4,833 research outputs found

    Wearable Antennas for Medical Applications

    Get PDF

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    A REVIEW OF WEARABLE SPIRAL ANTENNA

    Get PDF
    Use of wearable fabric materials as antenna substrate has been rapid because of the ongoing scaling down of remote devices. A wearable antenna is to be a piece of the attire used for wireless communication purposes, which include public safety, mobile and wearable computing, tracking and positioning of essential goods/products; providing remote medical patient monitoring; enabling for sports training and entertainment purposes. For user accommodation there is an expanding requirement for incorporating antenna on or in the cloth. The conventional antennas are not adaptable and troublesome for user to movements. There is a need of antennas made of wearable fabric materials that can be a piece of user clothing are characterized as wearable antennas. Specifically the micro strip patch antennas are recommended for body-worn applications, as they primarily transmit oppositely to the planar structure and furthermore their ground plane effectively shields the body tissues. This paper indicates investigate on wearable patch antennas outlined and developed for various applications

    On-body wearable repeater as a data link relay for in-body wireless implants

    Get PDF
    Wireless medical devices implanted at different locations in the human body have a wide application range. Yet, high-data-rate communication in the 2.4-GHz Industrial, Scientific, and Medical band suffers from high in-body attenuation loss. Link improvement cannot be obtained by simply increasing transmit power, as battery life is limited and in-body absorption has to remain low. To overcome these problems, a flexible on-body textile patch antenna, robustly matched directly to the human body, is designed and developed as part of a wearable repeater, enhancing communication with implanted wireless devices. This receive antenna, which can cope with different morphologies and patient movements, enables reliable high data rate and low-power communication links with an implant. A data link measurement is performed for the on-body repeater system placed on the human torso, relaying the signals to nearby medical equipment, without wired connection to the patient. The performance of the data link is experimentally assessed in different measurement scenarios. For a repeater system relying on simple analog amplification, which is low-cost, energy-efficient, and can be fully integrated into clothing, excellent results are obtained, with an average measured signal-to-noise ratio of 33 dB for tissue depths up to 85 mm

    Design of a Finger Ring Antenna for Wireless Sensor Networks

    Get PDF
    Body-centric communications have become very active area of research due to ever-growing demand of portability. Advanced applications such as; health monitoring, tele-medicine, identification systems, performance monitoring of athletes, defence systems and personal entertainment are adding to its popularity. In this paper, a novel wearable antenna radiating at 5 GHz for the body-centric wireless sensor networks has been presented. The antenna consists of a conventional microstrip patch mounted on a gold base and could be worn in a finger like a ring. CST Microwave Studio is used for modelling, simulation and optimisation of the antenna. The simulated results show that the proposed antenna has a -10 dB bandwidth of 90.3 MHz with peak gain of 6.9 dBi. Good performance in terms of bandwidth, directivity, gain, return loss and radiation characteristics, along with a miniaturised form factor makes it a very well suited candidate for the body-worn wireless sensor applications

    Circularly-polarised cavity-backed wearable antenna in SIW technology

    Get PDF
    This study presents a circularly-polarised substrate-integrated waveguide (SIW) antenna implemented using a textile substrate and operating at 2.45GHz, in the industrial, scientific, and medical frequency band. The antenna topology is based on a folded cavity with an annular ring as a radiating element, and it permits to obtain compact size and low sensitivity to the environment, without deteriorating the radiating performance. These characteristics, together with the choice of adopting a textile substrate, make the SIW antenna suitable for the integration in wearable systems for body-centric applications. The electromagnetic performance of the proposed antenna achieved in simulations was verified through the measurement of the device in an anechoic chamber. The circularly-polarised antenna exhibits a maximum gain of 6.5dBi, a radiation efficiency of 73% and a very high front-to-back ratio

    Novel wearable antenna systems for high datarate mobile communication in healthcare

    Get PDF
    In critical healthcare applications, there is a need for reliable wideband mobile communication links, implemented by portable units with sufficient autonomy. We present the latest generation wearable antenna systems for invisible and comfortable integration in patients' or caregivers' garments. These active textile modules boast excellent performance and reliability, thanks to innovative antenna topologies, leveraged by the application of substrate integrated waveguide technology, pervasive integration of electronics and energy harvesters, and the application of multi-antenna processing techniques. Applications range from mobile communication links between caregivers and a coordination centre during interventions, over wireless sensor systems for patient monitoring, to relaying videos streams between a wireless endoscopy capsule and a remote control station

    Robust, wearable, on-body antenna relying on half mode substrate integrated waveguide techniques

    Get PDF
    A compact, robust, wearable antenna for body-worn applications in the 2.4 GHz Industrial Medical and Scientific band is designed, fabricated and tested. This novel compact textile cavity backed slot antenna combines a half-mode substrate integrated waveguide topology with an additional row of shorting vias for miniaturization. Excellent free space performance is achieved with a measured 4.6 % impedance bandwidth, maximal gain of 4.7 dBi and radiation efficiency of 81.3 %. On-body measurements reveal minimal frequency detuning when the antenna is worn by a test subject as well as a negligible impedance bandwidth reduction to 4.5 %. The low calculated Specific Absorption Rate of 0.51 W/kg averaged over 1 g of tissue demonstrates high antenna body isolation. Therefore, this design is an attractive option as antenna in smart textile systems
    corecore