1,692 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Current Challenges and Barriers to the Wider Adoption of Wearable Sensor Applications and Internet-of-Things in Health and Well-being

    Get PDF
    The aim of this review is to investigate barriers and challenges of Wearable Sensors (WS) and Internet-of-Things (IoT) solutions in healthcare. This work specifically focuses on falls and Activity of Daily Life (ADLs) for ageing population and independent living for older adults. The majority of the studies focussed on the system aspects of WS and IoT solutions including advanced sensors, wireless data collection, communication platforms and usability. The current studies are focused on a single use-case/health area using non-scalable and ‘silo’ solutions. Moderate to low usability/ userfriendly approach is reported in most of the current studies. Other issues found were, inaccurate sensors, battery/power issues, restricting the users within the monitoring area/space and lack of interoperability. The advancement of wearable technology and possibilities of using advanced technology to support ageing population is a concept that has been investigated by many studies. We believe, WS and IoT monitoring plays a critical role towards support of a world-wide goal of tackling ageing population and efficient independent living. Consequently, in this study we focus on identifying three main challenges regarding data collection and processing, techniques for risk assessment, usability and acceptability of WS and IoT in wider healthcare settings

    The Emerging Wearable Solutions in mHealth

    Get PDF
    The marriage of wearable sensors and smartphones have fashioned a foundation for mobile health technologies that enable healthcare to be unimpeded by geographical boundaries. Sweeping efforts are under way to develop a wide variety of smartphone-linked wearable biometric sensors and systems. This chapter reviews recent progress in the field of wearable technologies with a focus on key solutions for fall detection and prevention, Parkinson’s disease assessment and cardiac disease, blood pressure and blood glucose management. In particular, the smartphone-based systems, without any external wearables, are summarized and discussed

    Electrocardiographic patch devices and contemporary wireless cardiac monitoring.

    Get PDF
    Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery

    A Wearable Fall Detection System Based on Body Area Networks

    Get PDF
    Falls can have serious consequences for people, leading to restrictions in mobility or, in the worst case, to traumatic-based cases of death. To provide rapid assistance, a portable fall detection system has been developed that is capable of detecting fall situations and, if necessary, alerting emergency services without any user interaction. The prototype is designed to facilitate reliable fall detection and to classify several fall types and human activities. This solution represents a life-saving service for every person that will significantly improve assistance in the case of fall events, which are a part of daily life. Additionally, this approach facilitates independent system operation, since the system does not depend on sensor or network units located within a building structure. This article also introduces fall analysis. To guarantee functional safety, a hazard analysis method named system-theoretic accident model and processes (STAMP) is applied

    A Mobile Healthcare Solution for Ambient Assisted Living Environments

    Get PDF
    Elderly people need regular healthcare services and, several times, are dependent of physicians’ personal attendance. This dependence raises several issues to elders, such as, the need to travel and mobility support. Ambient Assisted Living (AAL) and Mobile Health (m-Health) services and applications offer good healthcare solutions that can be used both on indoor and in mobility environments. This dissertation presents an ambient assisted living (AAL) solution for mobile environments. It includes elderly biofeedback monitoring using body sensors for data collection offering support for remote monitoring. The used sensors are attached to the human body (such as the electrocardiogram, blood pressure, and temperature). They collect data providing comfort, mobility, and guaranteeing efficiency and data confidentiality. Periodic collection of patients’ data is important to gather more accurate measurements and to avoid common risky situations, like a physical fall may be considered something natural in life span and it is more dangerous for senior people. One fall can out a life in extreme cases or cause fractures, injuries, but when it is early detected through an accelerometer, for example, it can avoid a tragic outcome. The presented proposal monitors elderly people, storing collected data in a personal computer, tablet, or smartphone through Bluetooth. This application allows an analysis of possible health condition warnings based on the input of supporting charts, and real-time bio-signals monitoring and is able to warn users and the caretakers. These mobile devices are also used to collect data, which allow data storage and its possible consultation in the future. The proposed system is evaluated, demonstrated and validated through a prototype and it is ready for use. The watch Texas ez430-Chronos, which is capable to store information for later analysis and the sensors Shimmer who allow the creation of a personalized application that it is capable of measuring biosignals of the patient in real time is described throughout this dissertation
    corecore