5 research outputs found

    Electron Quantum Tunneling Sensors

    Full text link
    Quantum tunneling sensors are typically ultra-sensitive devices which have been specifically designed to convert a stimulus into an electronic signal using the wondrous principles of quantum mechanical tunneling. In the early 1990s, William Kaiser developed one of the first micromachined quantum tunneling sensors as part of his work with the Nasa Jet Propulsion Laboratory. Since then, there have been scattered attempts at utilizing this phenomenon for the development of a variety of physical and chemical sensors. Although these devices demonstrate unique characteristics such as high sensitivity, the principle of quantum tunneling often acts as a double-edged sword and is responsible for certain drawbacks of this sensor family. In this review, we briefly explain the underlying working principles of quantum tunneling and how they are used to design miniaturized quantum tunneling sensors. We then proceed to describe an overview of the various attempts at developing such sensors. Next, we discuss their current need and recent resurgence. Finally, we describe various advantages and shortcomings of these sensors and end this review with an insight into the potential of this technology and prospects.Comment: arXiv admin note: substantial text overlap with arXiv:2006.1279

    Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care.

    Get PDF
    Lactate is widely measured in critically ill patients as a robust indicator of patient deterioration and response to treatment. Plasma concentrations represent a balance between lactate production and clearance. Analysis has typically been performed with the aim of detecting tissue hypoxia. However, there is a diverse range of processes unrelated to increased anaerobic metabolism that result in the accumulation of lactate, complicating clinical interpretation. Further, lactate levels can change rapidly over short spaces of time, and even subtle changes can reflect a profound change in the patient’s condition. Hence, there is a significant need for frequent lactate monitoring in critical care. Lactate monitoring is commonplace in sports performance monitoring, given the elevation of lactate during anaerobic exercise. The desire to continuously monitor lactate in athletes has led to the development of various technological approaches for non-invasive, continuous lactate measurements. This review aims firstly to reflect on the potential benefits of non-invasive continuous monitoring technology within the critical care setting. Secondly, we review the current devices used to measure lactate non-invasively outside of this setting and consider the challenges that must be overcome to allow for the translation of this technology into intensive care medicine. This review will be of interest to those developing continuous monitoring sensors, opening up a new field of research

    Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care

    Get PDF
    Lactate is widely measured in critically ill patients as a robust indicator of patient deterioration and response to treatment. Plasma concentrations represent a balance between lactate production and clearance. Analysis has typically been performed with the aim of detecting tissue hypoxia. However, there is a diverse range of processes unrelated to increased anaerobic metabolism that result in the accumulation of lactate, complicating clinical interpretation. Further, lactate levels can change rapidly over short spaces of time, and even subtle changes can reflect a profound change in the patient’s condition. Hence, there is a significant need for frequent lactate monitoring in critical care. Lactate monitoring is commonplace in sports performance monitoring, given the elevation of lactate during anaerobic exercise. The desire to continuously monitor lactate in athletes has led to the development of various technological approaches for non-invasive, continuous lactate measurements. This review aims firstly to reflect on the potential benefits of non-invasive continuous monitoring technology within the critical care setting. Secondly, we review the current devices used to measure lactate non-invasively outside of this setting and consider the challenges that must be overcome to allow for the translation of this technology into intensive care medicine. This review will be of interest to those developing continuous monitoring sensors, opening up a new field of research

    Wearable Carbon Nanotube-Based Biosensors on Gloves for Lactate

    No full text
    Developing a simple and direct approach for interfacing a sensor and a target analyte is of great interest for fields such as medical diagnosis, threat detection, food quality control, and environmental monitoring. Gloves provide a unique interface for sensing applications. Here, we show for the first time the development of wearable carbon nanotube (CNT)-based amperometric biosensors painted onto gloves as a new sensing platform, used here for the determination of lactate. Three sensor types were studied, configured as: two CNT electrodes; one CNT electrode, and an Ag/AgCl electrode, and two CNT electrodes and an Ag/AgCl electrode. The sensors are constructed by painting the electrodes using CNT or Ag/AgCl inks. By immobilizing lactate oxidase onto the CNT-based working electrodes, the sensors show sensitive detections of lactate. Comparison of sensor performance shows that a combination of CNT and Ag/AgCl is necessary for highly sensitive detection. We anticipate that these findings could open exciting avenues for fundamental studies of wearable bioelectronics, as well as practical applications in fields such as healthcare and defense

    Wearable Carbon Nanotube-Based Biosensors on Gloves for Lactate

    No full text
    Developing a simple and direct approach for interfacing a sensor and a target analyte is of great interest for fields such as medical diagnosis, threat detection, food quality control, and environmental monitoring. Gloves provide a unique interface for sensing applications. Here, we show for the first time the development of wearable carbon nanotube (CNT)-based amperometric biosensors painted onto gloves as a new sensing platform, used here for the determination of lactate. Three sensor types were studied, configured as: two CNT electrodes; one CNT electrode, and an Ag/AgCl electrode, and two CNT electrodes and an Ag/AgCl electrode. The sensors are constructed by painting the electrodes using CNT or Ag/AgCl inks. By immobilizing lactate oxidase onto the CNT-based working electrodes, the sensors show sensitive detections of lactate. Comparison of sensor performance shows that a combination of CNT and Ag/AgCl is necessary for highly sensitive detection. We anticipate that these findings could open exciting avenues for fundamental studies of wearable bioelectronics, as well as practical applications in fields such as healthcare and defense
    corecore