochondria 262a) 247
Nucleus 477 476
Extra-cellular/secreted 10 -
Golgi apparatus 0 -
Cytoskeleton 0 -
Endoplasmic reticulum 18 -
Peroxisome 6 -
Plasma membrane 2 -
Vacuole 2 -
Total 1067 910

a) Due to scarcity of rice mitochondrial proteins, 242 Arabi-
dopsis thaliana mitochondrial proteins were included.

compromise. In this context, we would like to mention that
to avoid homology bias, a 25% sequence identity cutoff
threshold is needed to guarantee that none of the proteins
included in the benchmark datasets has greater than 25%
sequence identity to any other in a same subcellular location,
as done in constructing the benchmark datasets for Euk-Ploc
[14] and Hum-Ploc [18]. The number of sequences for about
eight subcellular locations was not sufficient for developing a
prediction method (Table 1). Therefore, a prediction method
was developed for only four major subcellular locations on a
final dataset of total 910 proteins (84 chloroplast, 103 cyto-
plasmic, 247 mitochondrial and 476 nuclear). The complete
list of Uniprot Knowledgebase ID of these protein sequences
has been provided in the Supporting Information and is
available for free download from RSLpred web server.

2.1.2 Independent datasets for validation of RSLpred

Techniques such as cross-validation and bootstrapping are
routinely used for evaluating the performance of any
method, but the best way of testing the performance of a
newly developed method is to test it on an independent
dataset that contains the patterns used neither during
training nor during testing of the method. To validate the
performance of our method (RSLpred) for predicting sub-
cellular localization of rice proteins, an independent data-
set of rice proteins, which was not used in training/testing
of RSLpred, was compared for its prediction performance
with the best available methods especially trained on plant
networks like TargetP, PA-SUB, Wolf PSORT and the
recently developed all-plant method, Plant-Ploc, and for
general eukaryotic organisms like ESLpred. For this, an
independent rice data was again derived from the latest
release 7.0 of the UniProt Knowledgebase and divided into
the four subcellular classes under study. Further, the
sequence redundancy was reduced by using PROSET soft-
ware [26] such that no two sequences had .90% sequence
identity in the independent dataset, as was also done while
generating final training/testing dataset. This was done to
ensure that no sequences in the independent dataset had
.90% redundancy with any of the sequences in the train-
ing/testing dataset. We named it ‘independent dataset-I’
that contained 508 additional rice proteins (58 chloroplast,
165 cytoplasmic, 58 mitochondrial and 227 nuclear), which
were not used in the training and testing of the RSLpred
method.

Furthermore, to make this test dataset completely inde-
pendent from the original training data of 910 proteins, we
further reduced its redundancy to 25% cutoff level. This left
us with 345 sequences in the testing set, which we named as
‘independent dataset-II’, consisting of 38 chloroplast, 109
cytoplasmic, 50 mitochondrial and 148 nuclear proteins.
Both these datasets were made to run on our best classifier
and on some other widely used general prediction tools
available worldwide.
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2.2 Support vector machine

SVM, an excellent machine learning technique introduced
by Vapnik and co-workers [27, 28], is a universal approx-
imator based on the statistical and optimization theory and
has been applied in many classification and regression
problems. It has been successfully used for classification of
microarray data [29], disease forecasting [30] and protein
secondary structure prediction [31] as well as for the sub-
cellular localization of proteins in eukaryotic and prokaryotic
organisms [7–9, 15, 17]. Further details about the SVM can
be obtained from Vapnik’s monographs [27, 28, 32]. In the
present study, we have used SVM_light [33], a freely down-
loadable package of SVM (http://svmlight.joachims.org/old/
svm_light_v4.00.html), to predict the subcellular localization
of proteins. This software enables the users to define a
number of parameters besides allowing a choice of inbuilt
kernel function including linear, polynomial and radial basis
function (RBF). As the prediction of subcellular localization
of proteins is a multi-class classification problem, therefore
we constructed N SVM for N-class classification. In the
present study, the class number was equal to four for rice
protein sequences. The ith SVM was trained with all the
samples in the ith class as positive label and negative label
for proteins of remaining subcellular locations. In this way,
four SVM were constructed for subcellular localization of
protein to chloroplast, cytoplasm, mitochondria and nucleus.
This type of SVM is known as one versus rest (1-v-r SVM) [8].
An unknown sample was classified into a particular class
that corresponded to the SVM with highest output score. To
achieve maximum accuracy, we have attempted fifteen dif-
ferent approaches based on various features of a protein
sequence, which are hereby discussed in brief.

2.3 Features and modules

2.3.1 Composition based

2.3.1.1 Amino-acid composition

Amino-acid composition is the fraction of each amino acid in
a protein sequence. The fraction of all the natural 20 amino
acids was calculated using the following equation:

Fraction of amino acid i ¼

¼ Total number of amino acid i
Total number of amino acids in protein

(1)

where i can be any amino acid.

2.3.1.2 Traditional dipeptide composition

To encapsulate the global information about each protein
sequence, dipeptide composition was used. This representa-
tion, which gives a fixed pattern length of 400 (20620),

encompasses the information of the amino-acid composition
along with the local order of amino acids. The fraction of
each dipeptide was calculated according to the equation:

Fraction of dep ði þ 1Þ ¼

¼ Total number of dep ði þ 1Þ
Total number of all possible dipeptides

(2)

where dep (i 1 1) is one of 400 dipeptides.

2.3.1.3 Higher-order dipeptide composition

This approach not only reflects the total amino acid com-
position, but also incorporates, to a considerable degree,
the sequence-order effects [17, 21]. This representation,
which also gives a fixed pattern length of 400 (20620),
encompasses the information of amino-acid composition
along with the pseudo order of amino acids. Here, various
higher-order dipeptides (can also be called as pseudo dipeps)
such as i 1 2, i 1 3, i 1 4 and i 1 5 were generated in
order to observe the interaction of the ith residue with the
3rd, 4th, 5th and 6th residue in the sequence, respectively
using Eq. 3:

Fraction of ði þ nÞ pseudo dep ¼

¼ Total number of ði þ nÞ pseudo dep

Total number of all possible dipeptides
(3)

2.3.1.4 Cumulative higher order dipeptide

composition

In addition, the frequencies of all the (i 1 n) dipeps were
combined and divided by the sum of all possible dipeptides
of each (i 1 n) to again form a combined fixed length pattern
of 400 for use in SVM. We designated this as cumulative
higher-order dipeptide composition, which was calculated
according to the equation:

Cumulative fraction of ði þ nÞ dep ¼

¼
fði þ 1Þ þ fði þ 2Þ þ fði þ 3Þ þ fði þ 4Þ þ fði þ 5Þ

ðN � 1Þ þ ðN � 2Þ þ ðN � 3Þ þ ðN � 4Þ þ ðN � 5Þ (4)

where N is the sequence length.

2.3.1.5 Four parts composition

Here, each protein sequence was divided into four equal
parts. This type of approach has comparatively shown some
good results as evident from some earlier studies [15, 21].
The occurrence frequency of each amino acid was calculated
separately using Eq. (1) for each part and then a combined
fixed pattern length of 80 (2064) was formed in order to
gather more information about the protein sequence.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



2328 R. Kaundal and G. P. S. Raghava Proteomics 2009, 9, 2324–2342

2.3.2 Similarity search-based

A module RiPSI-BLAST was designed in which a query
sequence was searched against the existing non-redundant
database of classified proteins (910 entries of training set)
using PSI-BLAST. In the present study, PSI-BLAST was used
instead of normal standard BLAST because it has the cap-
ability to detect remote homologies [22]. It carries out an
iterative search in which sequences found in one round were
used to build score model for the next round of searching.
Three iterations of PSI-BLAST were carried out at a cut-off E-
value of 0.001. This module could predict any of the four
localizations (chloroplast, cytoplasmic, mitochondrial and
nuclear) depending upon the similarity of the query protein
to the proteins in the dataset. The module would return
“unknown subcellular localization” if no significant similar-
ity was found.

2.3.3 Position-specific scoring matrix

PSSM-based SVM was another module constructed by com-
bining the evolutionary information stored in the matrix of a
protein sequence called as PSSM that is a method for
detecting distantly related proteins by sequence comparison.
The idea of adopting PSSM extracted from sequence profiles
generated by PSI-BLAST as input information was first pro-
posed by David Jones [34]. This information is expressed in a
position-specific scoring table (profile), which is created from
a group of sequences previously aligned by PSI-BLAST
against the non-redundant database at the GenBank. The
PSSM gives the log-odds score for finding a particular
matching amino acid in a target sequence (Fig. 1). It differs
from other methods of sequence comparison in common
use because any number of known sequences can be used to
construct the profile, allowing more information to be used
in the testing of the target sequence. The PSSM of a protein
sequence extracted from the profiles of PSI-BLAST was used
to generate a 400-dimensional input vector to the SVM by
summing up all rows in the PSSM corresponding to the
same amino acid in the primary sequence (Fig. 1). After that,
every element in this input vector was divided by the length
of the sequence and then scaled to the range of 0–1 by using
the standard linear function:

ðX �minimumÞ
ðmaximum�minimumÞ

where X is the individual PSSM score of each amino acid.

2.3.4 Hybrid SVM module(s)

To further enhance the prediction accuracy, we also adopted
various hybrid approaches by combining different features of
a protein sequence.

Figure 1. Schematic representation of algorithm used to convert
21*N dimensional PSSM matrix into PSSM-400 input pattern for
SVM.

2.3.4.1 Hybrid approach-I

In the first step, we developed a hybrid module by combining
amino acid composition and dipeptide composition features
of a protein sequence as calculated by using Eqs. (1) and (2),
respectively. This module was provided with an SVM input
vector pattern of 420 (20 for amino acid and 400 for dipeptide
composition).

2.3.4.2 Hybrid approach-II

Secondly, we developed another hybrid module by combin-
ing amino acid composition as calculated using Eq. (1) com-
bined with the evolutionary information stored in the matrix
of a protein sequence called PSSM. The SVM input vector
pattern thus formed was 420-dimensional (20 for amino acid
and 400 for PSSM).
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2.3.4.3 Hybrid approach-III

Finally, we attempted another hybrid module by combining
amino acid composition as calculated according to Eq. (1),
traditional dipeptide composition as calculated using Eq. (2)
and the PSSM matrix as generated from profiles of PSI-
BLAST. Here, the SVM input vector pattern increased to 820
(20 for amino acid, 400 for dipeptide composition and 400 for
PSSM).

2.3.5 Terminal-based SVM modules

2.3.5.1 N-terminal composition

Many proteins in the plant cell (e.g. chloroplast, mitochon-
dria, ER, secretory and some peroxisome targeted) have
sorting signals that relies on the presence of an N-terminal
targeting sequence, which is recognized by a translocation
machinery. These signals are responsible for targeting pro-
teins to various subcellular localizations in the cell (chloro-
plast and mitochondria in the present study). Therefore, we
also attempted an SVM module-based on the N-terminal
amino-acid composition of each protein giving a 20-dimen-
sion input vector pattern. The SVM module was developed at
various levels of N-terminal residue length (10, 15, 20, 25 and
30 amino acids) in order to achieve maximum accuracy.

2.3.5.2 C-terminal composition

We also developed an SVM module based on the C-terminal
amino acid composition of each protein, which gives a 20-
dimension input vector pattern to the SVM. Here, we also
altered the C-terminal residue length (10, 15, 20, 25 and 30
amino acids) in order to achieve maximum accuracy.

2.3.5.3 N-Centre-C-terminal (three parts)

composition

This type of approach is also called splitted amino-acid com-
position (SAAC) where the amino acid composition of N-
terminal (25 residues), the C-terminal (25 residues) and the
remaining centre portion of a protein sequence was calcu-
lated separately by using Eq. (1) and was combined to form a
60-dimension (2063) input vector to SVM. The rationale
behind using this type of approach is the fact that percentage
composition of whole sequence does not give adequate
weight to the compositional bias, which is known to be
present in protein terminus.

2.3.5.4 N-terminal 1 remaining part composition

We also attempted an SVM module based on the division of
protein sequence into two parts viz. N terminus (25 residues)
and the remaining part of the sequence. The amino-acid
composition was calculated separately for both the parts so
that it gave 40 (2620) SVM vector pattern.

2.3.5.5 C-terminal 1 remaining part composition

Similarly, another SVM module based on the division of
protein into two parts viz. C terminus (25 residues) and the
remaining part of the sequence was developed. The amino-
acid composition was calculated separately for both the parts
to form a 40 (2620) SVM vector pattern.

2.4 Measurements for performance of RSLpred

In statistical prediction, the single independent dataset test,
sub-sampling test and jackknife test are the three methods
often used for cross-validation. Of these three, the jackknife
test is deemed as the most rigorous and objective one, as il-
lustrated by a comprehensive review [35]. Therefore, jack-
knife test has been increasingly used in literature [36–41] for
examining the accuracy of various prediction methods.
However, jackknife test method takes much longer time to
train a predictor based on SVM, and hence, here the sub-
sampling (fivefold) cross-validation was adopted for perfor-
mance measurement, as done by most SVM-based methods.
In this technique, the relevant dataset was partitioned ran-
domly into five equally sized sets. The training and testing
was carried out five times, each time using one distinct set
for testing and the remaining four sets for training. For
evaluating the performance of various modules developed,
the accuracy (ACC) and Matthews correlation coefficient
(MCC) were calculated as described by Hua and Sun [8],
using Eqs. (5) and (6). The overall accuracy and MCC of
RSLpred was calculated by using Eqs. (7) and (8), respec-
tively:

AccuracyðxÞ ¼ pðxÞ
ExpðxÞ (5)

MCCðxÞ ¼

¼ pðxÞnðxÞ � uðxÞoðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpðxÞ þ uðxÞÞðpðxÞ þ oðxÞÞðnðxÞ þ uðxÞÞðnðxÞ þ oðxÞÞ
p (6)

Overall accuracy =
P

x pðxÞ
N

(7)

Overall MCC =
P

x MCCðxÞ � ExpðxÞ
N

(8)

where x can be any subcellular location (chloroplast, cyto-
plasmic, mitochondrial or nuclear), Exp(x) is the number of
sequences observed in location x, p(x) is the number of cor-
rectly predicted sequences of location x, n(x) is the number
of correctly predicted sequences not of location x, u(x) is the
number of underpredicted sequences, o(x) is the number of
overpredicted sequences and N is the total number of
sequences in the dataset.
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2.5 Reliability index to the prediction

The reliability of prediction is an important factor that can
provide users more information as well as confidence about
the quality of prediction. We adopted the simple strategy of
Hua and Sun [8] for assigning the reliability index (RI) to
indicate the level of certainty in the prediction of a submitted
sequence. The RI was assigned according to the difference
(D) between the highest and second highest SVM output
scores. This was calculated for the PSSM-based SVM module
using Eq. (9):

RI ¼ INTðD � 5=3þ 1 if 0 � D54;
5 if D � 4:

�

(9)

2.6 Confusion matrix and its evaluation

In the field of artificial intelligence, a confusion matrix is a
visualization tool typically used in supervised learning (in
unsupervised learning, it is typically called a matching
matrix). Confusion matrix is a table with the ‘true’ class in
rows and the ‘predicted’ class in columns. The diagonal ele-
ments represent correctly classified instances while the
cross-diagonal elements represent misclassified instances.
One benefit of a confusion matrix is that it is easy to see if the
system is confusing two classes (i.e. commonly mislabeling
one as another). For this, we generated an additional infor-
mation from the performance of RSLpred on an independ-
ent dataset of rice proteins called as ‘confusion matrix’.

Performance of such systems is commonly evaluated
using the data in the matrix through the standard four sta-
tistics: specificity, precision, sensitivity and recall (the last
two are identical) as followed in [10] also. Given a confusion
matrix and a set of instances for class k, the standard defini-
tions of these statistics are as follows.

The specificity (percentage of negative labeled instances
that were predicted as negative) for each instance Ik is Sk

defined by:

Sk =
TN

TN þ FP
(10)

The precision (percentage of positive predictions those are
correct) for each instance Ik is Pk defined by:

Pk =
TP

TP þ FP
(11)

The sensitivity or recall (percentage of positive labeled
instances that were predicted as positive) for each instance Ik

is Rk defined by:

Rk =
TP

TP þ FN
(12)

Here, the true positives (TP) is the number of instances cor-
rectly predicted as Ik, which were actually labeled Ik; the false
positives (FP) is the number of instances incorrectly pre-
dicted as Ik that were actually not labeled as Ik; the true

negatives (TN) is the number of instances correctly predicted
as not Ik, that were actually not labeled Ik; and the false
negatives (FN) is the number of instances incorrectly pre-
dicted as not Ik that were actually labeled Ik. An overall ver-
sion of each statistic was computed as a weighted average.

2.7 Annotation of rice proteome

The completion of the rice genome draft has brought unpre-
cedented opportunities for genomic studies of the world’s
most important food crop. Now, a standardized annotation is
necessary so that the information from the genome
sequence can be fully utilized in understanding the biology
of rice and other cereal crops. Thus, to facilitate the applica-
tion of subcellular localization information and to provide a
foundation for functional and evolutionary studies of other
important cereal crops, we performed whole rice proteome
subcellular predictions. For this, complete rice proteome was
downloaded from two different web sources; EBI (www.
ebi.ac.uk/integr8) and TIGR (www.tigr.org). As the number
of protein entries varied from both the sources (EBI = 30 952
proteins and TIGR = 62 827 proteins), subcellular predic-
tions were done on both these proteomic datasets. As it was
nearly impossible to generate PSSM matrices for such huge
data, we used the faster and traditional amino acid composi-
tion-based classifier for performing the predictions for each
of the four subcellular localizations.

3 Results and discussion

World agriculture gets a major boost with the completion of
the rice genome sequence [1]. The rice genome sequencing
has identified about 37 544 genes many of which are repre-
sented by two or more copies. The accurate, map-based
sequence has already led to the identification of genes
responsible for agronomically important traits such as genes
that affect growth habit to promote yield and photoperiod
genes to extend the range of elite cultivars. Moreover, about
98% of the genes known in cereals are found in the rice ge-
nome, confirming the potential of the model monocot for
discovering gene function in other cereal crops [42]. This
could probably provide the key in improving yield to feed an
expanding world population at a time of increasing restraints
on agriculture. Amazingly, genes are simple, consisting of
four types of nucleotides (adenine, guanine, cytosine and
thymine) and are translated into far more complex proteins
that are made up of 20 different types of amino acids. Among
many other things, these proteins control all type of crop
development and physiology besides providing resistance to
various crop pests and diseases. In order to perform its ap-
propriate functions, each protein must be translocated to its
correct intra- or extracellular compartments. Hence, the
subcellular localization is a key step characteristic of each
encoded functional protein.
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Since 1991, various diverse algorithms have been devel-
oped to predict the subcellular localization of proteins, based
on amino-acid compositions [43], k nearest neighbors [13,
44], neural networks [5], covariant discriminant algorithm
[45], Markov chains [46], SVM [8, 47] and combination of
several methods [11]. In general, machine-learning tech-
niques such as artificial neural networks and SVM are con-
sidered as elegant approaches for the prediction of sub-
cellular localization of proteins. Further, previous studies
have shown that SVM performs better as compared to the
artificial neural networks [8, 9, 30]. In the present study, we
have developed various support vector machine-based mod-
ules, which were evaluated through a fivefold cross-valida-
tion technique. In the training of SVM, we used the method
of one versus the others, or one versus the rest. For example,
an SVM for the chloroplast protein group was trained with
the chloroplast protein sequences used as positive samples
and proteins in the other three subcellular location groups
used as negative samples, because SVM basically train clas-
sifiers between only two different samples. Thus, we build 60
different SVM classifiers corresponding to four subcellular
localizations under 15 different types of approaches followed
as discussed above. For each of these 15 different ap-
proaches, a query protein was tested against the 4 SVM clas-
sifiers and assigned to the subcellular location that corre-
sponds to the highest output value. The SVM training was
carried out by the optimization of various kernel function
parameters and the value of regularization parameter C. It
was observed that the RBF kernel performs better than the
linear and polynomial kernels in the case of amino acid
composition-based SVM module. Thus, for all of the SVM
modules developed further in the present study, only RBF
kernel was used.

3.1 Composition-based SVM modules

The amino-acid composition-based SVM module was able
to achieve an overall accuracy of 81.43% (kernel = RBF, g =
200, C = 3, j = 5) for all of the four subcellular localiza-
tions. An SVM module based on the traditional dipeptide
composition (i 1 1) to implement more information about
frequency as well as the local order of residues was also
constructed. This module could achieve a maximum over-
all accuracy of 80.88% with the RBF kernel (g = 225, C = 2,
j = 2). In order to have more comprehensive information
on the sequence-order effects, we also developed various
higher-order dipeptide composition-based modules (i12,
i13, i14, i15) including a cumulative higher-order amino-
acid pairs module. The individual overall accuracies of all
the higher-order dipeptide modules could not exceed the
accuracy achieved by actual dipeptide (i11) composition-
based module (Table 2). This may be because (i11) module
uses the actual order of sequence while calculating the
dipep composition, whereas the higher-order dipep mod-
ules are based on the pseudo sequence order effects.
However, when the cumulative higher-order dipeptide

composition-based module was developed, it achieved an
overall accuracy of 82.97% (g = 300, C = 2, j = 7) which
revealed an increase in overall accuracy of about 2% over
the (i11) actual dipeptide composition-based module. Fur-
ther, each protein sequence was divided into four equal
parts and amino acid composition was calculated individu-
ally for each part and this combined SVM module was able
to achieve an overall accuracy of 81.10% (kernel = RBF, g =
15, C = 3, j = 1) for all of the four target locations. The
detailed performance of amino acid-, traditional dipeptide-,
higher-order dipeptide-, cumulative higher-order dipeptide-
and four parts composition-based SVM modules in
assigning different subcellular localizations has been pre-
sented in Table 2.

3.2 Sequence similarity search

To encapsulate evolutionary information about the pro-
teins, the homology of a protein with other related
sequences provides a broad range of information about
each functional encoded protein. Hence, the similarity
search-based module RiPSI-BLAST was also constructed.
During 5-fold cross-validation, no significant hits were
obtained for 262 out of 910 proteins in the data set. Thus,
it proves that the performance of this similarity search-
based module is poorer in comparison with amino acid-,
dipeptide- as well as the four parts composition-based
modules. RiPSI-BLAST was able to predict chloroplast,
cytoplasmic, mitochondrial and nuclear subcellular locali-
zations with 34.52, 65.05, 35.63 and 92.02% accuracy,
respectively with an overall accuracy of 68.35% (Table 2).
Therefore, it suggests that the similarity search-based tools
alone cannot annotate the protein sequences as efficiently
and reliably as the composition-based modules.

3.3 PSSM-based SVM module

Further, from the generated sequence profiles by PSI-BLAST,
a PSSM was constructed for each protein sequence, which
was used as 400-dimension input information to the SVM.
The PSSM-based SVM module has achieved striking higher
overall accuracy of 87.10% (kernel = RBF, g = 45, C = 2, j = 6)
for all of the four subcellular localizations, which was sig-
nificantly best of all the approaches attempted by us. More-
over, the p-value comparison of all the modules based on the
statistical significance (0.05 level) also revealed that PSSM-
based approach was statistically best over the rest modules
(Table 3). This demonstrates that combining machine learn-
ing technology; prediction performance can be significantly
improved with the usage of PSI-BLAST profiles that offers
important evolutionary information about the protein sub-
cellular localizations. The individual accuracies obtained
with PSSM-based SVM for all four types of subcellular local-
ization are presented in Table 2.
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Table 2. Detailed performance of PSI-BLAST and various SVM modules developed using different features of a protein sequence

Approaches useda) Chloroplast Cytoplasm Mitochondria Nuclear Overall

ACC1

(%)
MCC2 ACC

(%)
MCC ACC

(%)
MCC ACC

(%)
MCC ACC

(%)
MCC

AA-based A 42.86 0.49 58.25 0.59 78.54 0.67 94.75 0.83 81.43 0.73
DIPEP (i11)-based B 30.95 0.48 48.54 0.55 86.24 0.68 93.91 0.81 80.88 0.72
Higher-order Dipeps
(i 1 2) 29.76 0.44 55.34 0.61 83.40 0.65 93.70 0.82 80.66 0.72
(i 1 3) 30.95 0.24 59.22 0.44 79.76 0.52 61.98 0.54 63.63 0.49
(i 1 4) 22.62 0.31 63.11 0.59 74.10 0.61 95.17 0.82 79.12 0.69
(i 1 5) 25.00 0.25 53.40 0.56 72.88 0.57 92.65 0.79 76.59 0.65
Cumulative higher-order 41.67 0.54 60.19 0.61 83.40 0.70 94.96 0.85 82.97 0.75
Four parts-based 41.67 0.55 54.37 0.61 75.30 0.66 96.85 0.79 81.10 0.71
RiPSI-BLAST 34.52 – 65.05 – 35.63 – 92.02 – 68.35 –
PSSM-based C 55.63 0.58 74.63 0.77 83.81 0.74 97.06 0.90 87.10 0.81

Hybrid - I A1B 52.38 0.48 57.28 0.62 78.54 0.69 95.38 0.86 82.53 0.75
Hybrid - II A1C 52.38 0.55 64.08 0.65 82.59 0.74 96.22 0.88 84.84 0.78
Hybrid - III A1B1C 50.00 0.52 62.14 0.64 82.59 0.72 96.43 0.89 84.51 0.78
NT - 25 26.19 0.30 27.19 0.33 68.83 0.59 89.29 0.58 70.88 0.53
CT - 25 20.24 0.27 22.33 0.29 50.61 0.34 88.03 0.51 64.18 0.42
SAAC (N-Centre-C) 40.48 0.44 49.52 0.55 82.59 0.69 91.81 0.77 79.78 0.70
NT-25 1 Remaining 38.10 0.47 46.60 0.49 80.97 0.70 92.65 0.75 79.23 0.68
CT-25 1 Remaining 22.62 0.35 49.52 0.53 76.52 0.58 91.81 0.75 76.48 0.64

a) AA-based, amino acid composition used as input; DIPEP-based, dipeptide composition used as input; Four parts-based, whole protein
is divided into four equal parts, amino acid composition calculated separately and all parts combined to form 80-dimension input vec-
tor; PSI-BLAST, similarity-search against non-redundant database of rice proteins; PSSM-based, a 400-dimension position-specific
scoring table generated from PSI-BLAST profiles and used as input vector; Hybrid-I, AA and DIPEP are combined to form 40-dimension
input vector; Hybrid-II, AA and PSSM are combined to form 420-dimension input vector to SVM; Hybrid-III, AA, DIPEP and PSSM infor-
mation is combined to generate 820-dimension input vector; NT-25, amino acid composition of N-terminal 25 residues used as input;
CT-25, amino acid composition of C-terminal 25 residues used as input; SAAC, whole protein is divided into three parts, N-terminal 25
amino acids, C-terminal 25 amino acids and remaining sequence. Amino acid composition of all three fragments determined and to-
gether used as input (vector of 60-dimensions); NT-251Remaining, whole protein is divided into two parts, N-terminal 25 amino acids
and remaining sequence and combined vector of 40-dimensions is used as input; CT-251Remaining, whole protein is divided into two
parts, C-terminal 25 amino acids and remaining sequence and combined vector of 40-dimensions is used as input; 1 ACC, accuracy in %;
2 MCC, Matthews correlation coefficient.

3.4 Hybrid approach(es)

In addition, methodologies such as ‘hybrids’ were also
devised to acquire more comprehensive information of the
proteins by combining various features of a protein
sequence. In the first step, we developed a hybrid module by
combining amino acid composition and dipeptide composi-
tion. Best results were obtained with RBF kernel (g = 100, C
=6, j = 2) with an overall accuracy of 82.53%, which was
about 1% higher than the amino-acid composition-based
SVM method, though statistically nonsignificant as revealed
by p-value (Table 3). Secondly, we developed another hybrid
module by combining amino acid composition and PSSM-
based matrix information. Best results were obtained with
RBF kernel (g = 45, C = 2, j = 4) with an overall accuracy of
84.84%, which was about 2% superior over the hybrid
approach-I-based SVM method, but again not statistically
significant. Further, we also attempted hybrid approach-III
by combining amino-acid composition, dipeptide composi-

tion and PSSM matrix. This SVM module was able to achieve
an overall accuracy of 84.51% (kernel = RBF, g = 35, C = 4, j =
2), which was almost at par with the hybrid approach-II. The
individual accuracy obtained for all four types of subcellular
localization are shown in Table 2. However, the overall accu-
racy of all the hybrid approaches attempted could not exceed
the overall accuracy obtained with PSSM-based SVM mod-
ule. This indicates that PSSM matrices generated from pro-
files of PSI-BLAST, alone contains more important informa-
tion about the subcellular locations of proteins as compared
to the amino acid compositions.

3.5 Terminal-based SVM modules

It is a well-reported fact that many proteins contain signal
sequences at their N-terminal region that is recognized by
translocation machinery and is responsible for targeting
proteins to various subcellular localizations in the cell
(chloroplast and mitochondria in the present study). There
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Table 3. The p-values for determining the statistical significance of one module over the other

Modules
developed

AA Dipep Four parts Cumulative
higher-order
Dipeps

PSSM AA 1 Dipep AA 1 PSSM AA 1 Dipep
1 PSSM

AA – 0.67252 0.83104 0.29003 0.000195a) 0.48623 0.00869a) 0.00556a)

Dipep – 0.90019 0.21426 0.000625a) 0.35555 0.01249a) 0.01103a)

Four parts – 0.31761 0.00284a) 0.46663 0.03632a) 0.03877a)

Cumulative higher-order
Dipeps

– 0.01182a) 0.81119 0.20671 0.24887

PSSM – 0.01295a) 0.02897a) 0.0043a)

AA 1 Dipep – 0.1658 0.19664
AA 1 PSSM – 0.6984
AA1Dipep1PSSM –

a) Significant at 0.05 level of significance.

fore, we also attempted various SVM modules based on the
N-terminal as well as the C-terminal amino-acid composition
of each protein and compared their respective accuracies.
The SVM modules were developed at various levels of N-ter-
minal and C-terminal residue length (10, 15, 20, 25 and 30
amino acids) in order to achieve maximum accuracy. Best
results were obtained at 25-residue length with RBF kernel
for both the terminal regions. At first, the N-terminal-based
SVM module alone was able to achieve an overall accuracy of
70.88% (g = 30, C = 1, j = 3). which was significantly higher
compared to an overall accuracy of 64.18% (g = 40, C = 1, j =
3) for C-terminal based SVM module alone. Further, when
remaining part of the protein sequence was also taken into
account, the overall accuracy increased drastically. In case of
N-terminal 1 remaining part composition-based SVM mod-
ule, a 40-dimension vector was used as input information to
SVM instead of 20-dimension vector for N-terminal compo-
sition alone. The overall accuracy increased to 79.23% (ker-
nel = RBF, g = 18, C = 2, j = 3) in this case. Similarly, the
overall accuracy of C-terminal 1 remaining part composi-
tion-based SVM module also increased to 76.48% (kernel =
RBF, g = 15, C = 2, j = 2) as compared to the C-terminal
composition-based SVM module alone. However, best over-
all accuracy of about 80% (kernel = RBF, g = 6, C = 2, j = 2)
was achieved when amino acid compositions of both the N-
terminal (25 residues) and C-terminal (25 residues) as well as
the remaining centre part of the protein sequence were
combined to provide 60-dimension input vector to the SVM
(Table 2). This demonstrates that the SAAC-based approach
has greater advantage over the simple N-terminal or C-ter-
minal based amino-acid composition approach(es) as it
showed the best overall accuracy and MCC among all the
terminal-based modules attempted and greater advantage by
providing more weight to proteins that have signal se-
quences at either the N- or C-terminal region. An overall
comparison of accuracies of PSI-BLAST and all the SVM
modules developed in this study based on various features of
a protein sequence is presented in Fig. 2.

3.6 Is module X statistically better than module Y?

As in the present study, we have made a comprehensive and
systematic attempt to develop various modules ranging from
simple amino acid composition to similarity-search based
including using the evolutionary information (PSSM) of a
protein sequence, but how do we declare the superiority of
one module over the other? For this, we calculated the p-
values at 0.05 level of significance between each of the two
modules based on their performance in fivefold cross-vali-
dations. The PSI-BLAST and terminal based modules were
left out as they achieved low accuracy level as compared to
the other remaining classifiers. The p-values as presented in
Table 3 revealed that the PSSM-based classifiers were statis-
tically better over all the modules developed in this study
with the best overall accuracy achieved by PSSM-based SVM
module alone, which was also statistically significant over
the other modules.

3.7 Reliability index

When machine-learning approaches are followed for protein
subcellular localization, it is important to know about the
prediction reliability. To evaluate this, the reliability index
(RI) assignment was carried out for the overall best method,
PSSM-based SVM module. The RI is a measure of con-
fidence in the prediction as it indicates the effectiveness of an
approach in the prediction of subcellular localization of pro-
teins. Ideally, the accuracy and probability of correct predic-
tion should increase with the increase in RI values, which is
demonstrated in this study as well (Fig. 3). The expected
prediction accuracy with RI equal to a given value and the
fraction of sequences predicted at each . RI value was cal-
culated. Here, we have computed the average prediction
accuracy of proteins having a RI value greater than or equal
to n, where n = 1, 2. . ...5. For example, the expected accuracy
for a sequence with RI = 2 is 91.80% with 80.44% of
sequences having RI .2. In other words, RSLpred has been
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Figure 2. Comparison of overall performances of PSI-BLAST and various SVM modules constructed on the basis of different features of a
protein sequence.

Figure 3. Expected prediction
accuracy with a reliability index
equal to a given value. The frac-
tion of sequences that are pre-
dicted with RI . n; n = 1, 2, 3, 4, 5
are also given.

able to predict 80.44% of sequences with an average predic-
tion accuracy of 91.80% at RI .2. This demonstrates that a
user can predict a large number of sequences with signifi-
cantly higher accuracy for RI .2. Another calculation
showed that RSLpred was able to predict 63.08% of se-
quences with an accuracy of 95.99% for RI .3.

3.8 Performance on independent datasets

In order to assess the unbiased performance of any devel-
oped method, one needs to evaluate it on an independent
dataset. The main objective of the present study was to
develop a method for predicting subcellular localization of
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rice proteins. Since the present method has been trained
on specific organism’s proteins, it should be more accurate
and better for a particular organism as compared to the
general methods for predicting plant proteins such as Tar-
getP [16], PA-SUB [10], Wolf PSORT (newer version of
PSORT II) [13] and the recently developed all-plant meth-
od, Plant-Ploc [19] as well as the general methods for
eukaryotic proteins like ESLpred [7]. It has already been
reported that ESLpred performs better than NNPSL [5] and
SubLoc [8] prediction systems [7]; therefore, we also com-
pared the performance of our method with ESLpred
method on these two independent datasets (90 and 25%
reduced) of rice proteins, which were not used in the
training of original RSLpred method.

It was observed that RSLpred was able to correctly predict
46, 145, 21 and 207 proteins out of 58, 165, 58 and 227
(chloroplast, cytoplasmic, mitochondrial and nuclear) pro-
teins, respectively, from the independent dataset-I, using the
PSSM-based module. An overall accuracy of 82.48% has
been achieved, whereas the Wolf PSORT method was able to
correctly predict only 32, 56, 9 and 165 (chloroplast, cyto-
plasmic, mitochondrial and nuclear) proteins, respectively,
with an achievable overall accuracy of 51.58% on this dataset-
I (Table 4a). The recently developed all-plant method, Plant-
Ploc, showed very low prediction performance as it correctly
predicted only 46, 31, 4 and 94 (chloroplast, cytoplasmic,
mitochondrial and nuclear) proteins, respectively with an
overall accuracy of 34.45%. Similarly, TargetP, PA-SUB and
ESLpred methods also performed poorly on this independ-
ent dataset-I with an overall accuracy of 31.04%, 52.76% and
53.11%, respectively.

Furthermore, when repeating the above same procedure
on independent dataset-II, it was observed that even at 25%
redundancy-reduced sequences, RSLpred was able to predict

30, 94, 18 and 140 proteins correctly out of 38, 109, 50 and
148 (chloroplast, cytoplasmic, mitochondrial and nuclear)
proteins, respectively, showing an overall accuracy of 81.74%
as compared to the low performance shown by other general
methods available. We observed that the performance of our
method as well as all other methods did not drop signifi-
cantly by using a much diverse independent dataset-II (25%
cutoff) in comparison to the 90% cutoff dataset-I. The accu-
racy level was found to be almost same on both these data-
sets.

The results on these two test datasets demonstrate that
there must be some species-specific features of protein sort-
ing in rice, thereby indicating that genome-specific predic-
tion methods for subcellular localization of proteins are far
much better than the general methods. The detailed com-
parison of all these web tools on each of the four subcellular
localizations under study is presented in Table 4 (a, b).
Hence, there is an urgent need for developing organism-
specific methods for more reliable and accurate prediction of
subcellular localization of proteins, which can ultimately
accelerate the annotation of huge genomic data for those
organisms.

3.9 Comparison with newly developed ‘All Plant’

method

Though the above comparison indicates towards the advan-
tages of developing a species-specific predictor(s), one can
think of another interesting question that whether the
inclusion of non-rice proteins in the training set would make
RSLpred perform better or worse on the rice independent
proteins, which still remains unclear so far; and so probably
needs to be further elaborated or strengthened. The only way
to confidently answer this question is to train a correspond-

Table 4. Performance of RSLpred in comparison to other methods on (a) independent dataset-I (90% cutoff) and (b) independent dataset-II
(25% cutoff) of rice proteins

Subcellular
location

Number of
sequences

RSLpred
% accuracy

TargetP
% accuracy

Plant-Ploc
% accuracy

Wolf-PSORT
% accuracy

PA-SUB
% accuracy

ESLpred
% accuracy

Dataset I

Chloroplast 58 79.31 (46)a) 36.21 (21) 79.31 (46) 55.17 (32) 44.83 (26) b)

Cytoplasm 165 87.88 (145) b) 18.79 (31) 33.94 (56) 24.24 (40) 37.58 (62)
Mitochondria 58 36.21 (21) 25.86 (15) 06.90 (04) 15.52 (9) 25.86 (15) 22.41 (13)
Nuclear 227 91.19 (207) b) 41.41 (94) 72.69 (165) 82.38 (187) 72.25 (164)
% Overall accuracy 508 82.48 (419) 31.04 (36) 34.45 (175) 51.58 (262) 52.76 (268) 53.11 (239)

Dataset II

Chloroplast 38 78.95 (30) 36.84 (14) 78.95 (30) 55.26 (21) 47.37 (18) b)

Cytoplasm 109 86.24 (94) b) 20.18 (22) 36.70 (40) 27.52 (30) 36.70 (40)
Mitochondria 50 36.00 (18) 26.00 (13) 02.00 (01) 14.00 (7) 26.00 (13) 20.00 (10)
Nuclear 148 94.59 (140) b) 40.54 (60) 70.95 (105) 79.05 (117) 74.32 (110)
% Overall accuracy 345 81.74 (282) 30.68 (27) 32.75 (113) 50.14 (173) 51.59 (178) 52.12 (160)

a) Values in parentheses represent number of correctly predicted sequences.
b) Prediction not available.
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ing method (using the same encoding method and location
definitions used in RSLpred) on a dataset derived from all the
plant species, and then compare the performance of two
methods on the rice independent dataset.

To proceed, we downloaded all the plant proteins having
subcellular localization information available from the latest
UniProtKB/Swiss-Prot release 55.5 (total 17,308 sequences)
and extracted the protein sequences for each of the four
subcellular classes under study as in RSLpred (total 13 384
sequences, see Table 5a for distribution). As in RSLpred
training data, we used 90% cutoff for reducing the sequence
redundancy among the rice data, similar approach was also
followed while proceeding for developing an ‘All Plant’ clas-
sifier. Therefore, using the same PROSET software [26], we
also reduced the redundancy of ‘All Plant’ sequence dataset
to 90% sequence identity level. As we wanted to compare the
performance of rice independent dataset on both the
RSLpred and this ‘All Plant’ method; for fair comparison, we
further removed all the rice independent sequences from
this ‘All Plant’ training dataset (Table 5a). In this way, we
made sure that both the RSLpred as well as the ‘All Plant’
classifier had not been trained from any of the sequences in
the rice independent dataset.

Finally, the traditional amino acid (AA) composition-
based classifier for ‘All Plant’ dataset was developed follow-
ing the same fivefold cross-validation approach and evalua-
tion parameters as used in RSLpred development. In the
end, we ran all of the rice independent dataset-I on the model
files generated from this ‘All Plant’ classifier and compared
its performance with the AA-based classifier of RSLpred
(Note: our best classifier in RSLpred was obtained from
PSSM matrix using evolutionary information of a protein
sequence, but to avoid any confusion and compare similar
encoding schemes, we have used RSLpred’s simple amino
acid composition-based classifier to compare with ‘All Plant’
amino acid composition-based classifier). Results are pre-
sented in Table 5b and are discussed herewith.

Technically, due to the larger training dataset and more
number of rice sequences present in the ‘All Plant’ dataset,
the AA-based classifier of ‘All Plant’ should have performed
better than the AA-model files of RSLpred; however surpris-
ingly, RSLpred even outperformed the ‘All Plant’ method
significantly (Table 5b). This indicates that there might be
some differences in the sorting signals and mechanisms be-
tween species, which enables a higher performance of a
method designed for a specific species (rice in this case). To
support this, some previous methods of multivariate analysis
used to study the amino acid residue composition have also
lead to the identification of species-specific compositional
patterns [48]. Furthermore, it has been shown in the past that
not only amino acid composition but also oligopeptide fre-
quencies (dipeptides, tripeptides etc.) reflect independent
segregation between species and there are several identified
distinct factors that shape the landscape of species-specific
proteomic composition [49]; thereby suggesting that all these
general methods for predicting subcellular localization

Table 5a. Number of protein sequences within each subcellular
location group for all the plants in Swiss-Prot database

Subcellular
location

Sequences
available

90%
cut-off

Final dataset
(rice independent
dataset reduced)

Chloroplast 9456 4101 4043
Cytoplasm 1170 940 775
Mitochondria 820 685 627
Nucleus 1938 1789 1562
Total 13 384 7515 7007

Table 5b. Performance comparison of rice independent dataset-I
on RSLpred and newly developed ‘All Plant’ method

Subcellular
location

Number of
sequences

RSLpred
% accuracya)

All Plant
% accuracya)

Chloroplast 58 60.34 (35)b) 43.10 (25)b)

Cytoplasm 165 42.42 (70) 27.27 (45)
Mitochondria 58 36.21 (21) 12.07 (07)
Nuclear 227 90.31 (205) 78.41 (178)
% Overall accuracy 508 65.16 (331) 50.20 (255)

a) Using amino acid composition-based classifier.
b) Values in parentheses represent number of correctly pre-

dicted sequences.

might be skipping these species-specific compositional pat-
terns in their training process and learning only from the
common patterns whereas, the similar encoding scheme(s)
followed in an organism-specific prediction system is able to
learn more efficiently from these species-specific composi-
tional patterns, giving us a more efficient prediction mod-
el(s) and which, ultimately leads to the higher prediction
accuracy of individual genome annotation. This also sug-
gests that methods relying on amino acid composition
should also take into account their species-specific back-
ground.

3.10 Confusion matrix

Though RSLpred performed much better on both the inde-
pendent datasets (I, II) of rice proteins than the other web
tools available as well as the above-mentioned ‘All Plant’
method, one leads to wonder about the false positive classi-
fications. For example, if chloroplast proteins are only clas-
sified with 55% accuracy, are the chloroplast proteins that are
incorrectly classified equally likely to be scored in any of the
other three categories? Alternatively, are false positive pre-
dictions always classified in a single false category? Is there
any biological basis for something systematic with the false
positives? For this, two additional ‘confusion matrix’ Tables
(6a, 6b) were generated from the performance of RSLpred on
these independent datasets of rice proteins as presented in
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Table 6. Confusion matrix for predictions on (a) independent dataset-I (90% cutoff) and (b) independent dataset-II
(25% cutoff) of rice proteinsa)

Chloroplast Cytoplasm Mitochondria Nuclear Actual Sum Sensitivity (%)

(a) Dataset I

Chloroplast (58) 46 2 7 3 58 79.31
Cytoplasm (165) 2 145 3 15 165 87.88
Mitochondria (58) 2 5 21 30 58 36.21
Nuclear (227) 2 11 7 207 227 91.19
Predicted Sum 52 163 38 255 508 �R = 82.48

Precision (%) 88.46 88.96 55.26 81.18 �P = 81.58

Specificity (%) 98.67 94.75 96.22 82.92 �S = 90.08

(b) Dataset II

Chloroplast (38) 30 1 6 1 38 78.95
Cytoplasm (109) 1 94 2 12 109 86.24
Mitochondria (50) 2 3 18 27 50 36.00
Nuclear (148) 1 4 3 140 148 94.59
Predicted Sum 34 102 29 180 345 �R = 81.74

Precision (%) 88.24 92.16 62.07 77.78 �P = 81.20

Specificity (%) 98.70 96.61 96.27 79.70 �S = 89.54

a) ‘Actual Sum’ and ‘Predicted Sum’ are the sums of the actual and predicted instances for each class, respec-
tively. �R, �P and �S denote overall sensitivity (recall), precision and specificity, respectively.

Table 4 (a, b). Both datasets showed the same pattern of dis-
tribution for the false predictions. Though showing good recall
(sensitivity) rate for chloroplast (79.31% for dataset-I and
78.95% for dataset-II), it was observed that most of the false
positive chloroplast proteins were predicted towards mitochon-
drial false category. The biological basis for the same may be the
fact that chloroplasts are similar to mitochondria in many ways,
except since they are involved in photosynthesis, they only occur
in eukaryotic autotrophs. Both these organelles likely resulted
from a symbiotic relationship so they encode some of their own
proteins [50]. Moreover, both have their signal sequence located
at the N terminus of the protein. Similarly, most of the cyto-
plasmic false positives were found to be wrongly targeted to
nucleus and vice versa (Table 6a, b); however, the highest recall
rate was achieved for these two categories (cytoplasm = 87.88%,
nucleus = 91.19% for dataset-I; and cytoplasm = 86.24%,
nucleus = 94.59% for dataset-II). The nuclear proteins are also
translated in the cytoplasm and are transported back into the
nucleus to do their jobs. In addition, the nuclear localization
signal (NLS) can be located anywhere in the protein sequence,
which is not the case in chloroplast and mitochondrial proteins.
Moreover, the NLS signal is not cleaved here and the transport
mechanism is somewhat more complicated than the chaperone
binding of chloroplast and mitochondrial proteins. That is why
some of the cytoplasmic proteins get confused with the nuclear
targeting proteins and vice versa.

Secondly, the results presented in Tables 4 (a, b) and 6 (a, b)
revealed that even in the fine print, mitochondrial proteins
showed poor prediction (sensitivity = 36.21% on dataset-I and
36.00% on dataset-II) as compared to the other cellular locations
under study. This was probably due to the two main reasons.
First, it has been proved in some of the earlier studies that

mitochondrial proteins are notoriously difficult to predict [51,
52]. Secondly, the number of rice-specific mitochondrial pro-
teins was less in the original training dataset. This probably
could also have affected the prediction accuracy of mitochon-
drial proteins when independent sets of rice mitochondrial
proteins were validated/tested. However, compared to the other
methods available (TargetP, PA-SUB, Wolf-PSORT, Plant-Ploc
and ESLpred) as shown in Table 4 (a, b), our method out-
performed significantly on both the 90% cutoff as well as 25%
cutoff independent datasets. It means that even with the less
number of rice mitochondrial entries in the training set, the
module could correctly predict 21 sequences out of the 58 avail-
able in the independent set-I and 18 correctly out of 50 in data-
set-II, as compared to the lower accuracy of other methods.

Furthermore, when RSLpred model files were run on other
plant species to crosscheck its performance (see Supporting
Information Table 2), the mitochondrial proteins of Arabidopsis
thaliana were predicted more correctly as compared to the other
classes. This probably reflects the high proportion of A. thaliana
data of the mitochondrial category in the RSLpred training set
and suggests that a significant number of proteins of a particu-
lar class are needed to train an efficient and reliable classifier.
Henceforth, with the future increase in the number of rice spe-
cific mitochondrial protein sequences in the Swiss-Prot data-
base, the said module will be upgraded at regular intervals to
achieve better and improved accuracy level of the said classifier.

3.11 Annotation of rice proteome

The subcellular predictions on both the proteomic datasets
(EBI and TIGR) for chloroplast, cytoplasm, mitochondria
and nuclear proteins are presented in Table 7. For highly re-
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Table 7. Performance of RSLpred server on complete rice proteomes retrieved from EBI and TIGR. The predictions
were done using the traditional AA-based module

Subcellular
location

Predictions at threshold

0.1 0.2 0.3 0.4 0.5

EBI proteome (30 952 sequences)

Chloroplast 1728 1460 1237 993 792
Cytoplasm 2536 2162 1765 1452 1150
Mitochondria 5161 4544 3894 3270 2726
Nuclear 10 366 9223 8173 7244 6310
Total 19 791 17 389 15 069 12 959 10 978

TIGR proteome (62 827 sequences)

Chloroplast 2728 2250 1856 1461 1142
Cytoplasm 3916 3279 2693 2169 1738
Mitochondria 10 383 9134 7892 6678 5561
Nuclear 24 232 21 644 19 130 16 803 14 572
Total 41 259 36 307 31 571 27 111 23 013

liable and accurate predictions, we put various levels of thresh-
old values (0.1, 0.2, 0.3, 0.4 and 0.5) on the final score for each
cellular class. For example, if the maximum score of a query
protein was found for the chloroplast category; in the next step,
we checked whether this score was more than the threshold
value or not. Only then, we declared the query protein as pre-
dicted to be chloroplast. Therefore, one can say that higher the
threshold value, more reliable are the predictions. From the
results presented in Table 7, it was observed that on EBI pro-
teome set; about 792 proteins are predicted to be chloroplast at
.0.5 threshold value (high confidence), which stands to about
2.56% of the total proteome. Similarly, 1150 (3.72%) cyto-
plasmic, 2726 (8.81%) mitochondrial and 6310 (20.39%)
nuclear proteins are predicted to be present in the rice proteome
with high reliability and confidence level. On TIGR proteome
set, about 1142 (1.82%) chloroplast, 1738 (2.77%) cytoplasmic,
5561 (8.85%) mitochondrial and 14 572 (23.20%) nuclear pro-
teins are predicted to be correctly localized to the said cellular
compartments with high confidence (.0.5 threshold). The
complete list of Uniprot Knowledgebase ID/TIGR Locus iden-
tifiers of the predicted protein sequences has been provided on
the RSLpred web server. The authors believe that the above
information generated from whole rice proteome analysis will
not only facilitate the application of subcellular localization
information in whole proteome annotation but also provides a
foundation for functional and evolutionary studies of other
important cereal crops as well.

3.12 Description of web server

The best performing modules from the present investigation
have been implemented on the World Wide Web as a dynamic
web server ‘RSLpred’, which is freely available and can be
assessed by at http://www.imtech.res.in/raghava/rslpred/.
All the CGI scripts of RSLpred were written in PERL and the
interface was designed using HTML to assess user queries. It

is a user-friendly web server and allows users to submit their
protein sequence in one of the standard formats such as
FASTA, GenBank, EMBL, GCG or plain format (Fig. 4). Users
can choose to type or paste the sequence in the box, or upload
the sequence through a file. The server provides options to
select various approaches for the prediction of subcellular
localization of a query protein sequence. Due to PSI-BLAST
searches and generation of profiles in the form of a PSSM
table, the prediction of subcellular localization of the query
sequence through PSSM-based approach may take some time
to serve the query. For rest of the approaches, the prediction
results will be displayed in a user-friendly format on the
screen within a few seconds (Fig. 5). As the PSSM-based
classifier is a little slower, we suggest that for larger analysis/
predictions, the users should opt for a faster classifier like the
traditional amino acid composition-based module. For more
flexibility, we have provided four other good performing
modules, e.g. if the user wishes to use terminal-based infor-
mation of the input query sequence for prediction purpose,
he/she may opt for splitted amino-acid composition module,
which is based on N-Centre-C-terminal composition of the
protein sequence. If the user wishes to utilize the sequence
order effects of the query sequence, the dipeptide composi-
tion-based module may be used for prediction. However, if the
users still want to use PSSM classifier for larger predictions,
they may directly contact the authors for assistance. In case of
the default prediction, RSLpred uses the PSSM-based module
for prediction. An overall architecture of the ‘RSLpred’ web
server is shown in Fig. 6.

4 Concluding remarks

An era of biological revolution has begun during which a
tremendous amount of information on plant genetics will be
accumulated over the next ten years. Rice, at a compact
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Figure 4. An overview of sub-
mission form for online sub-
cellular localization prediction of
rice proteins with ‘RSLpred’ web
server.

Figure 5. A snapshot of output
page displaying all the four
scores for each subcellular loca-
tion including the final predic-
tion.

430 Mb, is only one-sixth the size of the human and maize
genomes and provides the sequencing template for all the
grasses. This includes every significant grain crop (including
sorghum, maize, barley, oat, and wheat), most of which have
enormous genomes that are not feasible to sequence at cur-
rent costs. Understanding the biological functions of about
37 544 genes identified through International Rice Genome
Sequencing Project, identifying the function and regulation

of each encoded protein and whole genome functional
annotation (assigning functions to potential gene(s) in the
raw sequences) is now the hot topic in rice bioinformatics.
Moreover, rice, as a model species, is the plant in which the
function of most cereal genes will be discovered. Thus, the
availability of systems that can predict location from
sequence is essential to the full characterization of expressed
proteins. Experimentally determining the subcellular loca-
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Figure 6. Overall architecture of the RSLpred web server.

tion is a laborious and time-consuming task. Computational
tools provide faster and accurate access to localization pre-
dictions for any organism.

A number of computational prediction methods are
available, but all these methods have limitations in terms of
their accuracy and breadth of coverage when organism-spe-
cific predictions are made. From the present investigation, it
was concluded that the available prediction methods for sub-
cellular localization of plant proteins are less accurate in pre-
dicting rice-specific destination of proteins. In this direction, a
novel method for subcellular localization of rice proteins is
presented, which will assist in assigning the subcellular loca-
tion or function of rice proteins more reliably with higher
accuracy. We also suggest that evolutionary information
stored in the position-specific scoring matrices of a protein
sequence combined with a suitable machine learning tech-
nique provides more comprehensive and reliable information
about the subcellular localizations of proteins as compared to
the amino acid composition-based methods. The authors
believe that the prediction method presented here would act
as a useful tool for the functional annotation of the recently
piled-up rice genomic data and ultimately, for providing cru-
cial insights into genome evolution, speciation, domestica-
tion and the development of improved strains of rice as well.
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