616 research outputs found

    Weakly supervised spoken term discovery using cross-lingual side information

    Get PDF
    Recent work on unsupervised term discovery (UTD) aims to identify and cluster repeated word-like units from audio alone. These systems are promising for some very low-resource languages where transcribed audio is unavailable, or where no written form of the language exists. However, in some cases it may still be feasible (e.g., through crowdsourcing) to obtain (possibly noisy) text translations of the audio. If so, this information could be used as a source of side information to improve UTD. Here, we present a simple method for rescoring the output of a UTD system using text translations, and test it on a corpus of Spanish audio with English translations. We show that it greatly improves the average precision of the results over a wide range of system configurations and data preprocessing methods.Comment: 5 pages, 4 figures, submitted for ICASSP 201

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201

    Weak supervision and label noise handling for Natural language processing in low-resource scenarios

    Get PDF
    The lack of large amounts of labeled data is a significant factor blocking many low-resource languages and domains from catching up with recent advancements in natural language processing. To reduce this dependency on labeled instances, weak supervision (semi-)automatically annotates unlabeled data. These labels can be obtained more quickly and cheaply than manual, gold-standard annotations. They also, however, contain more errors. Handling these noisy labels is often required to leverage the weakly supervised data successfully. In this dissertation, we study the whole weak supervision pipeline with a focus on the task of named entity recognition. We develop a tool for automatic annotation, and we propose an approach to model label noise when a small amount of clean data is available. We study the factors that influence the noise model's quality from a theoretic perspective, and we validate this approach empirically on several different tasks and languages. An important aspect is the aim for a realistic evaluation. We perform our analysis, among others, on several African low-resource languages. We show the performance benefits that can be achieved using weak supervision and label noise modeling. But we also highlight open issues that the field still has to overcome. For the low-resource settings, we expand the analysis to few-shot learning. For classification errors, we present a novel approach to obtain interpretable insights of where classifiers fail.Der Mangel an annotierten Daten ist ein wesentlicher Faktor, der viele Sprachen und DomĂ€nen mit geringen Ressourcen daran hindert, mit den jĂŒngsten Fortschritten in der digitalen Textverarbeitung Schritt zu halten. Um diese AbhĂ€ngigkeit von gelabelten Trainingsdaten zu verringern, werden bei Weak Supervision nicht gelabelte Daten (halb-)automatisch annotiert. Diese Annotationen sind schneller und gĂŒnstiger zu erhalten. Sie enthalten jedoch auch mehr Fehler. Oft ist eine besondere Behandlung dieser Noisy Labels notwendig, um die Daten erfolgreich nutzen zu können. In dieser Dissertation untersuchen wir die gesamte Weak Supervision Pipeline mit einem Schwerpunkt auf den Einsatz fĂŒr die Erkennung von EntitĂ€ten. Wir entwickeln ein Tool zur automatischen Annotation und prĂ€sentieren einen neuen Ansatz zur Modellierung von Noisy Labels. Wir untersuchen die Faktoren, die die QualitĂ€t dieses Modells aus theoretischer Sicht beeinflussen, und wir validieren den Ansatz empirisch fĂŒr verschiedene Aufgaben und Sprachen. Ein wichtiger Aspekt dieser Arbeit ist das Ziel einer realistischen Analyse. Die Untersuchung fĂŒhren wir unter anderem an mehreren afrikanischen Sprachen durch und zeigen die Leistungsvorteile, die durch Weak Supervision und die Modellierung von Label Noise erreicht werden können. Auch erweitern wir die Analyse auf das Lernen mit wenigen Beispielen. In Bezug auf Klassifizierungsfehler, stellen wir zudem einen neuen Ansatz vor, um interpretierbare Erkenntnisse zu gewinnen

    Practical Natural Language Processing for Low-Resource Languages.

    Full text link
    As the Internet and World Wide Web have continued to gain widespread adoption, the linguistic diversity represented has also been growing. Simultaneously the field of Linguistics is facing a crisis of the opposite sort. Languages are becoming extinct faster than ever before and linguists now estimate that the world could lose more than half of its linguistic diversity by the year 2100. This is a special time for Computational Linguistics; this field has unprecedented access to a great number of low-resource languages, readily available to be studied, but needs to act quickly before political, social, and economic pressures cause these languages to disappear from the Web. Most work in Computational Linguistics and Natural Language Processing (NLP) focuses on English or other languages that have text corpora of hundreds of millions of words. In this work, we present methods for automatically building NLP tools for low-resource languages with minimal need for human annotation in these languages. We start first with language identification, specifically focusing on word-level language identification, an understudied variant that is necessary for processing Web text and develop highly accurate machine learning methods for this problem. From there we move onto the problems of part-of-speech tagging and dependency parsing. With both of these problems we extend the current state of the art in projected learning to make use of multiple high-resource source languages instead of just a single language. In both tasks, we are able to improve on the best current methods. All of these tools are practically realized in the "Minority Language Server," an online tool that brings these techniques together with low-resource language text on the Web. The Minority Language Server, starting with only a few words in a language can automatically collect text in a language, identify its language and tag its parts of speech. We hope that this system is able to provide a convincing proof of concept for the automatic collection and processing of low-resource language text from the Web, and one that can hopefully be realized before it is too late.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113373/1/benking_1.pd

    Towards End-to-end Unsupervised Speech Recognition

    Full text link
    Unsupervised speech recognition has shown great potential to make Automatic Speech Recognition (ASR) systems accessible to every language. However, existing methods still heavily rely on hand-crafted pre-processing. Similar to the trend of making supervised speech recognition end-to-end, we introduce \wvu~which does away with all audio-side pre-processing and improves accuracy through better architecture. In addition, we introduce an auxiliary self-supervised objective that ties model predictions back to the input. Experiments show that \wvu~improves unsupervised recognition results across different languages while being conceptually simpler.Comment: Preprin
    • 

    corecore