298 research outputs found

    Wearable dummy to simulate equinovarus for training of physical therapists

    Get PDF
    Abstract: It is indispensable for physical therapists in training to experience various symptoms during their period of education; however, such chances are limited in educational institutions. We developed a prototype of a wearable dummyrobot system to simulate equinovarus, which is a typical disorder of the foot caused by stroke, to enhance the training of physical therapists (PTs). This wearable dummy system makes it possible to simulate joint disorders, while allowing the trainees to learn about the complex joint movements of humans, such as those observed in human feet. The dummy system deforms the foot of a healthy wearer using a wire mechanism so that the resultant foot posture and resistance force required for therapeutic operations resemble those of typical equinovarus patients. The resistance forces felt by the trainees can be tuned by changing the endpoint of the wire. From sensory evaluations involving PTs, it was concluded that with potential future improvements, the dummy simulator will become an effective training tool to aid physical therapy students

    Examining the robustness of pose estimation (OpenPose) in estimating human posture

    Get PDF

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools
    corecore