16,813 research outputs found

    Wealth Inequality and the Price of Anarchy

    Get PDF
    The price of anarchy quantifies the degradation of social welfare in games due to the lack of a centralized authority that can enforce the optimal outcome. It is known that, in certain games, such effects can be ameliorated via tolls or taxes. This leads to a natural, but largely unexplored, question: what is the effect of such transfers on social inequality? We study this question in nonatomic congestion games, arguably one of the most thoroughly studied settings from the perspective of the price of anarchy. We introduce a new model that incorporates the income distribution of the population and captures the income elasticity of travel time (i.e., how does loss of time translate to lost income). This allows us to argue about the equality of wealth distribution both before and after employing a mechanism. We establish that, under reasonable assumptions, tolls always increase inequality in symmetric congestion games under any reasonable metric of inequality such as the Gini index. We introduce the inequity index, a novel measure for quantifying the magnitude of these forces towards a more unbalanced wealth distribution and show it has good normative properties (robustness to scaling of income, no-regret learning). We analyze inequity both in theoretical settings (Pigou\u27s network under various wealth distributions) as well as experimental ones (based on a large scale field experiment in Singapore). Finally, we provide an algorithm for computing optimal tolls for any point of the trade-off of relative importance of efficiency and equality. We conclude with a discussion of our findings in the context of theories of justice as developed in contemporary social sciences and present several directions for future research

    Inequality and Network Formation Games

    Full text link
    This paper addresses the matter of inequality in network formation games. We employ a quantity that we are calling the Nash Inequality Ratio (NIR), defined as the maximal ratio between the highest and lowest costs incurred to individual agents in a Nash equilibrium strategy, to characterize the extent to which inequality is possible in equilibrium. We give tight upper bounds on the NIR for the network formation games of Fabrikant et al. (PODC '03) and Ehsani et al. (SPAA '11). With respect to the relationship between equality and social efficiency, we show that, contrary to common expectations, efficiency does not necessarily come at the expense of increased inequality.Comment: 27 pages. 4 figures. Accepted to Internet Mathematics (2014

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Nash Social Welfare Approximation for Strategic Agents

    Full text link
    The fair division of resources is an important age-old problem that has led to a rich body of literature. At the center of this literature lies the question of whether there exist fair mechanisms despite strategic behavior of the agents. A fundamental objective function used for measuring fair outcomes is the Nash social welfare, defined as the geometric mean of the agent utilities. This objective function is maximized by widely known solution concepts such as Nash bargaining and the competitive equilibrium with equal incomes. In this work we focus on the question of (approximately) implementing the Nash social welfare. The starting point of our analysis is the Fisher market, a fundamental model of an economy, whose benchmark is precisely the (weighted) Nash social welfare. We begin by studying two extreme classes of valuations functions, namely perfect substitutes and perfect complements, and find that for perfect substitutes, the Fisher market mechanism has a constant approximation: at most 2 and at least e1e. However, for perfect complements, the Fisher market does not work well, its bound degrading linearly with the number of players. Strikingly, the Trading Post mechanism---an indirect market mechanism also known as the Shapley-Shubik game---has significantly better performance than the Fisher market on its own benchmark. Not only does Trading Post achieve an approximation of 2 for perfect substitutes, but this bound holds for all concave utilities and becomes arbitrarily close to optimal for Leontief utilities (perfect complements), where it reaches (1+ϵ)(1+\epsilon) for every ϵ>0\epsilon > 0. Moreover, all the Nash equilibria of the Trading Post mechanism are pure for all concave utilities and satisfy an important notion of fairness known as proportionality

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    The Mathematics of Mutual Aid: Robust Welfare Guarantees for Decentralized Financial Organizations

    Get PDF
    Mutual aid groups often serve as informal financial organizations that don’t rely on any central authority or legal framework to resolve disputes. Rotating savings and credit associations (roscas) are informal financial organizations common in settings where communities have reduced access to formal financial institutions. In a Rosca, a fixed group of participants regularly contribute small sums of money to a pool. This pool is then allocated periodically typically using lotteries or auction mechanisms. Roscas are empirically well-studied in the development economics literature. Due to their dynamic nature, however, roscas have proven challenging to examine theoretically. Theoretical analyses within economics have made strong assumptions about features such as the number or homogeneity of participants, the information they possess, their value for saving across time, or the number of rounds. This work presents an algorithmic study of roscas. We use techniques from the price of anarchy in auctions to characterize their welfare properties under less restrictive assumptions than previous work. We also give a comprehensive theoretical study of the various Rosca formats. Using the smoothness framework of Syrgkanis and Tardos [46] and other techniques we show that the most common Rosca formats have welfare within a constant factor of the best possible. This evidence further rationalizes these organizations’ prevalence as a vehicle for mutual aid. Roscas present many further questions where algorithmic game theory may be helpful; we discuss several promising directions
    • …
    corecore