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Abstract
The price of anarchy quantifies the degradation of social welfare in games due to the lack of a
centralized authority that can enforce the optimal outcome. It is known that, in certain games, such
effects can be ameliorated via tolls or taxes. This leads to a natural, but largely unexplored, question:
what is the effect of such transfers on social inequality? We study this question in nonatomic
congestion games, arguably one of the most thoroughly studied settings from the perspective of
the price of anarchy. We introduce a new model that incorporates the income distribution of the
population and captures the income elasticity of travel time (i.e., how does loss of time translate to
lost income). This allows us to argue about the equality of wealth distribution both before and after
employing a mechanism. We establish that, under reasonable assumptions, tolls always increase
inequality in symmetric congestion games under any reasonable metric of inequality such as the Gini
index. We introduce the inequity index, a novel measure for quantifying the magnitude of these
forces towards a more unbalanced wealth distribution and show it has good normative properties
(robustness to scaling of income, no-regret learning). We analyze inequity both in theoretical settings
(Pigou’s network under various wealth distributions) as well as experimental ones (based on a large
scale field experiment in Singapore). Finally, we provide an algorithm for computing optimal tolls
for any point of the trade-off of relative importance of efficiency and equality. We conclude with a
discussion of our findings in the context of theories of justice as developed in contemporary social
sciences and present several directions for future research.
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1 Introduction

Inequality in wealth and income have been rampant worldwide in the past four decades [32,39],
considered by many the scourge of modern societies. Economic analysis, on the other hand,
traditionally focuses on efficiency, that is to say, Pareto optimality of the allocation. Whether,
and to what extent, efficiency and equality are at loggerheads has been debated in economics,
and the verdict appears to depend on context and assumptions.

Modern societies also give rise to a plethora of strategic scenarios, in which the behavior
of one agent affects the others, and the outcome of which ultimately affects the agents’ overall
well-being. In game theory, we study the inefficiency of these strategic situations through
the so-called price of anarchy, the relative efficiency of the game’s Nash equilibria over the
social optimum [28]. For congestion games in particular, it is known that the price of anarchy
can be combatted through the introduction of tolls which enforce the optimal outcome as
equilibrium, see [15, 18] among an extensive literature. However, the effect that tolls may
have on the level of inequality in the society does not appear to have been addressed in the
literature.

The present paper is a first attempt to articulate and study this issue. We consider games
(here only congestion games) in which the agents’ utility and behavior depend explicitly on
their income or wealth, and study the effect the game’s equilibria have on inequality.

Example: Transportation in Singapore, seen as a congestion game with tolls, has a price
of anarchy that is close to one [29]. The main arteries are almost never clogged, and public
transportation is accessible and runs smoothly. This is the result of bold policy decisions:
car ownership in Singapore is significantly taxed, and dynamically adaptive tolls are in place.
Interestingly, transportation delays seem to be a decreasing function of income (see Section
7 on data). This is no accident: In this paper we show that there is an inherent tension
between efficiency and equality in the context of congestion games.

We are interested in the ways in which optimal (or more generally efficiency-enhancing)
mechanisms affect inequality. Inequality is measured in many ways, but perhaps most often
through what is known as the Gini coefficient (or Gini index). Informally (see Section 3
for the definition), the Gini coefficient of a distribution of income or wealth is twice the
area between the 45o line and the normalized convex cumulative wealth/income curve (see
Figure 1). That is, we compute the cumulative income/wealth Q(y) of the lowest y fraction
of the population for all 0 ≤ y ≤ 1, we normalize it so that Q(1) = 1, and then we integrate
y −Q(y) from 0 to 1. At total equality the Gini index is zero, while at total inequality (i.e.,
when the emperor owns everything) it is one. In 2015, the income Gini in OECD countries
ranged from the .20s (Northern Europe) to the .40s and .50s (USA and East Asia).

Our contributions. We study nonatomic congestion games with tolls, where we introduce
a new model that incorporates the wealth distribution of the population and captures the
income elasticity of travel time (i.e., how loss of time translates to lost income). This allows
us to argue about the equality of wealth distribution both before and after participating in
a mechanism (with or without tolls). The basics of our modeling are thus: We consider a
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continuum of agents, each agent of a type x > 0 standing for their income.1 We assume that
the distribution of types is known. Suppose these agents engage in a game Γ and that, at
equilibrium, type x receives a cost cx. This cost is expressed in the same units as income,
dollars, say; after incorporating the losses due to time spent in traffic in dollars as well as any
possible costs due to tolls/taxes. As a result, the agent’s total wealth becomes x′ = x− αcx,
where α is a small constant standing for the importance of the game under consideration to
an individual’s well-being. In Section 4 we establish a broad qualitative result, the Inequity
Theorem (Theorem 2), showing that tolls always increase inequality in symmetric congestion
games under the most classic inequality measure, the Gini coefficient. In fact, participating
in a toll-free symmetric congestion game has no impact on the Gini, whereas optimal tolls on
the other hand have a negative impact on the Gini. Theorem 6 broadly expands Theorem 2
to any inequality measure that satisfies four fundamental axioms: invariance to population
scaling, anonymity, invariance to income scaling and the transfer principle (see Section
3). These measures include, besides Gini, some of the most widely employed indices, such
as [40] or [3].

At a technical level, the proof of the Inequity Theorem combines game-theoretic properties
of congestion games with tolls and the axioms of inequality measures. In order to argue
that the Gini of the final income distribution is worse than that of the original, it suffices to
argue that the Lorenz curve of the original distribution (see Figure 1) dominates the latter.
Lorenz curve domination is established via the combination of Lemmas 3, 4, 5, implying
Theorem 2. In fact, Lorenz curve domination suffices to argue something stronger. Any
inequality measure satisfying the four axioms is also consistent with the Lorenz domination
order, yielding Theorem 6.

In Section 5 we introduce the inequity index, a novel measure for quantifying the magnitude
of these forces towards a more unbalanced wealth distribution. Let q be the initial income
distribution of the population of agents under consideration, let G(q) be its Gini coefficient,
and suppose that q̂ is the distribution of the income after each x becomes x− α · cx (that is,
after the game has been played). We are interested in the way the game affects the Gini
coefficient; we express this, informally, as the coefficient of α in G(q̂)−G(q), ignoring terms
that are o(α); in other words, we are interested in the derivative of G(q) with respect to α.
We call this quantity the inequity of the game. We show that from a theoretical perspective
it has attractive properties. Specifically it is robust to scaling of income (Theorem 9) and
it remains unaffected if instead of immediate equilibration we assume that all agents apply
regret-minimizing algorithms (Theorem 10).

We analyze inequity both in theoretical settings (Section 6) as well as experimental ones
(Section 7). Specifically, these effects become apparent already in the well-trodden Pigou’s
network [31]. This network has two parallel links, one with constant delay function 1, and
another with delay function x (that is, a delay proportional to the percentage of agents
that take this option). Its price of anarchy is 4

3 , and the inequity turns out to be zero. It
is well-known that the price of anarchy, in the case of equal incomes, can be rendered to
one by adding tolls, and it is not hard to see that the same can be done for any income
distribution [15] – but then the inequity becomes substantial. If tolls decrease, we have a
full-fledged trade-off between inequity and price of anarchy. In Theorem 11 we calculate the
precise price of anarchy to inequity trade-off of any variant of Pigou’s network with income
distributions of the form yβ .

1 Or wealth; we write “income” henceforth in this paper, but “wealth” would also be appropriate
everywhere.
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In Section 7 we perform data analytics on a dataset capturing the routing behavior of
tens of thousands of Singaporean students. This dataset captures the movement of each
individual at a high frequency (one new datapoint per individual every 13 seconds) and
allows us to distinguish between different modes of transportation (walking, bus, train, car).
We can pinpoint each individual’s home location which allows us to compute estimates about
their wealth. Given the level of data granularity, we can control for different parameters
and identify a statistically significant increased commute time for the lower-income students,
which corroborates our theoretical analysis. Interestingly, the Singapore case also points
out some of the successful policies (e.g., polycentric urban development model) that can be
implemented to alleviate the trade-off between efficiency and equality. Finally, we provide an
algorithm for computing optimum tolls for any point of the trade-off of relative importance
of efficiency and equality for symmetric networks on parallel links. We also present inequity
results in asymmetric settings, which prompt several open questions. The full online text [22]
provides any missing supplementary material and analysis.

2 Related work

Price of anarchy was introduced in congestion games [28], leading to a long sequence of
influential papers in the area [13,16,20,37,38]. A similarly long line of research on tolls is
existing in the AGT community, starting with [15, 18]. Recently, [25] have found efficient
algorithms to compute tolls that minimize latency where not all edges can be tolled, putting
their work close to the current situation in many cities. [6] have shown that taxes depending
on the congestion level of a resource for weighted agents increase the efficiency of congestion
games with polynomial latency functions. [5] have proved that without knowing the latency
functions and using only tolls and an efficient number of queries to an oracle, target equilibrium
flows can be reached. The data analytics, experimental part of our paper shows, perhaps
unsurprisingly, that the use of public transportation plays a critical, but not well-understood,
role in the functioning of a traffic network. [19] introduced a model of congestion games with
buses, and hopefully more research will follow along these lines.

Given the proliferation of the usage of algorithms in all aspects of our lives (from suggesting
Airbnb hosts to identifying convicts eligible for early parole), the theoretical computer science
community has recently focused on understanding issues of fairness, equality and justice.
Surprisingly, the intersection of price of anarchy, i.e., efficiency in games, and fairness has
not been explored so far. On a related tangent, the issues of altruism and efficiency have
been tackled, e.g. by [9] and [10]. [11, 12] have recently used the Gini coefficient over
the probabilities of the agent winning probabilities as an inequality measure of different
mechanisms and design mechanisms with such good properties. Although syntactically
similar, these works do not model wealth distributions nor do they examine the differential
effects of mechanisms to equality, which is our focus.

We continue the line of work of [29] where price of anarchy in congestion games is studied
using field experiments with thousands of participants. In this paper, our data analytics
corroborate our theoretical insights and give rise to novel questions for future research.

3 Model Description

We describe a game-theoretic model where a continuum of agents participates in a traffic
congestion game with tolls. The total disutility for each agent depends both on their traffic-
induced latency as well as on the tolls, whose effects are experienced differentially based on
each agent’s income level.
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Congestion game. A symmetric congestion game with type-specific costs consists of a
finite set E of edges, and a finite subset of 2E called the set of paths P , common to all types.
We shall only deal with network congestion games, where the set of paths consists of all
possible paths between two nodes s and t in a graph with edge set E.

Income. We have a continuum of types which lie in [0, 1]. Type x has income q(x), where q
is the quantile function of the income of a population of agents – that is, |z : q(z) ≤ q(x)| = x,
where | · | is the Lebesgue measure. We shall further assume that q(0) > 0 and q is measurable
and nondecreasing. Typically, we will assume a continuum of types and a strictly increasing,
continuous q. In this case, if we treat income as random variable, then q expresses the inverse
of its cumulative distribution function.

Flow. A flow F : [0, 1] → P is a mapping from types to paths; we shall only need to
consider finitary flows, that is, flows F which divide [0, 1] into finitely many intervals, and
map the interiors of those intervals to one path in P ; that is, F is specified by a finite number
of reals a0 = 0 < a1 < a2 < · · · < ak = 1 such that F (b) = F (c) for all i and b, c ∈ (ai, ai+1]

Edge cost. Our main result, the Inequity Theorem, holds under general conditions on
the edge cost functions. For simplicity of exposition, we look at a specific case that has
natural properties and leave to the full online text [22] a discussion on more general results
for larger classes of edge cost functions. Each agent x using edge e experiences the edge cost
fe(q, z, τe), where q is the agent’s income, z is the level of congestion on edge e and τe is the
fixed toll paid by the agent.

We are interested in the following edge cost function:

fe(q, z, τe) = τe
q

+ `e(z)

The path cost for P is
∑
e∈P fe(q, z, τe).

There is an extensive discussion in the transportation literature of the true cost of
transportation to the traveler and the value of time, see [2, 8] for some of the most recent
papers, with dozens of references therein. This field has established and studied the income
elasticity of the value of (travel) time (informally, the precise nature of the formula τe

q

above) and validated and measured it through extensive surveys and other studies over
three decades. The upshot is that the cross-sectional elasticity (that is, the elasticity with
regressive corrections across causal parameters such as having children and living in the
capital) is constant across long periods of time, and that the precise relationship seems to be
τe
qβ

where β ≤ 1 is conventionally taken to be one, even though certain countries, such as the
UK, use value 0.8.

Agent cost. Let F be a flow. The congestion of this flow, cF , is a function mapping E
to the nonnegative reals, where cF (e) = |{x : e ∈ F (x)}|, where | · | denotes the Lebesgue
measure. The agent cost under flow F to an agent of type x is some function of its income
and path cost.

The model allows for some degree of flexibility when designing the overall cost of the
agents. We focus our attention to the following agent cost:

costF (x) = q(x) ·
∑

e∈F (x)

fe(q(x), cF (e), τe) (AC)

Edge costs are scaled by the income of the agent and thus the agent cost is given in the units
of the toll, i.e. money.

STACS 2019
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For fe(q, z, τe) = τe
q + `e(z), we have

costF (x) =
∑

e∈F (x)

τe + q(x) · `e(z) (CAN)

We call this agent cost function canonical and show further that it is a natural choice with
good properties (Section 5).

Nash equilibrium. We say that a flow F is a Nash equilibrium in our model if for all types
x and for all paths P ∈ P

costF (x) ≤ q(x) ·
∑
e∈P

fe(q(x), cF (e), τe) (NE)

that is, if no type x would be better off by deviating to another path P ∈ P.
In the following, we define q to be the income distribution of agents before playing the

game. With our definition of agent costs, one can study q0, the income distribution after
playing the game without tolls, where fe(q, z, τe) = `e(z). The move from q to q0 is defined
as the impact of travel, the variation that is due only to the presence of a game. When
tolls are levied, we have a second move, from q0 to q̂, defined as the impact of tolls. We
will be mostly concerned with the latter impact.

L(x)

Quantile x

A B

Figure 1 The Lorenz curve is plotted in blue. The green area is B =
∫ 1

0 L(t)dt. The Gini
coefficient is then G = 1− 2B = 2A.

Gini coefficient. The Gini coefficient [23] is a central measure of inequality.

I Definition 1. The Gini coefficient of income distribution q is given by

G(q) = 1− 2
∫ 1

0
L(t)dt

where L(t) is the Lorenz curve, or the fraction of total income held by individuals under and
at quantile x.

L(t) = 1
µ

∫ t

0
q(x)dy = 1

µ
Q(t) (LC)

for Q(t) =
∫ t

0 q(x)dx, the cumulative income up to quantile t. We show in Figure 1 the
relationship between the Lorenz curve and the Gini coefficient.

A Gini coefficient equal to zero corresponds to perfect equality (everyone has the same
income), whereas a Gini coefficient of one corresponds to maximal inequality (e.g., one person
has all the income). The Gini coefficient has several desirable properties such as:

Scale independence. The Gini coefficient does not change after rescaling incomes (e.g.
change of units/currency).
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Population independence. It does not depend on the size of the population.
Anonymity. It does not depend on the identity of the rich/poor individuals.
Transfer principle. If income (less than the difference2) is transferred from a rich
person to a poor person the resulting distribution is more equal (i.e., the Gini decreases).

Our motivating problem. We consider how Nash equilibrium flow F affects the incomes
of the population. In particular, we assume that the income of type x changes from q(x)
to q(x) − α · costF (x) for some (intuitively small) α > 0. We call the resulting income
distribution q̂(x). Notice that, in general, q̂(x) may be different from q(x) − α · costF (x),
since the cost of F may rearrange the order of types (recall that distributions such as q(x)
are assumed to be nondecreasing). As we shall see in the Inequity Theorem proof of Section
4, this turns out to never be the case and moreover the inequality increases as a result.

4 The Negative Impact of Tolls on Inequality

4.1 The Inequity theorem
Tolls can be used in congestion games so as to induce socially optimal flows (from the
perspective of total cost) as Nash equilibrium [15, 18]. We next prove a general theorem
showing that tolls always exacerbate societal inequality. So, in a sense to achieve optimality
from the perspective of social welfare we have to pay a hidden cost in terms of fairness.

I Theorem 2 (The Inequity Theorem). In any Nash equilibrium of any symmetric congestion
game with type-specific costs, any set of positive edge tolls τe increases the inequality of the
population. More specifically,

The impact of travel is zero: the Gini coefficient of the ex ante income distribution q is
equal to the Gini coefficient of the toll-free income distribution q0, G(q0) = G(q).
The impact of tolls is nonpositive: the Gini coefficient of the ex ante income distribution
is lower than (or equal to) the Gini coefficient of the ex post income distribution q̂ =
q − α · costF , or G(q̂) ≥ G(q) = G(q0).

Additionally, if the quantile distribution of income is increasing and edge cost functions are
decreasing in income, the Gini coefficient increases strictly.

Proof Sketch. First, we show that the impact of travel is null. In the toll-free version of the
game, the Nash equilibrium is the usual Wardrop equilibrium and all agents incur the same
cost C, regardless of their route choice. This implies that all agents lose the same share of
income exactly equal to α · C. Since the Gini coefficient and all inequality measures we will
be concerned with are scale invariant, the inequality is not affected by the impact of travel.

The proof of the impact of tolls is done in three steps. First, we show that if two income
distributions with equal means cross at one point, one has a higher Gini coefficient than
the other (Lemma 3). This is equivalent to the transfer principle, or Pigou-Dalton principle
of income inequality measures. Second, we show that when a distribution is obtained by
decreasing proportionally less the higher incomes than the lower incomes – in other words, a
regressive tax – then the resulting distribution has a higher Gini coefficient than the original
one, i.e., is more unequal (Lemma 4). Third, we show that under equilibrium in the game,
players with higher incomes have a lower path cost than players with lower incomes (Lemma
5). Finally, Theorem 2 is obtained as a corollary of the three lemmas.

2 If the income transfer is less than the difference of their incomes, the ordering of the wealth of the users
does not change.

STACS 2019
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I Lemma 3. Suppose q and q̂ are two income distributions (represented by their quantile
functions) of equal means, i.e., µ =

∫ 1
0 q(x)dx =

∫ 1
0 q̂(x)dx = µ̂. If there exists x∗ such that

q̂(x) ≤ q(x),∀x ≤ x∗, and q̂(x) ≥ q(x) otherwise, then G(q) ≤ G(q̂).

I Lemma 4. Suppose two income distributions (represented by their quantile functions) q
and q̂ are such that q̂(x) = β(x) · q(x) and 1 ≥ β(y) ≥ β(z) > 0 for y ≥ z3 then G(q) ≤ G(q̂).

I Lemma 5. Let 0 ≤ x ≤ y ≤ 1 and F be an equilibrium flow. If agent costs are given by
the path cost

∑
e∈F (x)

τe
q + `e(z) then costF (x) ≥ costF (y).

The resulting income distribution in the game is given by q̂(x) = q(x) · (1− α · costF̄ (x)).
At equilibrium costs decrease with income (Lemma 5). Thus, distribution q Lorenz-dominates
distribution q̂ (Lemma 3 and 4), i.e., the Lorenz curve of q is always above that of q̂. This
implies that the inequality in q̂ is greater than in q. J

Theorem 2 can actually be generalized. Lorenz domination, a partial order, is respected
by all inequality coefficients that satisfy the same four axioms as the Gini coefficient, yielding
the following more general version of the Inequity Theorem.

I Theorem 6. For any income inequality measure satisfying the axioms of invariance to
population scaling, anonymity, invariance to income scaling and the transfer principle, the
Inequity Theorem holds and inequality increases as tolls are levied on the players.

The remaining of the paper focuses on the case of the Gini coefficient.

4.2 Computing the efficiency-equality trade-off

In a parallel links network serving a population with a known income distribution, the routing
and tolls that optimize any desired trade-off between efficiency and equality can be computed
via dynamic programming.

4.2.1 The model

Because of the computational nature of this section, and for the sake of simplicity, we will
stick to a simplified, discrete model. Very few of these simplifications are crucial. We assume
a population whose income is presented in n quantiles q1, . . . , qn, where q1 stands for the
average income of the lowest 1

n of the population – if n were 100, these would be the income
percentiles.

We have K parallel links – we assume that K is fixed. Each link e has a delay function
fe(x) which we assume for simplicity to be piecewise constant with increments at values of x
that are multiples of 1

n (so that each link accommodates full quantiles), and that the delays
have integer values in the set [D], where D is the maximum delay. Evidently, the problem is
one of allocating each quantile to a link, and imposing appropriate tolls. It is easy to see
that at equilibrium each link will be assigned a contiguous set of quantiles.

3 I.e., q̂ is obtained from q by a transformation that reduces lower incomes relatively more than higher
incomes. Income order is preserved and µ̂ ≤ µ.
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4.2.2 The objective

We seek to optimize a trade-off between efficiency and equality, that is to say, a weighted sum
of total delay and the Gini coefficient resulting from this game, say of the form “minimize
total delay + λ times the Gini after the game,” where λ > 0 is the relative importance of
equality over efficiency. It is important to note that the Gini coefficient before the game is in
this case captured by (ignoring additive terms and a factor of −2

n )∑n
i=1(n+ 1− i)qi∑n

i=1 qi.

This is on account of the fact that, in the sum that approximates the double integral in
Equation (LC), the lowest quantile appears n times, the second lowest n− 1, etc.

After the game imputes a cost to the ith quantile, the Gini coefficient is captured by

·
∑n
i=1(n+ 1− i)(qi − δi)∑n

i=1(qi − δi)
,

where δi = qidi + τi is the cost of the equilibrium to the ith percentile, and di is the delay
and τi is the toll incurred by the ith quantile. Now, since it is reasonable to assume that
δi << qi, this quantity can be adequately represented by its numerator divided by the sum of
the qi’s4. Thus, omitting constant terms (it is important to recall that the qi’s are constant),
both additive and multiplicative, we conclude that what is minimized is a linear function
of the delays di and the tolls τi. Adding to them the total delay5, we conclude that the
objective is of the form

min
allocation of quantiles to links

n∑
i=1

(αidi + βiτi),

for some known positive parameters αi, βi.

4.2.3 The algorithm

The algorithm is dynamic programming; namely, we compute the quantity cost[S,m, d] with
S ⊆ [K], m ≤ n, and d ≤ D, which is the smallest value of the objective that can be achieved
by allocating the lowest m percentiles to the set S of links (in the optimum order) with the
(largest) delay of the m-th percentile equal to d. The algorithm is presented in Algorithm 1.

By τ(d, d′, r,m− r) we denote the toll required to equalize, for the m− rth quantile, the
delay d′ with the greater delay d. In conclusion (here D∗ ≤ n is the number of different
values of the delay in the network):

I Theorem 7. The optimum trade-off between total delay and the Gini coefficient can be
computed in time O(nD∗)

But of course, the O-notation hides the constant K22K .

4 For more accuracy, the computed value of
∑

i
δi, can be plugged in here and repeat the computation.

5 Note that even the total weighted delay
∑

i
qidi can be similarly accommodated as part of the trade-off.

STACS 2019
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Algorithm 1: A dynamic programming algorithm to compute the trade-off between
efficiency and equality.

Data: Calculate the values cost[{e},m, d] for all links e,m ∈ [n], d ∈ [D]
begin

for s← 2 to K do
for All sets S ⊆ L with |S| = K do

for m← 1 to n do
for d← 1 to D do

cost[S,m, d] = mine∈S, r<m: `e(r)=d; d′≤d cost[S − {e},m− r, d′]
+
∑m
j=m−r+1(αjd′ + βjt(d, d′, r,m− r))

end
end

end
end

end

4.3 The asymmetric case
In the case of multiple source-destination pairs the inequality within each set of players
in any single commodity is again worsened as a result of tolls. Such a statement is not
obtainable for the society as a whole. In the full online text [22], we show how to create,
admittedly contrived, counterexamples where despite the fact that within each subpopulation
the inequality worsens the population as a whole becomes more equal (e.g. the rich and poor
use different subnetworks and only the rich get taxed). We believe that such adversarial
counterexamples may be circumvented by imposing more realistic models, and pose this as
one of the possible directions for future work.

5 The Inequity Index

The Inequity Theorem shows that under general conditions of the cost functions, the income
inequality between agents increases after tolls are levied. In this section, we quantify this
deterioration of equality by introducing a new metric. We have captured the importance of
the game costs to the agents’ income by a parameter α > 0, intuitively small. The inequity
(index) is defined as the derivative of the Gini coefficient as α goes to zero.

I Definition 8. Let Γ be a nonatomic symmetric congestion game. Agents have an initial
ex ante distribution (q(x))x∈[0,1] and incur a cost costF (x) under flow F . Let qα(x) =
q(x)− α · costF (x) be the ex post income distribution for some α > 0. The inequity of Γ is
defined as

I(Γ) = lim
α→0+

G(qα)−G(q)
α

.

Note that this notion is well-defined. The Gini coefficient for distribution qα is given by

G(qα) = 1− 2
∫ 1

0
∫ x

0 (q(t)− α · costF (t))dtdx∫ 1
0 (q(x)− α · costF (x))dx

= 1− 2
∫ 1

0 Q(x)dx− α
∫ 1

0
∫ x

0 costF (t)dtdx
µ− α · SC

where µ is the total income of distribution q and SC is the social cost. This function is
indeed differentiable with respect to α, provided the obvious requirement of µ > 0 is satisfied.
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5.1 Scale invariance of the inequity index
The Inequity Theorem implies that the inequity is always nonnegative. For the rest of the
paper we will focus on the canonical cost functions (CAN). As a reminder, the cost of agent
x in edge e is

q(x) · fe(q(x), cF (e), τe) = q(x) · `e(cF (e)) + τe .

The canonical cost functions, besides having strong experimental justification [2,8] provide
also significant advantages in the theoretical study of inequity. Specifically, the inequity
index is invariant under scaling of the population incomes.

I Theorem 9 (Robustness under scaling of income). Assume agent cost functions are in
canonical form (CAN) in a game Γ. Then the inequity is scale invariant: if all incomes
are scaled by a constant λ > 0 and optimal tolls are used in the resulting game Γλ, then
I(Γ) = I(Γλ).

Proof Sketch. To give the main idea of the proof, we introduce a scaling parameter λ > 0.
This parameter can be understood as a redenomination of the value of money in the game,
for both income and the tolls, where one unit of the “new” currency is effectively as valuable
as λ units of the previous currency. As such, this does not affect the strategic content of
the game (no change of actions) nor the costs, by the scale invariance property of the Gini
coefficient. J

5.2 No-regret learning
So far we have looked at the inequity index in the context of agents playing the Nash
Equilibrium of the routing game. However, it is possible to relax this assumption and let
agents implement a no-regret strategy of their own.

Let F1, F2, . . . be a sequence of flows obtained from agents repeatedly playing the game.
Agent x is implementing a no-regret algorithm if it has vanishing regret, i.e.

R(T ) = 1
T

T∑
i=1

costFi(x)−min
p∈P

1
T

T∑
i=1

∑
e∈p

fe(q(x), cFi(e), τe)→ 0 as T →∞

We also call an ε-approximate Nash Equilibrium a flow Fε such that∫ 1

0
costFε(x)dx−min

p∈P

∑
e∈p

fe(q(x), cFε(e), τe) ≤ ε .

Following the results in [7], we can show that under regret minimizing agents, the flow
converges to that of an approximate equilibrium under the assumption of a finite number of
wealth/income levels w1, . . . , wK . This assumption is rather realistic since in practice there
can only be a finite number of income levels. Also, any continuous distributions over incomes
can be approximated to arbitrary high accuracy by a distribution of finite but large enough
support.

I Theorem 10 (Robustness under no-regret learning). Given a finite number of income levels,
the inequity index is uniquely defined under the assumption of no-regret learning agents.
Specifically, if all agents follow a no-regret algorithm, we have

lim
α→0;α>0

lim
T→∞

1
T

∑T
t=1G(q̂t)−G(q)

α
= I(Γ)

where q̂t is the ex post income distribution of the t-th instance of the game.
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Figure 2 a. The Inequity index as a function of the income coefficient β. It is 0 when there is no
inequality (β = 0) because tolls have the same effect on everybody, and rises as the inequality increases.
At some point, β ≈ 1.688, the Inequity index starts decreasing, because the toll (β + 1)2−(β+1)

becomes small and has little effect on the inequality index. b. Values of the inequity for different β.

Proof Sketch. In the first step of the proof, we show that the symmetric game of type-specific
costs Γ reduces to an asymmetric congestion game Γ̂. In the second step, results on the
behavior of no-regret dynamics in asymmetric congestion games [7] imply the robustness
of the inequity index. This is due to the Gini coefficient being a bounded and continuous
function. J

6 Computing the Inequity in Pigou

To illustrate the interplay between wealth or income and congestion games, we consider
the well-studied Pigou network, which consists of two parallel links with latency functions
`u(r) = 1 and `d(r) = r. Assume that this transportation network is used by a population
of (normalized) size 1 and with wealth or income function q(x) = xβ , for some nonnegative
parameter β.

The perceived cost for quantile x is cost(x) = `e(c(e)) · q(x) + τe, where e = e(x) is the
edge used by the quantile, c(e) is the flow through link e, and τe the price of link e. It is not
hard to argue that at equilibrium the cu fraction of the population that uses the constant
cost link is the poorest cu part of the population. We will assume further that the social
designer selects tolls to minimize the actual latency on the network,6 and that, without loss
of generality, the price of the constant cost edge is set to τu = 0, while τ = τd is the optimal
price on the variable cost edge.

By continuity, at equilibrium the perceived cost of quantile cu must be the same in both
links, from which we get τ = q(cu)cu. We want to investigate the effects of price τ on the
Gini coefficient.

Let q̂(x) = q(x)− α · q(x) · cost(x) be the perceived income when we take into account
the effects of perceived latency into the actual income, where α indicates the importance of
transportation. We are interested in first order effects, so we will always assume that α is
very small and that in fact it tends to 0. Let’s define as G(α, τ) the inequality coefficient
when we take into account the effects on the income of the transportation cost, assuming
that the social designer selects toll τ .

6 There are reasonable alternatives for the social planner, such as minimizing the social cost, that we do
not explore in this work.
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We can now compute directly the Gini coefficient. For the Pigou network the optimal
switching point is cu = 1/2. For income distribution q(x) = xβ , this optimal switching point
corresponds to toll τ = 2−(β+1). Since at equilibrium, τ = q(cu)cu = cβ+1

u = 2−(β+1), we
have

G(α, (β + 1)2−(β+1)) = β

β + 2 + β(β + 1)
(β + 2)2β+3α+O

(
α2) .

The last expression comes from the Maclaurin expansion of the function, from which we
derive the following Theorem.
I Theorem 11. For the Pigou network with two links and latency functions 1 and x, and
for a population with income distribution q(x) = xβ, when tolls are selected to minimize the
actual latency, the toll at Nash (Wardrop) equilibrium is τ = q(cu)cu = 2−(β+1), and the
Inequity index is I(Γ) = dG(0)

dα = β(β+1)
(β+2)2β+3 .

The values of the inequity as a function of the income coefficient β are shown in Figure 2.
The maximum occurs when the income coefficient β is close to 2 (actually when β ≈ 1.688),
which means that real-life income distributions have almost the maximum Inequity index.

7 Tolls and Inequality: Empirical Findings

We use detailed transportation data gathered through Singapore’s National Science Experi-
ment (NSE) to test how income inequality affects the distribution of transportation delays
in a representative sample of students [29, 30, 43]. Although Singapore is the third most
densely populated country in the world, the modern infrastructure, cost of private cars, and
significant tolls in Singapore minimize congestion on the roads. We examine whether this
gain in efficiency incurs costs in terms of income inequality, as predicted by the theoretical
results in this paper. The NSE dataset enables us to accurately split student trips in the
morning – the time of the day when tolls are most onerous – by the transportation mode (bus,
car, walk, and train) [42]. We then combine the travel data with a dataset on property prices
to assess the relationship between income and the average duration and average distance of
trips by transportation mode.

By relying on the sociological literature pertaining to income inequality and Singapore’s
urban development, we divide the students into 9 wealth brackets based on residence. We
then conservatively classify these brackets as low-income, middle-income, and high-income
groups [1, 14, 17, 24, 26, 36, 41]. The differences in the means of trip distance and duration
are statistically significant among these three groups; and, they lend strong support to the
predictions of the Inequity Theorem. When one compares low-income and high-income
groups, there is a notable increase in car usage and decrease in the use of walking and public
transportation. Because cars are much faster than using bus and walking, the use of cars is
associated with a sizable difference in the average duration that students spend in traveling
to school (Figure 3).

Although students from high-income groups travel a longer distance compared to middle-
income groups, this translates into minor differences in travel duration. The opposite is the
case when we compare low-income and middle-income groups. These students experience
on average 7 to 5 minutes delay compared to middle-income groups, despite the fact that
the distance they travel is roughly comparable to high-income groups (Figure 3). Thus, the
Singaporean case – which is an ideal setting to examine the relationship between inequality
and transportation delays – offers positive evidence on the Inequity Theorem. It also provides
some lessons on the policies that can be implemented to mitigate the trade-off between
efficiency and inequality, as we discuss in the full text [22].
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Figure 3 The average trip duration per wealth bracket is presented in the two figures above.
Left: Average duration in each transport mode. It is notable that brackets 1 and 2 have respectively
7 and 5 minutes more travel time on average than the other brackets. Right: The left plot is split
along the transport mode, to show the relative durations spent in each mode across wealth brackets.
Given that the least-affluent groups spend much more time on the roads compared to middle-income
groups, there is a quasi-monotonic increase in the use of car as wealth increases, while we observe
that the uses of walking and public transportation decrease as wealth increases.

8 Discussion

The Inequity Theorem raises important questions pertaining to distributive justice and the
efficiency of decentralized decision-making mechanisms such as markets [4, 21, 27, 33–35].
Namely, if efficiency can be obtained through purposeful intervention but only at a price
of increase in inequality, what are the implications of this trade-off for the organization of
markets, industries, and society in general? We offer three potential avenues of research:

What is the opportunity cost of inequity?
How does inequity affect cooperation among members of society?
How does inequity affect the formation of groups and thus cooperation between different
groups?

We believe that these questions hold the promise of opening up new lines of research for
algorithmic game theory. We hope that future work in this area will shed light on important
but largely unexplored issues about the interplay between efficiency and optimality in a wide
range of economic scenarios and mechanisms.
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