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Abstract: Lactate is widely measured in critically ill patients as a robust indicator of patient dete-
rioration and response to treatment. Plasma concentrations represent a balance between lactate
production and clearance. Analysis has typically been performed with the aim of detecting tissue
hypoxia. However, there is a diverse range of processes unrelated to increased anaerobic metabolism
that result in the accumulation of lactate, complicating clinical interpretation. Further, lactate levels
can change rapidly over short spaces of time, and even subtle changes can reflect a profound change
in the patient’s condition. Hence, there is a significant need for frequent lactate monitoring in critical
care. Lactate monitoring is commonplace in sports performance monitoring, given the elevation of
lactate during anaerobic exercise. The desire to continuously monitor lactate in athletes has led to the
development of various technological approaches for non-invasive, continuous lactate measurements.
This review aims firstly to reflect on the potential benefits of non-invasive continuous monitoring
technology within the critical care setting. Secondly, we review the current devices used to measure
lactate non-invasively outside of this setting and consider the challenges that must be overcome
to allow for the translation of this technology into intensive care medicine. This review will be of
interest to those developing continuous monitoring sensors, opening up a new field of research.

Keywords: lactate; critical care; hyperlactataemia; sensors; non-invasive; continuous monitoring

1. An Introduction to Lactate Metabolism

Plasma concentrations of lactate represent the fine balance between lactate production
and lactate clearance, and in a healthy individual, they should lie within the range of 0.5–2.2
mmol/L [1]. Lactate is ultimately produced as a result of anaerobic glycolysis, and so
lactate metabolism is an integral pathway in physical exercise. Consequently, there has been
huge interest and significant investment into the development of non-invasive technology
for lactate measurement in professional athletes. The process of glycolysis produces an
intermediate metabolite, pyruvate. Under aerobic conditions, pyruvate is converted to
acetyl coenzyme A (CoA) by pyruvate dehydrogenase (PDH) to enter the Krebs cycle.
However, under anaerobic conditions, pyruvate is converted by lactate dehydrogenase
(LDH) to lactic acid [2] (Figure 1).

When developing technology for lactate analysis, the form of lactate within the blood
is an important consideration. Lactic acid (protonated) is in equilibrium with lactate
(un-protonated), its form is determined by the acid dissociation constant (pKa 3.9). At
physiological pH, 7.4, it is in the form of lactate (anion). However, in the literature, the
terms lactic acid and lactate are often used interchangeably. In this review, lactate will
be used.
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Figure 1. Lactate production and clearance. Under aerobic conditions, pyruvate is converted to
acetyl coenzyme A (CoA) via the action of pyruvate dehydrogenase (PDH) in the cytoplasm, which
enters the Krebs cycle and electron transport chain in the mitochondria. However, under anaerobic
conditions, pyruvate is converted to lactate via the action of lactate dehydrogenase (LDH). Plasma
lactate is cleared via action of the liver (and to a lesser degree the kidneys) though the process of
gluconeogenesis. Excess lactate is oxidised and is taken up in the muscles.

Lactate clearance is regulated by the liver, and to a lesser extent, the kidneys, via the
process of gluconeogenesis (Cori cycle), in which new glucose is produced [3]. It is also now
widely recognised that the presence of elevated levels of lactate within the blood (hyperlac-
tataemia) can stimulate muscle to switch from lactate release to lactate uptake via oxidation,
thereby adding a further level of complexity to the process of lactate metabolism [4–6]. It
is also worth pointing out that lactate exists in nature in two stereoisomeric forms due to
the presence of an asymmetric carbon atom. The predominant form in humans is L-lactate.
This is the form routinely analysed during clinical investigations and is hence the focus of
this review (simply referred to as lactate herein).

The Importance of Lactate Monitoring in Critical Care

Hyperlactataemia is a common finding among critically ill patients, acting as a robust
indicator of patient deterioration and mortality [7–11]. Indeed, of all laboratory parameters,
lactate appears to have the strongest relationship with patient outcome in the critical care
setting [12,13]. Plasma lactate analysis is relied upon to stratify patients based on the need
for ongoing fluid resuscitation, risk of multiple organ dysfunction and death, and as a
marker for identifying patients, requiring early aggressive resuscitation [14,15]. Therefore,
the most recent lactate results are of utmost importance to the intensive care clinician when
contemplating patient management. Given the importance of aerobic conditions in deciding
the fate of pyruvate, the causes of hyperlactataemia have historically been subgrouped
according to Cohen and Woods’ classification [16]: Type A—hyperlactataemia occurs in
the presence of clinical evidence of tissue hypoxia, while Type B—hyperlactataemia (and
its 3 subgroups) occurs in the absence of clinical evidence of tissue hypoxia (see Table 1).
However, although this classification is often still used, it over-simplifies the complexity of
lactate pathophysiology, since multiple processes are frequently present in a single patient.
Therefore, it is often more useful to consider conditions in which the main mechanism
for elevated lactate is either increased production or impaired clearance. Given the wide
range of critical conditions in which hyperlactataemia is featured (Table 1), it is clear
that lactate monitoring is fundamental on the intensive care unit (ICU). The importance
of frequent/repeated measurements is evident when considering that lactate levels can
change rapidly over very short spaces of time, and even subtle changes in lactate levels
can reflect a profound change in the patient’s condition [17]. Indeed, dynamic lactate
measurements in the ICU have been shown to be superior to static lactate measurements
for predicting mortality [13,18–20].
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Table 1. Cohen and Woods’ classification of hyperlactataemia; Type A occurs in the presence of tissue hypoxia, while Type
B occurs in the absence of tissue hypoxia. Key evidence demonstrating the association of hyperlactataemia with patient
outcome in each setting is highlighted, providing justification for serial lactate monitoring.

Cohen & Woods’
Classification Cause Clinical Conditions in Which the Hyperlactaemia Is Observed

A
Global Hypoxia Shock (Cardiogenic, obstructive, distributive, hypovolaemic), sepsis,

profound hypotension, severe anaemia, cardiac arrest, trauma.

Regional hypoxia Mesenteric ischaemia, limb ischaemia, localised trauma,
microcirculatory dysfunction.

Exertional hypoxia Seizures, acute asthma or other increased work of breathing.

B1 Lactate elevation associated with
underlying disease processes

Malignancy, sepsis, liver dysfunction, renal insufficiency, diabetic
ketoacidosis, alcoholic ketoacidosis.

B2 Lactate elevation caused by drugs
or toxins

Metformin, acetaminophen, β2 adrenergic receptor agonists,
sympathomimetics, nucleoside reverse-transcriptase inhibitors,

alcohol, cyanide, carbon monoxide.

B3 Lactate elevation caused by
congenital errors of metabolism

Mitochondrial myopathy
Pyruvate Dehydrogenase deficiency, glucose-6 phosphatase

deficiency, congenital mitochondriopathies.

One of the most important uses of lactate monitoring within the ICU is in the diagnosis
and monitoring of sepsis, which is largely due to its inclusion in the Surviving Sepsis Cam-
paign (SSC) “three-hour bundle” and subsequent “one-hour bundle”, recommending that
lactate is assessed within one hour of suspicion of sepsis to guide resuscitation [21,22]. Sep-
sis is a life-threatening organ dysfunction due to a dysregulated host response to infection.
It is the most common cause of ICU admission, and the incidence rate is increasing [23].
Interestingly, although it was initially suggested that lactate only be measured at the time of
sepsis presentation, it was subsequently proposed that serial evaluation may have greater
value [24,25].

Sepsis is a valid example of a condition in which the classification of the associated
hyperlactataemia using the Cohen and Woods’ classification system falls short, and hence,
it is even more important that lactate is monitored as frequently as possible in such pa-
tients. The hyperlactataemia in sepsis is multifactorial and certainly a consequence of
both increased lactate production and impaired lactate clearance, rather than solely due to
increased production from tissue hypoperfusion. Indeed, the importance of mitochondrial
dysfunction [26,27], altered PDH activity [28,29], the heightened metabolic and inflam-
matory states [30], increased protein catabolism [31], endogenous β2 adrenergic receptor
agonists [32], as well as the effects of common sepsis treatment approaches are now well
recognised as causative [33]. The release of endogenous β2 adrenergic receptor agonists in
some patients, due to the autonomic nervous system response to hypotension, up-regulates
glycolysis, generating more pyruvate than can be used by the mitochondria. These hyper-
lactataemic patients are in a catecholamine-dependent shock state, which will eventually
result in a profound hypotension and multi-organ failure if not identified promptly and
managed appropriately. In stark contrast, the use of exogenous β2 adrenergic receptor
agonists during management of the sepsis-induced hypotension results in vast clinical
improvement of the patient, while lactate levels continue to rise [34]. Thus, there is evi-
dence that an exogenous epinephrine-induced rise in lactate may be a positive indicator of
effective treatment [35]. The multifactorial nature of the hyperlactataemia in this setting
provides solid justification for continuous lactate monitoring.

2. Current Methodologies Used for Lactate Analysis in Critical Care

Typically, lactate is measured in whole anticoagulated blood samples on automated
clinical chemistry analysers within hospital pathology departments. However, the impor-
tance of rapid lactate monitoring has driven the development of point-of-care (POC) devices
for critical care and emergency departments. There is a large body of evidence demon-
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strating the impact of such testing, both from a patient outcome and cost-effectiveness
perspective [36]. The POC devices currently used for such measurements are either portable
bench-top analysers or smaller, hand-held devices that can include lactate as part of a multi-
parameter testing platform or can be solely dedicated to lactate assessment. However,
regardless of the platform, the typical blood sample is drawn through an intravenous
(IV) access line, and this sampling must be repeated if discrete measurements to track
lactate kinetics are desired. Hand-held devices typically require a small sample volume
and, as such, are more appropriate than blood gas analysers for monitoring in neonatal
and paediatric ICUs, in which blood sample volume is limited. At present, two principal
methods of lactate estimation are in clinical use. The most frequently used is the lactate
dehydrogenase (LDH) method, which relies on the spectrophotometric measurement of
light absorption before and after the addition of LDH to the sample, reflecting the amount
of NADH formed as lactate is metabolised. The alternative is the lactic acid oxidase (LOx)
method employed by most POC devices. This platform uses amperometry to measure
the current produced by hydrogen peroxide formation (from lactate) at a platinum anode.
The most significant limitation of the latter method is the false positive rate, as a result of
glycolate, which is a metabolite of ethylene glycol.

The need for repeated measurement of blood lactate across the broad spectrum of
critical conditions, coupled with the increased workload involved in repeated sampling
and also the potential for iatrogenic anaemia in critical care patients [37,38], warrants the
introduction of non-invasive technology for continuous lactate monitoring.

3. Current Non-Invasive Technology for Lactate Measurements Outside of Critical
Care

The development of non-invasive technology for monitoring the concentration levels
of lactate outside of the critical care setting has seen a sharp rise in interest in recent years,
with citations in this field showing a 10-fold increase since 2010. The shift toward minimally
or non-invasive technology is driven by the desire to detect relevant biomarkers in very
small volumes of biological fluids other than blood, primarily in athletes, but also in the
healthcare setting [39,40].

The development of sensor platforms for lactate detection has typically revolved
around the use of specific enzymes that react with lactate and can be tracked relatively
simply; these include the commonly used LOx and LDH, along with the less prevalent
lactate monooxygenase, flavocytochrome b2, and cytochrome b2 [41–43]. Table 2 provides
an overview of the current enzymatic sensor platforms reported in the literature. LOx is the
most popular enzyme found in the literature. LOx is a globular flavoprotein and works by
catalysing the oxidation of lactate to pyruvate in the presence of dissolved oxygen to form
hydrogen peroxide. Figure 2 provides an overview of this process. The produced hydrogen
peroxide can be identified through different methodologies to predict the concentration of
lactate in the sample [42,44,45].
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Figure 2. Enzymatic schematic of the engineered lactate oxidase (LOx). LOx oxidises l-lactate to
pyruvate through the reduction of its co-factor, flavin mononucleotide (FMN). The engineered LOx,
which is much less sensitive toward oxygen, utilises virtually only artificial electron acceptors to
re-oxidise FMN. Reduced artificial electron acceptors can transfer the electrons between the LOx and
the electrode. Figure reproduced from ref. [46].
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Table 2. Summary of enzymatic sensor platforms for the detection of lactate, highlighting the enzyme, materials used, method of detection, biological medium, linear range, and limit of
detection.

Enzyme Sample
Medium

Sensor
Material

Method of
Detection

Limit of
Detection

Linear
Range Reference

LOx a Saliva SPE f/Methocel Electrochemiluminescence 5 µM 10–500 µM [45]
LOx a Tears SPE f Amperometric - 0.39–16.60 mM [46]
LOx a Suction effusion fluid Pt Amperometric - 0.5–25 mM [47]
LOx a Sweat Pt/PTFE g Amperometric - 0–120 mg dL−1 [48]
LOx a Saliva PB i-SPE f Amperometric 0.01 mM 0.025–0.25 mM [49]
LOx a Saliva Graphite/Os/PPhenol Amperometric 13 µM 0.1–1 mM [50]
LOx a Aqueous Nylon/carbon ink Amperometric - 4–20 mM [51]
LOx a Saliva PB i-SPE f Amperometric 0.3 mM 0.1–5 mM [52]
LOx a Aqueous Au/TTF p-CNT h Amperometric - 0–24 mM [53]
LOx a Sweat SPE f/CNT h Amperometric - 1–20 mM [54]
LOx a Aqueous Evolon fabric Colourimetric - <5 mM> [55]
LOx a Sweat SU-8 polymer Colourimetric - 0–11 mM [56]
LOx a Sweat PB i-SPE f Potentiometric - 0–1 mM [57]
LOx a Sweat CNT h Amperometric 6.0 µM 0.047–1.52 mM [58]
LOx a Sweat Pd/GO k EIS u 1 mM 1–100 mM [59]
LOx a Sweat Carbon film Potentiometric - 0–21 mM [60]
LOx a Sweat PVDF l/T-ZnO m Piezoelectric - 0–8 mM [61]
LOx a Saliva PB i-SPE f/PPDj Amperometric - 0.1–1 mM [62]
LOx a Sweat AgNP c/Nafion Amperometric - 1–25 mM [63]
LOx a Saliva PSS d/PAH e Colourimetric 0.1 mM 0.6–10 mM [64]
LOx a Sweat Prussian Blue OECT t - <1 mM [65]
LOx a Sweat Ionogel OECT t - 1–100 mM [66]
LOx a Aqueous Au/HP n-ORD o OFET v 66 nM 0–1 µM [67]
LOx a Saliva/Sweat Nitrocellulose Chemiluminescence 0.5/0.1 mM 0–10 mM [68]
LOx a Sweat Au/PB i Amperometric 0.137 mM 0–5 mM [69]
LOx a Aqueous TPE q Fluorescence 5.5 µM 0–200 µM [70]
LOx a Sweat Pt Amperometric - 0–70 mM [71]
LOx a Saliva/Sweat Cu-MOF r/CS s/Pt/SPE f Amperometric 0.75 µM 0.00075–1 mM [72]
LOx a Breath PB i-SPE f Amperometric - 150 nM–1.1 mM [73]
LDH b Sweat SPE f Cyclic Voltammetry 10 µM 0–100 µM [74]

a lactate oxidase; b lactate dehydrogenase; c gold nanoparticle; d poly(sodium 4-styrene sulfonate); e poly(allyl amine hydrochloride); f screen-printed electrode; g poly(tetrefluoroethylene); h carbon nanotubes; i

prussian blue; j poly(phenylenediamine); k graphene oxide; l poly(vinylidene fluoride); m tetrapod-shaped ZnO; n horseradish peroxidase; o osmium-redox polymer; p tetrathiafulvalene; q tetraphenylethylene; r

copper metallic framework; s chitosan; t organic electrochemical transistor; u electrochemical impedance spectroscopy; v organic field-effect transistor.
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The most common fluid matrixes used in this area of research include sweat, saliva,
tears and interstitial fluid (ISF) [44,75–77]. It is the ability to harvest these biological
fluids without piercing the epidermis that makes them so important to the future of
bioanalyte sensing and monitoring. Sweat is the most promising area of non-invasive
sensor technology research, with significantly more examples of sweat sensing found in
the literature. This is due to its inherent advantages over the other biological fluids. ISF
is difficult to access completely non-invasively using wearable platforms. Tears can be
uncomfortable to extract, hard to control, and are not considered suitable for analysis
outside of a research setting. Urine cannot be implemented into a wearable format, and
saliva can be greatly affected by the individual’s last meal [75]. However, one of the most
significant drawbacks in the use of sweat in bioanalyte sensing in general is the poor
understanding of the relationship between analyte levels in sweat compared to blood
and ISF [39]. Indeed, with specific regard to lactate, this is still a matter of huge debate.
There are a significant number of published works reporting a strong correlation between
lactate levels in sweat and in venous blood, [78,79], while there are also a number of
reports that cast doubt over whether sweat lactate levels really are reflective of those in the
blood, [80,81] and are more likely derived metabolically from blood glucose rather than
from blood lactate. It is also important to note that lactate levels in sweat are somewhat
higher than those seen in blood, with the biologically relevant lactate levels in sweat for a
healthy individual ranging from 5 to 25 mM [44,75] and increasing 10-fold during physical
exertion [82]. However, the general concept of sweat sensing for continuous monitoring of
bioanalytes in the healthcare setting has been clinically proven with the development of
sweat sensors for monitoring glucose in diabetic patients [83].

3.1. Sweat Lactate Sensors

The development of suitable sensors to monitor lactate concentration in sweat has
many challenges to overcome such as the direct sampling of the fluid from the skin, the
collection of a large enough sample volume, transport of this sample to the recognition
elements, and the accurate detection of the analyte. Additionally, these platforms must
also be adaptable to become a wearable device on a living and moving subject. This can be
increasingly challenging when the technology is being designed for monitoring athletic
performance. As such, a large proportion of the literature focuses on the flexibility and sta-
bility of the sensors whilst using similar recognition strategies revolving around LOx with
various read-out methodologies. Of all of these possible methodologies, electrochemical
sensors have dominated the research field due to their accurate performance, portability,
simplicity, and low-cost [84,85]. The amperometeric detection of hydrogen peroxide, a
product of the LOx mechanism, in sweat, saliva and suction effusion fluid (SEF) has been
reported for over 25 years [47,48,86]. This mechanistic approach is still commonplace today
with research focused on various areas of improvement, such as the transition to wear-
ables [75,87], reduction in required sample volume [46], and the modification of electrodes
to improve the sensing performance [49,50]. In terms of wearable sensors, some of the
main routes of application centre on patches; this includes the development of woven fab-
rics [51,88], screen-printed flexible and fabric patches [52,53], and tattoo mimicking-based
sensor platforms [54]. Screen-printing is one of the most popular methods for electrochemi-
cal sensor fabrication due to the diversity of inks, ability to print onto a wide variety of
substrates in almost any pattern, its low-cost and ease of mass manufacture [89]. As such,
there have been examples reported utilising screen-printing to fabricate lactate sensors
on fabric [90], tape [91], microplates [92], polyester substrates [93], and temporary tattoo
transfer paper [54]. One key parameter that could be problematic for the transition of these
elements to healthcare is the sample volume required. For athletic applications, this is
generally not a problem due to the enhanced sweat production during physical exertion.
However, in a clinical setting, where movement is significantly reduced, collecting a large
enough sample volume could be problematic. This was reported in the work from Imani
et al. [93], in which a wearable sensor platform was developed for the detection of lactate
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whilst performing a simultaneous electrocardiogram (ECG). When trialed on individuals
participating in intense cycling for 15–30 min, initial readings were limited by from lack
of perspiration. As the exercise period progressed, the perspiration levels increased, and
excellent results were obtained. This is seen in many examples throughout the literature
and highlights what could be the most important hurdle to overcome in the area of sweat
sensors for clinical use [94]. However, a microfluidic system has been reported to help with
the transfer of sweat directly from the glands to the 8.72 µL sample chamber by Martin
et al. [95] (Figure 3A). This can fill up the chamber in 13.4 min by targeting four sweat
glands that excrete sweat at 20 nL/min.

Figure 3. (A) Schematic representation and picture of the microfluidic device for the detection of lactate in sweat. Repro-
duced/adapted with permission from ref. [95]. Copyright 2017 American Chemical Society. (B) Textile-based colorimetric
sensor before and after testing on three human volunteers. Reproduced/adapted with permission from ref. [96]. Copyright
2019 Elsevier. (C) Biosensor device integrated into glasses. Reproduced/adapted with permission from ref. [97]. Copyright
2017 Royal Society of Chemistry. (D) Schematic of the fabrication process for the glove-based sensor. Reproduced/adapted
with permission from ref. [58]. Copyright 2018 MDPI. (E) (a) Electronic skin attached to the skin of a runner. (b) Optical
image of the electronic skin. (c) Optical image of the electronic skin connected to a human wrist. Reproduced/adapted with
permission from ref. [98]. Copyright 2017 American Chemical Society. (F) Screen-printed electrode (SPE) on a male volun-
teer’s arm while cycling. Reproduced/adapted with permission from ref. [99]. Copyright 2020 Elsevier. (G) Photograph
and schematic of the printed biosensor on a mouthguard. Reproduced/adapted with permission from ref. [62]. Copyright
2014 Royal Society of Chemistry.

Another system employed to help with the collection of sweat has been highlighted
recently by Xiao et al. [100], who used cotton pads in order to collect a sweat reservoir,
which could be transported to the sensor through a silk thread that helps to guide the
sample to the recognition layer. Similarly, Zhang et al. [101] used wax channels to divert
the sample to its required destination. These methods were coupled to a colorimetric
sensing system, which relies on the reaction of the analyte with the sensor to produce a
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colour change of differing intensities based on the concentration present. These paper-
based colorimetric sensor platforms are a popular, simple, and inexpensive methodology
in conjunction with reflectance measurements [102]. Most of the reported lactate sensors
utilising colorimetric detection methodology have been focused on its implementation into
textiles [55,56]. However, they do suffer from poor sensitivity and reproducibility due to
an inhomogeneity of colour development, which predominantly comes from the mobility
of enzymes and other reagents to the outer portions of the detection areas [103]. Promphet
et al. [96] have recently reported a system (Figure 3B), with excellent coverage due to the
incorporation of a surfactant stabiliser in the system. However, typically, once the system
has been saturated by the sample, it will need to be replaced, making it suitable only for
periodic monitoring in a clinical environment. Other examples of technology suitable
for periodic monitoring include a hydrogel-based sensor that can detect lactate levels
from a finger touch [57] or the implementation of a screen-printed system onto glasses
(Figure 3C) [97] or disposable gloves (Figure 3D), which could be used by healthcare
workers for periodic check-ups [58]. One alternative electrode production technique to
screen-printing is direct current (DC) sputtering. This technique can produce ultra-thin
layers of metal onto substrates to act as electrode materials.

Yokus et al. [104] utilised this methodology to produce a sensor platform to detect the
lactate concentration in addition to glucose, pH, and temperature measurements attached
to a watch. Improvements need to be made to extend enzymatic activity lifetimes and a
reduction in the sample volume of 150 µL, if this were to transition to medical use. An
improvement in the enzymatic activity and electrochemical performance has been seen by
including nanomaterials such as MXene (Ti3C2Tx), due to its excellent conductivity [105].
However, this system again struggles due to sample volume, requiring a 2-min accumu-
lation time during intense activity, which would be even longer in patients confined to a
hospital bed. A large reduction in sample volume to much more appropriate levels was
observed in the work by Lin et al. [59], who produced a sensor that worked over a large
range (1.3–113.4 mM) utilising an ultra-low volume of 1–5 µL. This was achieved through
the addition of novel sensing materials in conjunction with electrochemical impedance
spectroscopy (EIS), which can measure specific changes in the surface interface caused
by the lactate. However, due to the sensitivity of the sensing methodology, changes in
the fluid composition will also have effects on this interface. Significant changes in the
output of the sensor device when transitioning from laboratory-based tests to on-body
testing are commonplace. Han et al. [98] produced a piezoelectric sensor for four analytes,
lactate, glucose, uric acid and urea in sweat (Figure 3E). This “electronic skin” technology
can continuously monitor in real time, using no external power supply. This drive for
“self-powered” devices is increasing due to the obvious advantages of space saving and
alleviating the need for battery changes or excess wiring [60,61,98,106].

As explained above, the vast majority of literature published for the non-invasive and
continuous detection of lactate revolves around the use of enzymatic sensors. However,
there are some examples of methodologies that do not utilise enzymes. The dependence on
the use of biological recognition elements can be detrimental to the cost and life-span of
developed platforms, which adds to the interest in the development of these alternative
technologies, with different detection methods used, such as microwave sensors [107,108]
and capacitance sensors [109]. Electrochemical detection methodologies remain the most
popular in this area, with amperometeric detection mainly applied in conjunction with
porous systems [110], as seen previously with glucose sensors [111,112]. Table 3 provides a
summary of non-enzymatic lactate sensors.
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Table 3. Summary of non-enzymatic sensor platforms for the detection of lactate, highlighting the materials used, method
of detection, biological medium, linear range, and limit of detection.

Sensor Material Sample Medium Method of
Detection

Limit of
Detection Linear Range Reference

Cu/Nile Red aqueous Capacitance - 100 nM–1 M [109]
NiO aqueous Amperometric 27 µM 0.01–7.75 mM [110]

Pd film sweat Amperometric 0.34 mM 0.34–15 mM [113]
Cu/PAN c/P(AN-co-AA) d artificial sweat Resistance - 27–270 ppm [114]

SPCE a/Fe (III) sweat Potentiometric 1 mM 1–180 mM [115]
Graphite/PPy b tears, sweat, blood Potentiometric 81 µM 0.1–10 mM [116]

a screen-printed carbon electrode; b polypyrrole; c polyacrylonitrile; d poly(acrylonitrile-co-acrylic acid).

Baba et al. [113] reported a sensor based on porous palladium film, which when
used in conjunction with a Nafion membrane produced selective detection for lactate.
However, these were not tested in a sweat solution and had a smaller linear range than
required for a clinical setting. Poor linear range is a common theme seen for non-enzymatic
lactate sensors [114]; however, Onor et al. [115] screen-printed electrodes to produce
a non-enzymatic lactate sensor that displayed a far wider linear range between 1 and
180 mM. Although promising, there is little data to show interference studies and how
changes in physiological matrixes would affect the system. In addition to these methods,
there has been a recent surge in the use of molecularly imprinted polymers (MIPs) for
sensor platforms [117]. These are polymer structures containing voids that match the size,
shape, and functionalities of the target analyte. They are advantageous over their biological
counterparts due to their improved thermal and chemical stabilities, low cost of production,
and no exploitation of animals in their production [118]. There are limited examples of
MIPs produced for the detection of lactate, but of the few, electrochemical sensing is utilised
for the detection method [119]. MIPs and electrochemical detection synergise well together,
as the MIPs can be formed through electropolymerisation directly onto the surface of the
electrode [120]. Zaryanov et al. were one of the first to report the use of this methodology
for the detection of lactate in human sweat. The sensor platform produced a wide linear
range of 3–100 mM. The long sensor lifetime (>6 months) is a product of the increased
stability of the polymers in comparison to enzymes. However, notoriously, the selectivity
of these systems is not as good, which is due to the non-specific binding of other analytes in
the systems. This work also required a larger sample volume of 50–100 µL, which would be
difficult to translate to a static patient in a clinical setting. The stability of this type of sensor
is highlighted by Zhang et al. [99] (Figure 3F), where their platform maintained stability
and sensitivity for 7 months of storage at room temperature and after enforced bending
and twisting. This system presented an even wider linear range from 1 µM to 100 mM and
showed no significant interference from common constituents present in sweat.

Many of these technologies highlighted show promise but need more development
in certain areas to make them suitable for using in a clinical setting. The majority will
struggle from the ability to harvest enough sample volume to achieve accurate results,
whereas others struggle in terms of their response to changes in the composition of the
fluid (dielectric strength, pH and conductivity etc.). One area of work that could solve
issues with regard to sample volume is the detection of lactate in saliva, which can be much
more plentiful or stimulated without involving vigorous movement of a patient.

3.2. Alternative Fluid Lactate Sensors

There is far less reporting on sensor platforms for the other non-invasive biological
fluids in the literature. Most likely, this is due to the difficulties in sampling or the challenges
in composition changes mentioned previously; this is clearly reflected in the limited number
of academic papers. The composition and properties of saliva can greatly vary depending
on the meal that a person has eaten [75]. However, in a clinical environment, where
food intake and timings can be controlled, this could be worked around. Again, screen-
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printing is used as a method of sensor fabrication due to its suitable characteristics and
mass producibility. Kim et al. [62] attached a screen-printed lactate sensor to the inside
of a mouthguard (Figure 3G) to produce a sensor suitable for sporting application. This
uses very similar technology to those described above, which is based on LOx, but it has
been tested in human saliva. It follows that this technology could be incorporated into
other objects more suitable to clinical use than a mouthguard. However, there was little
interference testing, and ongoing long-term stability studies were still in progress. As an
alternative to screen-printing, Malon et al. [52] used a conductive paste in conjunction
with moulds to form the shape of their electrodes onto cotton fabric. They also present
this on the surface of a disposable glove, exhibiting the adaptability of the technology.
However, all testing in saliva was done using very specific conditions and protocols,
leading to questions about whether this sort of procedure is suitable to use in a real clinical
environment. Mengarda et al. [116] utilised a simple potentiometric methodology to detect
lactate selectively in tear samples. This sensor showed good selectivity and sensitivity,
achieving a linear range between 0.1 and 10 mM, and it showed good correlation with
measured blood lactate levels. However, this biological fluid is not appropriate for use in
the clinical setting.

4. Adaption and Application of Non-Invasive Technologies into the Clinical Setting

Lactate analysis in patients admitted to the ICU is essential both for diagnostic and
prognostic purposes, with lactate acting as a robust indicator of patient deterioration and
also response to specific treatment strategies. It has become increasing clear that assessment
of lactate kinetics provides far more useful information than a single lactate measurement
taken upon ICU admission. Indeed, serial measurements have been shown to correlate
well with patient prognosis and response to therapy in patients with sepsis, cardiogenic
shock, respiratory failure, and mesenteric ischaemia, following post-cardiac surgery and
following trauma [13,121–124]. This frequency of repeated blood sampling is not feasible in
such critically ill patients, and so, there is an urgent need for the introduction of technology
for non-invasive and continuous monitoring of lactate in ICU patients. Following a review
of the advancements made towards biomarker sensor development in sports medicine, it
is clear that the underlying technology already exists and has clear potential for translation
into the healthcare setting. Much of the technology already developed is highly sensitive,
with many examples of sensors detecting lactate levels in bodily fluids of <0.1 mM (Table 2).
Dynamic range is also not an issue with many of the sensors in the literature being able to
detect ranges of 0.1–25 mM, and some detecting lactate levels up to a maximum of 100 mM
(Table 2). These sensors are capable of rapid reporting from very small sample volumes, in
some cases as low as 1 µL [98], which is ideal for use in critical care settings. Furthermore,
there has already been numerous successful attempts at the development of multi-analyte
sensor platforms for the detection of lactate in conjunction with other useful analytes such
as blood pH, glucose, and Na+ (Table 4), and this would be extremely useful for patient
monitoring in the ICU.

However, despite the successful application of this technology within sports medicine,
several important questions must be answered before such technology can be confidently
introduced into routine clinical practice. Firstly, there needs to be unequivocal evidence
that changes in lactate levels within the blood are accurately reflected in other bodily fluids.
This indisputable evidence does not yet exist.
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Table 4. Summary of multi-analyte sensor platforms for the detection of lactate, highlighting the materials used, method of
detection, biological medium, linear range, and limit of detection.

Recognition
Method

Sample
Medium

Additional
Analytes

Sensor
Material

Detection
Methodology

Linear
Range (mM) Reference

LOx a Aqueous Oxygen Au/SWCNT b/PB c Amperometric 0.05–0.85 [87]

LOx a Sweat Glucose, ascorbic acid,
uric acid, Na+, K+ SilkNCT g Amperometric 5–35 [88]

LOx a Sweat Na+, NH4
+ Au/TTF n/CNT f Amperometric 0–30 [90]

LOx a Aqueous Glucose SPE h/PB c Amperometric 0.48–2.59 [91]
LOx a Aqueous Glucose SPE h/PB c Amperometric 0.083–10.4 [92]
LOx a Sweat pH, Na+ SPEES d/PES e Amperometric 0–28 [94]
LOx a Sweat Glucose SPE h/PB c Amperometric 4–20 [95]
LOx a Sweat pH 4-AAP i/TOOS j Colorimetric 0–25 [96]
LOx a Sweat Glucose SPE h/PB c Amperometric 0–14 [97]
LOx a Sweat Glucose, uric acid, urea ZnO nanowires Piezoelectric 0–20 [98]
LOx a Sweat pH Assay Kit Colorimetric 0–25 [100]
LOx a Sweat Glucose, pH SPE h/o-PD o Colorimetric 0–0.025 [101]

LOx a Sweat Glucose, pH,
temperature AuNP m/PB c Amperometric 1–40 [104]

LOx a Sweat Glucose, pH CNT f/Ti3C2Tx/PB c Amperometric 0–22 [105]
LOx a Artificial Sweat Glucose, alcohol ZnO film Amperometric 1–100 [125]
LOx a Aqueous Glucose CNT f Field Effect Transistor pM–mM [126]
LOx a Aqueous Glucose SPE h Amperometric 0.1–8 [127]

Antibody Artificial Sweat Cortisol SPE h/RGO k Amperometric 0.5–25 [128]
LOx a Aqueous Glucose CNT f/NQ l Potentiometric 2.5–15 [129]
a lactate oxidase; b single-walled carbon nanotubes; c prussian blue; d sulphonated polyester ether sulphone; e polyether sulphone; f carbon
nanotubes; g silk fabric-derived intrinsically nitrogen doped carbon textile; h screen-printed electrode; i 4-aminoantipyrin; j N-ethyl-N-(2-
hyrdoxy-3-sulfopropyl)-3-methylaniline sodium salt dehydrate; k reduced graphene oxide; l 1,4-naphthoquinone; m gold nanoparticle;
n tetrathiafulvalene; o o-phenylenediamine.

Research studies focusing on the correlation of lactate levels in blood with interstitial
fluid [130] and subcutaneous adipose tissue [131] have reported that these fluids cannot
be used as a reliable substitute for blood when monitoring lactate. Worryingly, there are
reports that the lactate levels in sweat can be influenced by the site at which the sweat
is collected [132], and opinion remains divided on whether sweat lactate should simply
be regarded as a normal metabolic product of the sweat gland. To date, all research
attempting to study the relationship between blood and sweat lactate levels has focussed
on healthy individuals undergoing controlled bouts of exercise. It is not clear whether the
findings from research into sweat composition of athletes can be extrapolated to that of
patients in ICU suffering from conditions such as sepsis, liver failure, or respiratory failure.
Secondly, it is important to determine whether the underlying stimulator of the sweating
affects sweat composition. Again, the large majority of research has focussed on exercise-
induced sweating. A very small number of studies have attempted to compare sweat
composition following thermal and exercise stress [133] and have reported no significant
differences in lactate levels, but this requires confirmation. Finally, it is vital to determine
how quickly any systemic changes in lactate are reflected in the sweat or other body fluids.
As stated previously, lactate levels in the blood can change rapidly over very short spaces
of time in critically ill patients, and subtle changes can reflect a profound change in a
patient’s condition. It is vital that these subtle changes are also seen almost simultaneously
within other body fluids. The kinetics of lactate in sweat/interstitial fluid/subcutaneous
adipose tissue in the critically ill needs clarification before this type of sensing can be
considered further.

5. Conclusions

In conclusion, advancements towards the non-invasive, continuous monitoring of
lactate in athletes provide real promise for the translation of this technology into critical
care. This review has highlighted that the existing underlying technology for sweat sensing
is adequately sensitive, stable, adaptable, and capable of analysis within minute volumes of
body fluid, providing rapid results. Further research in this area would look to maximise the
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enzymatic activity lifetimes of the enzyme-based sensors. However, despite the existence
of this technology, several key questions remain: (1) Do plasma lactate and lactate levels in
secretions correlate? (2) Is the composition of exercise- and thermally-induced sweat the
same? (3) Can immobile, bed-ridden patients produce enough sweat for lactate analysis?
(4) Is sweat composition consistent across different sites of the body? If definitive answers
to these questions can be realised, this novel technology is readily available for translation
and has huge potential to change current practices in the management of critical care
patients.
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