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A B S T R A C T

The lack of large amounts of labeled data is a significant factor block-
ing many low-resource languages and domains from catching up with
recent advancements in natural language processing. To reduce this de-
pendency on labeled instances, weak supervision (semi-)automatically
annotates unlabeled data. These labels can be obtained more quickly
and cheaply than manual, gold-standard annotations. They also, how-
ever, contain more errors. Handling these noisy labels is often required
to leverage the weakly supervised data successfully.

In this dissertation, we study the whole weak supervision pipeline
with a focus on the task of named entity recognition. We develop a
tool for automatic annotation, and we propose an approach to model
label noise when a small amount of clean data is available. We study
the factors that influence the noise model’s quality from a theoretic
perspective, and we validate this approach empirically on several
different tasks and languages. An important aspect is the aim for a
realistic evaluation. We perform our analysis, among others, on several
African low-resource languages. We show the performance benefits
that can be achieved using weak supervision and label noise modeling.
But we also highlight open issues that the field still has to overcome.
For the low-resource settings, we expand the analysis to few-shot
learning. For classification errors, we present a novel approach to
obtain interpretable insights of where classifiers fail.
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Z U S A M M E N FA S S U N G

Der Mangel an annotierten Daten ist ein wesentlicher Faktor, der viele
Sprachen und Domänen mit geringen Ressourcen daran hindert, mit
den jüngsten Fortschritten in der digitalen Textverarbeitung Schritt
zu halten. Um diese Abhängigkeit von gelabelten Trainingsdaten
zu verringern, werden bei Weak Supervision nicht gelabelte Daten
(halb-)automatisch annotiert. Diese Annotationen sind schneller und
günstiger zu erhalten. Sie enthalten jedoch auch mehr Fehler. Oft ist
eine besondere Behandlung dieser Noisy Labels notwendig, um die
Daten erfolgreich nutzen zu können.

In dieser Dissertation untersuchen wir die gesamte Weak Supervisi-
on Pipeline mit einem Schwerpunkt auf den Einsatz für die Erkennung
von Entitäten. Wir entwickeln ein Tool zur automatischen Annotation
und präsentieren einen neuen Ansatz zur Modellierung von Noisy La-
bels. Wir untersuchen die Faktoren, die die Qualität dieses Modells aus
theoretischer Sicht beeinflussen, und wir validieren den Ansatz empi-
risch für verschiedene Aufgaben und Sprachen. Ein wichtiger Aspekt
dieser Arbeit ist das Ziel einer realistischen Analyse. Die Untersu-
chung führen wir unter anderem an mehreren afrikanischen Sprachen
durch und zeigen die Leistungsvorteile, die durch Weak Supervision
und die Modellierung von Label Noise erreicht werden können. Auch
erweitern wir die Analyse auf das Lernen mit wenigen Beispielen.
In Bezug auf Klassifizierungsfehler, stellen wir zudem einen neuen
Ansatz vor, um interpretierbare Erkenntnisse zu gewinnen.
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1
I N T R O D U C T I O N

Advances in natural language processing (NLP) and deep learning
have resulted in impressive performance improvements for machine
learning models on many tasks. Additionally, more and more machine
learning systems have transitioned from purely academic settings to
be also used in industry environments and real-life applications. These
changes, however, have been limited mainly to English and a selected
few other languages. A main reason is that most modern machine
learning methods require large amounts of labeled training data. For
the majority of languages the expensive and time-consuming manual
annotation of large training datasets is not possible. More than 310

languages exist with at least one million L1-speakers each (Eberhard
et al., 2019). Similarly, Wikipedia exists for 300 languages.1 These
languages are widely spoken and have access to digital technology.
But modern NLP technology only supports a small fraction of them.
This leaves behind millions of speakers of so-called low-resource
languages. The lack of data becomes even more prevalent if one moves
away from standard domains and tasks to more specialized settings.
There, even English might be a resource-lean language.

Weak supervision has been proposed as a way to overcome the lack
of manually labeled resources. Instead of manually annotating each
instance, methods are used that automatically or semi-automatically
obtain labels for unlabeled data. A typical example is named entity
recognition (NER), the task of recognizing entities such as persons,
locations or organizations in text. To automatically annotate such text,
words can be matched against a list of entities from a knowledge base
(Mintz et al., 2009). If a token appears as name in the list of entities,
it is assumed to refer to the entity and is given the corresponding
label. This approach allows to label data quickly given the access to
external resources such as a knowledge base. Label rules are another
form of weak supervision. The expert no longer has to label several
hundred instances, a chore that in most cases becomes monotonous
and tedious very quickly. Instead, the knowledge and insights the
human has about their area of expertise can be directly and efficiently
cast into a set of rules that automatically labels the data.

While it is quick and cheap to obtain large amounts of labeled
data with weak supervision, the quality of the labels is a major issue.
Due to the automatic process, the labels tend to contain many more
errors compared to manually annotated data. The performance of
a model trained on such noisy labels can therefore be lower than a

1 https://en.wikipedia.org/wiki/List_of_Wikipedias
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2 introduction

model trained on just a small amount of manually annotated, noise-
free data. To overcome this drawback, different methods to handle
label noise have been proposed. Noise-modeling approaches are a
major direction. There, one assumes an underlying process of the
noise introduced through the weak supervision. An estimated model
of the noise process is then used to mitigate the negative effects and
successfully leverage the additional, weakly supervised data.

In this thesis, we study methods for training machine learning mod-
els in low-resource NLP settings. A particular focus is given to weak
supervision and label-noise handling for the task of named entity
recognition. We investigate this setting from different angles. This
includes presenting methods to quickly obtain weak supervision in
realistic low-resource settings as well as theoretical studies of the noise
model estimation. We also expand into other settings, experimenting
with tasks such as text classification or image classification and exam-
ining other low-resource methods such as few-shot transfer learning.
Last but not least, we also look at label errors from the view of in-
terpretability, finding explanations for misclassification of black-box
machine learning models.

1.1 structure and contributions

This thesis is structured with its contributions in the following way:

• In Chapter 3, we give a survey on low-resource methods for
NLP. We propose to analyze low-resource settings according to
different data dimensions and present the recent literature on
low-resource methods in a structured way. We highlight open
issues, some of which will also be addressed in this work.

• Chapter 4 introduces the reader to the weak supervision setting
for NER as well as a pipeline for noise modeling with a confusion
matrix approach. We also present a new method that successfully
leverages both a small number of clean labels and a large corpus
of noisily labeled text.

• Weak supervision can only be useful if it is easy and fast to ob-
tain. In Chapter 5, we present a tool to obtain distant supervision
for NER for many languages and entity types while giving do-
main experts the possibility to adapt the automatic annotations
efficiently. Experiments on several languages and domains show
its usefulness as a source of weak supervision.

• Pre-trained language models had a significant impact on the
NLP community. In Chapter 6, we analyze how pre-trained,
multilingual models like mBERT and RoBERTa can be combined
with low-resource techniques on three African languages. For
weak supervision, we show that it can be successfully leveraged
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in this setting when combined with noise handling. For transfer
learning, we highlight its effectiveness when used in a minimal
few-shot setting. We also collect new datasets for languages
where NER and text classification datasets did not exist yet.

• Chapter 7 approaches noise modeling for weak supervision from
a more theoretic perspective identifying the factors that influence
the quality of the confusion matrix estimation. The theoretical
insights are verified both on synthetic and realistic noisy label
data. To this end, we also present NoisyNER, a new dataset
that allows to evaluate noise handling methods for complex and
realistic noise across multiple noise levels.

• Understanding the reasons behind incorrect classifications is
crucial to improve both weak supervision methods and machine
learning classifiers in general. In Chapter 8, we present an ap-
proach to obtain global explanations for misclassifications of
a black-box classifier. To this end, we propose a new mining
approach for label-descriptive patterns based on the Minimum
Description Length principle. We evaluate the method success-
fully on synthetic data as well as both visual question answering
and NER classifiers.

• This thesis closes in Chapter 9 with a conclusion and ideas for
future work.

To improve reproducibility, the code is made available for all works.
We refer to each chapter for the specific links.

1.2 nomenclature

In the existing literature, terms like weak and distant supervision
are unfortunately used in a variety of different variations. To avoid
confusion, we define these terms here in the way that we see as most
consistent with recent literature.

Weak supervision methods annotate unlabeled data in an automatic
or semi-automatic way. Manually created, rule-based heuristics are an
example of weak supervision as they can be applied automatically to
large amounts of unlabeled text without further human effort. Distant
supervision is a specific form of weak supervision where unlabeled
instances are aligned to an external knowledge source in an automatic
way. We distinguish weak supervision from semi-supervised learning
in that the latter only uses labeled and unlabeled data but no external
annotation process.

Noisy-labeled data is data where some of the labels are incorrect.
Even manually annotated, gold-standard data usually contains some
mistakes. Northcutt et al. (2021) estimate, e.g., an average of 3.4%
incorrect instances across ten popular machine learning datasets. For
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noisily-labeled data, the percentage of incorrect labels is higher than
what is expected of gold-standard data, usually above 20%. In this
work, we focus on weakly supervised methods as the origin of the
noisy labels. Other data acquisition processes like crowd-sourcing
could also be included.
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3
T H E S TAT E O F L O W- R E S O U R C E N L P

This chapter1 gives a broad and structured overview of current ef-
forts on low-resource NLP. We start with a general discussion about
low-resource settings and the different dimensions of data availability.
Then, we group existing NLP approaches in two main concepts: the
generation of additional labeled data (Section 3.5) and transfer learn-
ing (Section 3.6). We close with some further ideas from non-NLP
communities. In all sections, we discuss promising future directions
and open issues, some of which we also address in later chapters.

3.1 introduction

Most of today’s research in natural language processing (NLP) is
concerned with the processing of 10 to 20 high-resource languages
with a special focus on English, and thus, ignores thousands of lan-
guages with billions of speakers (Bender, 2019). The rise of data-
hungry deep learning systems increased the performance of NLP for
high resource-languages, but the shortage of large-scale data in less-
resourced languages makes their processing a challenging problem.
Therefore, Ruder (2019) named NLP for low-resource scenarios one of
the four biggest open problems in NLP nowadays.

The umbrella term low-resource covers a spectrum of scenarios
with varying resource conditions. It includes work on threatened
languages, such as Yongning Na, a Sino-Tibetan language with 40k
speakers and only 3k written, unlabeled sentences (Adams et al.,
2017). Other languages are widely spoken but seldom addressed
by NLP research. Supporting technological developments for low-
resource languages can help to increase participation of the speakers’
communities in a digital world. Note, however, that tackling low-
resource settings is even crucial when dealing with popular NLP
languages as low-resource settings do not only concern languages but
also non-standard domains and tasks, for which – even in English –
only little training data is available. Thus, the term “language” in this
chapter also includes domain-specific language.

This importance of low-resource scenarios and the significant changes
in NLP in the last years have led to active research on resource-lean
settings and a wide variety of techniques have been proposed. They
all share the motivation of overcoming the lack of labeled data by
leveraging further sources. However, these works differ greatly on the

1 This chapter is based on (Hedderich et al., 2021a) with Lukas Lange and Michael
Hedderich contributing equally as first authors.
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8 the state of low-resource nlp

sources they rely on, e.g., unlabeled data, manual heuristics or cross-
lingual alignments. Understanding the requirements of these methods
is essential for choosing a technique suited for a specific low-resource
setting. Thus, one key goal of this survey is to highlight the underlying
assumptions these techniques take regarding the low-resource setup.
Table 3.1 gives an overview of the surveyed techniques along with
their requirements a practitioner needs to take into consideration.

3.2 related surveys

Recent surveys cover low-resource machine translation (Liu et al.,
2019a) and unsupervised domain adaptation (Ramponi and Plank,
2020). We refer to these works and do not elaborate on these topics
in this chapter, as these tasks are not part of this thesis. We focus
instead on general methods for low-resource, supervised natural lan-
guage processing including data augmentation, distant supervision
and transfer learning. This is also in contrast to the task-specific survey
by Magueresse et al. (2020) who review highly influential work for
several extraction tasks, but only provide little overview of recent
approaches. In Table 3.2, we list past surveys that discuss a specific
method or low-resource language family for those readers who seek a
more specialized follow-up.

3.3 resource availability for different languages

To visualize the variety of resource-lean scenarios, Figure 3.1 shows
exemplarily which NLP tasks were addressed in different languages
from basic to higher-level tasks. While a large number of labeled re-
sources for English are available for many popular NLP tasks, this
is not the case for the majority of low-resource languages. To mea-
sure which applications are accessible to speakers of low-resource
languages we examined resources for six different languages, rang-
ing from high- to low-resource languages for a fixed set of tasks of
varying complexity, ranging from basic tasks, such as tokenization, to
higher-level tasks, such as question answering.

For this short study, we have chosen the following languages where
the number of speakers are the combined L1 and L2 speakers accord-
ing to Eberhard et al. (2019):

(1) English: The most high-resource language according to the com-
mon view and literature in the NLP community.

(2) Yoruba: An African language, which is spoken by about 40

million speakers and contained in the EXTREME benchmark
(Hu et al., 2020a). Even with that many speakers, this language
is often considered as a low-resource language and it is still
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10 the state of low-resource nlp

Low-resource surveys Cieri et al. (2016) , Magueresse et al. (2020)

M
et

ho
d-

sp
ec

ifi
c

Active learning Olsson (2009), Settles (2009), Aggarwal et al. (2014)

Distant supervision Roth et al. (2013), Smirnova and Cudré-Mauroux
(2018), Shi et al. (2019).

Unsupervised domain
adaptation

Wilson and Cook (2020), Ramponi and Plank
(2020)

Meta-Learning Hospedales et al. (2020)

Multilingual transfer Steinberger (2012), Ruder et al. (2019)

LM pre-training Rogers et al. (2021), Qiu et al. (2020)

Machine translation Liu et al. (2019a)

Label noise handling Frenay and Verleysen (2014), Algan and Ulusoy
(2021)

Transfer learning Pan and Yang (2009), Weiss et al. (2016), Tan et al.
(2018)

La
ng

ua
ge

-

African languages Grover et al. (2010), De Pauw et al. (2011)

Arabic languages Al-Ayyoub et al. (2018), Guellil et al. (2019), Younes
et al. (2020)

American languages Mager et al. (2018)

South-Asian languages Daud et al. (2017), Banik et al. (2019), Harish and
Rangan (2020)

East-Asian languages Yude (2011)

Table 3.2: Overview of existing surveys on low-resource topics.
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MA: Morphological analysis TP: Text processing

Figure 3.1: Supported NLP tasks in different languages. Note that the figure
does not incorporate data quality or system performance.



3.3 resource availability for different languages 11

discussed whether this language is also endangered (Fabuni and
Salawu, 2005).

(3) Hausa: An African language with over 60 million speakers. It is
not covered in EXTREME or the universal dependencies project
(Nivre et al., 2020).

(4) Quechua: A language family encompassing about 8 million
speakers, mostly in Peru.

(5) Nahuatl and (6) Estonian: Both have between 1 and 2 million
speakers, but are spoken in very different regions (North Amer-
ica & Europe).

The tasks were chosen from a list of popular NLP tasks.2 We selected
two tasks for the lower-lever groups and three tasks for the higher-
level groups, which reflects the application diversity with increasing
complexity. Table 3.3 shows in detail which tasks were addressed for
each language.

Word segmentation, lemmatization, part-of-speech tagging, sen-
tence breaking and (semantic) parsing are covered for Yoruba and
Estonian by treebanks from the universal dependencies project (Nivre
et al., 2020). Cusco Quechua is listed as an upcoming language in
the UD project, but no treebank is accessible at the time of writing.
The WikiAnn corpus for named entity recognition (Pan et al., 2017)
has resources and tools for NER and sentence breaking for all six
languages. Lemmatization resources for Nahuatl were developed by
Martinez-Gil et al. (2012) and Lozano et al. (2013) developed resources
for part-of-speech tagging, tokenization and parsing of Quechuan.
The CoNLL conference and SIGMORPHON organized two shared
tasks for morphological reinflection which provided lemmatization
resources for many languages, including Quechuan (Cotterell et al.,
2018).

Basic resources for simple semantic role labeling and entity linking
were developed during the LORELEI program for many low-resource
languages (Strassel and Tracey, 2016; Tracey and Strassel, 2020), in-
cluding resources for Yoruba and Hausa (even though the latter "fell
short" according to the authors). Estonian coreference resolution is
targeted by Kübler and Zhekova (2016), but the available resources
are very limited. Estonian sentiment is done by Pajupuu et al. (2016).
All languages are covered by the multilingual fasttext embeddings
(Bojanowski et al., 2017) and byte-pair-encoding embeddings (Heinz-
erling and Strube, 2018). Yoruba, Hausa and Estonian are covered by
mBERT or XLM-RoBERTa as well.

Text summarization is done for Estonian by Müürisep and Mutso
(2005) and for Hausa by Bashir et al. (2017). The EXTREME benchmark

2 https://en.wikipedia.org/wiki/Natural_language_processing#Common_NLP_

Tasks

https://en.wikipedia.org/wiki/Natural_language_processing#Common_NLP_Tasks
https://en.wikipedia.org/wiki/Natural_language_processing#Common_NLP_Tasks
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(Hu et al., 2020a) covers question answering and natural language
inference tasks for Yoruba and Estonian (besides NER, POS tagging
and more). Publicly available systems for optical character recognition
support all six languages (Hakro et al., 2016). All these tasks are
supported for the English language as well, and most often, the English
datasets are many times larger and of much higher quality. Some of
the previously mentioned datasets were automatically translated, as in
the EXTREME benchmark for several languages. Note that we do not
claim that all tasks marked in the table yield high-performance model,
but we instead indicate if any resources or models can be found for a
language.

To summarize, while it is possible to build English NLP systems for
many higher-level applications, low-resource languages lack the data
foundation for this. Additionally, even if it is possible to create basic
systems for tasks, such as tokenization and named entity recognition,
for all tested low-resource languages, the training data is typical of
lower quality compared to the English datasets, or very limited in
size. It also shows that the four American and African languages with
between 1.5 and 60 million speakers have been addressed less than the
Estonian language, with 1 million speakers. This indicates the unused
potential to reach millions of speakers who currently have no access
to higher-level NLP applications. Joshi et al. (2020) study further the
availability of resources for languages around the world.

3.4 dimensions of resource availability

Many techniques presented in the literature depend on certain assump-
tions about the low-resource scenario. These have to be adequately
defined to evaluate their applicability for a specific setting and to
avoid confusion when comparing different approaches. We propose to
categorize low-resource settings along the following three dimensions:

(i) The availability of task-specific labels in the target language
(or target domain) is the most prominent dimension in the context
of supervised learning. Labels are usually created through manual
annotation, which can be both time- and cost-intensive. Not having
access to adequate experts to perform the annotation can also be an
issue for some languages and domains.

(ii) The availability of unlabeled language- or domain-specific
text is another factor, especially as most modern NLP approaches
are based on some form of input embeddings trained on unlabeled
texts.

(iii) Most of the ideas surveyed in the next sections assume the
availability of auxiliary data which can have many forms. Transfer
learning might leverage task-specific labels in a different language or
domain. Distant supervision utilizes external sources of information,
such as knowledge bases or gazetteers. Some approaches require
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other NLP tools in the target language like machine translation to
generate training data. It is essential to consider this as results from
one low-resource scenario might not be transferable to another one if
the assumptions on the auxiliary data are broken.

3.4.1 How Low is Low-Resource?

On the dimension of task-specific labels, different thresholds are used
to define low-resource. For part-of-speech (POS) tagging, Garrette and
Baldridge (2013) limit the time of the annotators to 2 hours resulting
in up to 1-2k tokens. Kann et al. (2020a) study languages that have less
than 10k labeled tokens in the Universal Dependency project (Nivre
et al., 2020) and Loubser and Puttkammer (2020) report that most
available datasets for South African languages have 40-60k labeled
tokens.

The threshold is also task-dependent and more complex tasks might
also increase the resource requirements. For text generation, Yang et al.
(2019) frame their work as low-resource with 350k labeled training
instances. Similar to the task, the resource requirements can also
depend on the language. Plank et al. (2016) find that task performance
varies between language families given the same amount of limited
training data.

Given the lack of a hard threshold for low-resource settings, we see
it as a spectrum of resource availability. We, therefore, also argue that
more work should evaluate low-resource techniques across different
levels of data availability for better comparison between approaches.
For instance, Plank et al. (2016) and Melamud et al. (2019) show that
for very small datasets non-neural methods outperform more modern
approaches while the latter obtain better performance in resource-lean
scenarios once a few hundred labeled instances are available.

3.5 generating additional labeled data

Faced with the lack of task-specific labels, a variety of approaches have
been developed to find alternative forms of labeled data as substitutes
for gold-standard supervision. This is usually done through some
form of expert insights in combination with automation. We group
the ideas into two main categories: data augmentation which uses
task-specific instances to create more of them (§ 3.5.1) and distant
supervision which labels unlabeled data (§ 3.5.2) including cross-
lingual projections (§ 3.5.3). Additional sections cover learning with
noisy labels (§ 3.5.4) and involving non-experts (§ 3.5.5).
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3.5.1 Data Augmentation

New instances can be obtained based on existing ones by modifying
the features with transformations that do not change the label. In the
computer vision community, this is a popular approach where, e.g.,
rotating an image is invariant to the classification of an image’s content.
For text, on the token level, this can be done by replacing words with
equivalents, such as synonyms (Wei and Zou, 2019), entities of the
same type (Dai and Adel, 2020; Raiman and Miller, 2017) or words
that share the same morphology (Gulordava et al., 2018; Vania et al.,
2019). Such replacements can also be guided by a language model that
takes context into consideration (Fadaee et al., 2017; Kobayashi, 2018).

To go beyond the token level and add more diversity to the aug-
mented sentences, data augmentation can also be performed on sen-
tence parts. Operations that (depending on the task) do not change
the label include manipulation of parts of the dependency tree (De-
houck and Gómez-Rodriguez, 2020; Şahin and Steedman, 2018; Vania
et al., 2019), simplification of sentences by removal of sentence parts
(Şahin and Steedman, 2018) and inversion of the subject-object rela-
tion (Min et al., 2020). For whole sentences, paraphrasing through
back-translation can be used. This is a popular approach in machine
translation where target sentences are back-translated into source sen-
tences (Bojar and Tamchyna, 2011; Hoang et al., 2018). An important
aspect here is that errors in the source side/features do not seem to
have a large negative effect on the generated target text the model
needs to predict. It is therefore also used in other text generation
tasks like abstract summarization (Parida and Motlicek, 2019) and
table-to-text generation (Ma et al., 2019). Back-translation has also
been leveraged for text classification (Hegde and Patil, 2020; Xie et al.,
2020). This setting assumes, however, the availability of a translation
system. Instead, a language model can also be used for augmenting
text classification datasets (Anaby-Tavor et al., 2020; Kumar et al.,
2020). It is trained conditioned on a label, i.e., on the subset of the
task-specific data with this label. It then generates additional sentences
that fit this label. Ding et al. (2020) extend this idea for token level
tasks.

Adversarial methods are often used to find weaknesses in machine
learning models (Garg and Ramakrishnan, 2020; Jin et al., 2020). They
can, however, also be utilized to augment NLP datasets (Morris et al.,
2020; Yasunaga et al., 2018). Instead of manually crafted transformation
rules, these methods learn how to apply small perturbations to the
input data that do not change the meaning of the text (according to a
specific score). This approach is often applied on the level of vector
representations. For instance, Grundkiewicz et al. (2019) reverse the
augmentation setting by applying transformations that flip the (binary)
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label. In their case, they introduce errors in correct sentences to obtain
new training data for a grammar correction task.

Open Issues: While data augmentation is ubiquitous in the com-
puter vision community and while most of the above-presented ap-
proaches are task-independent, it has not found such widespread use
in natural language processing. A reason might be that several of
the approaches require an in-depth understanding of the language.
There is not yet a unified framework that allows applying data aug-
mentation across tasks and languages. Recently, Longpre et al. (2020)
hypothesised that data augmentation provides the same benefits as
pre-training in transformer models. However, we argue that data aug-
mentation might be better suited to leverage the insights of linguistic
or domain experts in low-resource settings when unlabeled data or
hardware resources are limited.

3.5.2 Distant & Weak Supervision

In contrast to data augmentation, weak supervision uses unlabeled
text and keeps it unmodified. The corresponding labels are obtained
through a (semi-)automatic process. For named entity recognition
(NER), a list of location names might be obtained from a dictionary and
matches of tokens in the text with entities in the list are automatically
labeled as locations. Distant supervision was introduced by Mintz
et al. (2009) for relation extraction (RE) with extensions on multi-
instance (Riedel et al., 2010) and multi-label learning (Surdeanu et al.,
2012). It is still a popular approach for information extraction tasks
like NER and RE where the external information can be obtained
from knowledge bases, gazetteers, dictionaries and other forms of
structured knowledge sources (Alt et al., 2019; Cao et al., 2019; Deng
and Sun, 2019; Lange et al., 2019a; Le and Titov, 2019; Lison et al.,
2020; Luo et al., 2017; Nooralahzadeh et al., 2019; Ye et al., 2019). The
automatic annotation ranges from simple string matching (Yang et al.,
2018) to complex pipelines including classifiers and manual steps
(Norman et al., 2019). Weak supervision also encompasses other ideas
like reg-ex labeling rules or simple programming functions (Adelani
et al., 2020; Karamanolakis et al., 2021; Lison et al., 2020; Ratner et al.,
2020; Ren et al., 2020; Zheng et al., 2019).

While distant and weak supervision are popular for information
extraction tasks like NER and RE, it is less prevalent in other areas
of NLP. Nevertheless, weak supervision has also been successfully
employed for other tasks by proposing new ways for automatic anno-
tation. Li et al. (2012) leverage a dictionary of POS tags for classifying
unseen text with POS. For aspect classification, Karamanolakis et al.
(2019) create a simple bag-of-words classifier on a list of seed words
and train a deep neural network on its weak supervision. Wang et al.
(2019) use context by transferring a document-level sentiment label
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to all its sentence-level instances. Mekala et al. (2020) leverage meta-
data for text classification and Huber and Carenini (2020) build a
discourse-structure dataset using guidance from sentiment annota-
tions. For topic classification, heuristics can be used in combination
with inputs from other classifiers like NER. For some classification
tasks, the labels can be rephrased with simple rules into sentences. A
pre-trained language model then judges the label sentence that most
likely follows the unlabeled input (Opitz, 2019; Schick et al., 2020;
Schick and Schütze, 2021a). An unlabeled review, for instance, might
be continued with "It was great/bad" for obtaining binary sentiment
labels.

Open Issues: The popularity of weak and distant supervision for
NER and RE might be due to these tasks being particularly suited.
There, auxiliary data like entity lists is readily available and distant
supervision often achieves reasonable results with simple surface form
rules. It is an open question whether a task needs to have specific
properties to be suitable for this approach. The existing work on other
tasks and the popularity in other fields like image classification (Lee
et al., 2018; Li et al., 2020; Li et al., 2017; Mahajan et al., 2018; Xiao et al.,
2015) suggest, however, that distant supervision could be leveraged
for more NLP tasks in the future.

Distant supervision methods heavily rely on auxiliary data. In a low-
resource setting, it might be difficult to obtain not only labeled data but
also such auxiliary data. Kann et al. (2020a) find a large gap between
the performance on high-resource and low-resource languages for
POS tagging pointing to the lack of high-coverage and error-free
dictionaries for the weak supervision in low-resource languages. This
emphasizes the need for evaluating such methods in a realistic setting
and avoiding to just simulate restricted access to labeled data in a
high-resource language.

While distant supervision allows obtaining labeled data more quickly
than manually annotating every instance of a dataset, it still requires
human interaction to create automatic annotation techniques or to
provide labeling rules. This time and effort could also be spent on
annotating more gold label data, either naively or through an active
learning scheme. Unfortunately, distant supervision papers rarely pro-
vide information on how long the creation took, making it difficult to
compare these approaches. Taking the human expert into the focus
connects this research direction with human-computer-interaction and
human-in-the-loop setups (see e.g. Klie et al. (2020) and Qian et al.
(2020)).

3.5.3 Cross-Lingual Annotation Projections

For cross-lingual projections, a task-specific classifier is trained in a
high-resource language. Using parallel corpora, the unlabeled low-
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resource data is then aligned to its equivalent in the high-resource
language where labels can be obtained using the aforementioned clas-
sifier. These labels (on the high-resource text) can then be projected
back to the text in the low-resource language based on the alignment
between tokens in the parallel texts (Yarowsky et al., 2001). This ap-
proach can, therefore, be seen as a form of distant supervision specific
for obtaining labeled data for low-resource languages. Cross-lingual
projections have been applied in low-resource settings for tasks, such
as POS tagging and parsing (Akbik et al., 2016; Eskander et al., 2020;
Plank and Agić, 2018; Täckström et al., 2013; Wisniewski et al., 2014).
Sources for parallel text can be the OPUS project (Tiedemann, 2012a),
Bible corpora (Christodoulopoulos and Steedman, 2015; Mayer and
Cysouw, 2014) or the recent JW300 corpus (Agić and Vulić, 2019). In-
stead of using parallel corpora, existing high-resource labeled datasets
can also be machine-translated into the low-resource language (Amjad
et al., 2020; Fei et al., 2020; Khalil et al., 2019; Zhang et al., 2019a).
Cross-lingual projections have even been used with English as a target
language for detecting linguistic phenomena like modal sense and
telicity that are easier to identify in a different language (Friedrich
and Gateva, 2017; Marasović et al., 2016; Zhou et al., 2015).

Open issues: Cross-lingual projections set high requirements on
the auxiliary data needing both labels in a high-resource language
and means to project them into a low-resource language. Especially
the latter can be an issue as machine translation by itself might be
problematic for a specific low-resource language. A limitation of the
parallel corpora is their domains like political proceedings or religious
texts. Mayhew et al. (2017), Fang and Cohn (2017) and Karamanolakis
et al. (2020) propose systems with fewer requirements based on word
translations, bilingual dictionaries and task-specific seed words, re-
spectively.

3.5.4 Learning with Noisy Labels

The above-presented methods allow obtaining labeled data quicker
and cheaper than manual annotations. These labels tend, however,
to contain more errors. Even though more training data is available,
training directly on this noisily-labeled data can actually hurt the per-
formance. Therefore, many recent approaches for distant supervision
use a noise handling method to diminish the negative effects of distant
supervision. We categorize these into two ideas: noise filtering and
noise modeling.

Noise filtering methods remove instances from the training data that
have a high probability of being incorrectly labeled. This often includes
training a classifier to make the filtering decision. The filtering can
remove the instances completely from the training data, e.g., through
a probability threshold (Jia et al., 2019), a binary classifier (Adel and
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Schütze, 2015; Huang and Du, 2019; Onoe and Durrett, 2019), or the
use of a reinforcement-based agent (Nooralahzadeh et al., 2019; Yang
et al., 2018). Alternatively, a soft filtering might be applied that re-
weights instances according to their probability of being correctly
labeled (Le and Titov, 2019) or an attention measure (Hu et al., 2019).

The noise in the labels can also be modeled. A common model is a
confusion matrix estimating the relationship between clean and noisy
labels (Chen et al., 2019a; Fang and Cohn, 2016; Lange et al., 2019a,c;
Luo et al., 2017; Paul et al., 2019; Wang et al., 2019). The classifier is
no longer trained directly on the noisily-labeled data. Instead, a noise
model is appended which shifts the noisy to the (unseen) clean label
distribution. This can be interpreted as the original classifier being
trained on a “cleaned” version of the noisy labels. In Ye et al. (2019),
the prediction is shifted from the noisy to the clean distribution during
testing. In Chen et al. (2020a), a group of reinforcement agents relabels
noisy instances. Rehbein and Ruppenhofer (2017), Lison et al. (2020),
Simpson et al. (2020) and Ren et al. (2020) leverage several sources of
distant or weak supervision and learn how to combine them.

In NER, the noise in distantly supervised labels tends to be false neg-
atives, i.e., mentions of entities that have been missed by the automatic
method. Partial annotation learning (Cao et al., 2019; Nooralahzadeh
et al., 2019; Yang et al., 2018) takes this into account explicitly. Related
approaches learn latent variables (Jie et al., 2019), use constrained
binary learning (Mayhew et al., 2019) or construct a loss assuming
that only unlabeled positive instances exist (Peng et al., 2019). Zhang
et al. (2021) recently presented a benchmark collection to evaluate
noise handling methods for NLP and non-NLP tasks.

3.5.5 Non-Expert Support

As an alternative to an automatic annotation process, annotations
might also be provided by non-experts. Similar to distant supervi-
sion, this results in a trade-off between label quality and availability.
For instance, Garrette and Baldridge (2013) obtain labeled data from
non-native-speakers and without a quality control on the manual an-
notations. This can be taken even further by employing annotators
who do not speak the low-resource language (Mayhew et al., 2019;
Mayhew and Roth, 2018; Tsygankova et al., 2021). Lee et al. (2021) pro-
pose sorting the instances to train non-experts during the annotation
process.

Nekoto et al. (2020) take the opposite direction, integrating speakers
of low-resource languages without formal training into the model
development process in an approach of participatory research. This
is part of recent work on how to strengthen low-resource language
communities and grassroot approaches (Adelani et al., 2021; Alnajjar
et al., 2020).
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3.6 transfer learning

While distant supervision and data augmentation generate and extend
task-specific training data, transfer learning reduces the need for
labeled target data by transferring learned representations and models.
A strong focus in recent works on transfer learning in NLP lies in
the use of pre-trained language representations that are trained on
unlabeled data like BERT (Devlin et al., 2019). Thus, this section starts
with an overview of these methods (§ 3.6.1) and then discusses how
they can be utilized in low-resource scenarios, in particular, regarding
the usage in domain-specific (§ 3.6.2) or multilingual low-resource
settings (§ 3.6.3).

3.6.1 Pre-Trained Language Representations

Feature vectors are the core input component of many neural network-
based models for NLP tasks. They are numerical representations of
words or sentences, as neural architectures do not allow the processing
of strings and characters as such. Collobert et al. (2011) showed that
training these models for the task of language-modeling on a large-
scale corpus results in high-quality word representations, which can
be reused for other downstream tasks as well. Subword-based embed-
dings such as fastText n-gram embeddings (Bojanowski et al., 2017)
and byte-pair-encoding embeddings (Heinzerling and Strube, 2018)
addressed out-of-vocabulary issues by splitting words into multiple
subwords, which in combination represent the original word. Zhu et al.
(2019) showed that these embeddings leveraging subword information
are beneficial for low-resource sequence labeling tasks, such as named
entity recognition and typing, and outperform word-level embeddings.
Jungmaier et al. (2020) added smoothing to word2vec models to correct
its bias towards rare words and achieved improvements in particular
for low-resource settings. In addition, pre-trained embeddings were
published for more than 270 languages for both embedding methods.
This enabled the processing of texts in many languages, including
multiple low-resource languages found in Wikipedia. More recently, a
trend emerged of pre-training large embedding models using a lan-
guage model objective to create context-aware word representations
by predicting the next word or sentence. This includes pre-trained
transformer models (Vaswani et al., 2017), such as BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019c). These methods are particularly
helpful for low-resource languages for which large amounts of unla-
beled data are available, but task-specific labeled data is scarce (Cruz
and Cheng, 2019).

Open Issues: While pre-trained language models achieve significant
performance increases compared to standard word embeddings, it
is still questionable if these methods are suited for real-world low-
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resource scenarios. For example, all of these models require large
hardware requirements, in particular, considering that the transformer
model size keeps increasing to boost performance (Raffel et al., 2020).
Therefore, these large-scale methods might not be suited for low-
resource scenarios where hardware is also low-resource.
Biljon et al. (2020) showed that low- to medium-depth transformer
sizes perform better than larger models for low-resource languages
and Schick and Schütze (2021b) managed to train models with three
orders of magnitude fewer parameters that perform on-par with large-
scale models like GPT-3 on few-shot task by reformulating the training
task and using ensembling. Melamud et al. (2019) showed that simple
bag-of-words approaches are better when there are only a few dozen
training instances or less for text classification, while more complex
transformer models require more training data. Bhattacharjee et al.
(2020) found that cross-view training (Clark et al., 2018) leverages
large amounts of unlabeled data better for task-specific applications
in contrast to the general representations learned by BERT. Moreover,
data quality for low-resource, even for unlabeled data, might not be
comparable to data from high-resource languages. Alabi et al. (2020c)
found that word embeddings trained on larger amounts of unlabeled
data from low-resource languages are not competitive to embeddings
trained on smaller, but curated data sources.

3.6.2 Domain-Specific Pre-Training

The language of a specialized domain can differ tremendously from
what is considered the standard language, thus, many text domains
are often less-resourced as well. For example, scientific articles can
contain formulas and technical terms, which are not observed in
news articles. However, the majority of recent language models are
pre-trained on general-domain data, such as texts from the news
or web-domain, which can lead to a so-called “domain-gap” when
applied to a different domain.

One solution to overcome this gap is the adaptation to the tar-
get domain by finetuning the language model. Gururangan et al.
(2020) showed that continuing the training of a model with additional
domain-adaptive and task-adaptive pre-training with unlabeled data
leads to performance gains for both high- and low-resource settings
for numerous English domains and tasks. This is also displayed in
the number of domain-adapted language models, i.a. by Adhikari
et al. (2019), Alsentzer et al. (2019), Huang et al. (2019), and Lee
and Hsiang (2020) and Jain and Ganesamoorty (2020). Most notably
are BioBERT (Lee et al., 2020) that was pre-trained on biomedical
PubMED articles and SciBERT (Beltagy et al., 2019) for scientific texts.
For example, Friedrich et al. (2020) showed that a general-domain
BERT model performs well in the materials science domain, but the
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domain-adapted SciBERT performs best. Xu et al. (2020) used in- and
out-of-domain data to pre-train a domain-specific model and adapt it
to low-resource domains. Aharoni and Goldberg (2020) found domain-
specific clusters in pre-trained language models and showed how these
could be exploited for data selection in domain-sensitive training.

Powerful representations can be achieved by combining high-resource
embeddings from the general domain with low-resource embeddings
from the target domain (Akbik et al., 2018; Lange et al., 2019b). Kiela
et al. (2018) showed that embeddings from different domains can
be combined using attention-based meta-embeddings, which create a
weighted sum of all embeddings. Lange et al. (2020b) further improved
on this by aligning embeddings trained on diverse domains using an
adversarial discriminator that distinguishes between the embedding
spaces to generate domain-invariant representations.

3.6.3 Multilingual Language Models

Analogously to low-resource domains, low-resource languages can
also benefit from labeled resources available in other high-resource
languages. This usually requires the training of multilingual language
representations by combining monolingual representations (Lange et
al., 2020a) or training a single model for many languages, such as mul-
tilingual BERT (Devlin et al., 2019) or XLM-RoBERTa (Conneau et al.,
2020). These models are trained using unlabeled, monolingual corpora
from different languages and can be used in cross- and multilingual
settings, due to many languages seen during pre-training.

In cross-lingual zero-shot learning, no task-specific labeled data is
available in the low-resource target language. Instead, labeled data
from a high-resource language is leveraged. A multilingual model
can be trained on the target task in a high-resource language and
afterwards, applied to the unseen target languages, such as for named
entity recognition (Hvingelby et al., 2020; Lin et al., 2019), reading com-
prehension (Hsu et al., 2019), temporal expression extraction (Lange
et al., 2020c), or POS tagging and dependency parsing (Müller et al.,
2020). Pfeiffer et al. (2020) only adapt parts of the network for a more
parameter-efficient training.

The transfer between two languages can be improved by creating a
common multilingual embedding space of multiple languages. This is
useful for standard word embeddings (Ruder et al., 2019) as well as
pre-trained language models. For example, by aligning the languages
inside a single multilingual model, i.a., in cross-lingual (Liu et al.,
2019b; Schuster et al., 2019) or multilingual settings (Cao et al., 2020).

This alignment is typically done by computing a mapping between
two different embedding spaces, such that the words in both embed-
dings share similar feature vectors after the mapping (Joulin et al.,
2018; Mikolov et al., 2013). This allows to use different embeddings
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Figure 3.2: Language families with more than 1 million speakers covered by
multilingual transformer models.

inside the same model and helps when two languages do not share
the same space inside a single model (Cao et al., 2020). For exam-
ple, Zhang et al. (2019b) used bilingual representations by creating
cross-lingual word embeddings using a small set of parallel sentences
between the high-resource language English and three low-resource
African languages, Swahili, Tagalog, and Somali, to improve document
retrieval performance for the African languages.

Open Issues: Hu et al. (2020a) showed that for zero-shot learning,
there is still a large gap between low and high-resource setting. Also,
while these multilingual models are a tremendous step towards en-
abling NLP in many languages, possible claims that these are universal
language models do not hold. For example, mBERT covers 104 and
XLM-R 100 languages, which is a third of all languages in Wikipedia
as outlined earlier. Further, Wu and Dredze (2020) showed that, in
particular, low-resource languages are not well-represented in mBERT.
Figure 3.2 shows which language families with at least 1 million speak-
ers are covered by mBERT and XLM-RoBERTa.3 In particular, African
and American languages are not well-represented within the trans-
former models, even though millions of people speak these languages.
This can be problematic, as languages from more distant language
families are less suited for transfer learning, as Lauscher et al. (2020a)
showed.

3.7 ideas from low-resource machine learning in non-
nlp communities

Training on a limited amount of data is not unique to natural language
processing. Other areas, like general machine learning and computer
vision, can be a useful source for insights and new ideas. We already
presented data augmentation and pre-training. Another example is
Meta-Learning (Finn et al., 2017), which is based on multi-task learn-
ing. Given a set of auxiliary high-resource tasks and a low-resource

3 A language family is covered if at least one associated language is covered. Language
families can belong to multiple regions, e.g., Indo-European belongs to Europe and
Asia.
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target task, meta-learning trains a model to decide how to use the
auxiliary tasks in the most beneficial way for the target task. For NLP,
this approach has been evaluated on tasks such as sentiment analysis
(Yu et al., 2018), user intent classification (Chen et al., 2020b; Yu et al.,
2018), natural language understanding (Dou et al., 2019), text classi-
fication (Bansal et al., 2020) and dialogue generation (Huang et al.,
2020). Instead of having a set of tasks, Rahimi et al. (2019) built an
ensemble of language-specific NER models which are then weighted
depending on the zero- or few-shot target language.

Differences in the features between the pre-training and the target
domain can be an issue in transfer learning, especially in neural
approaches where it can be difficult to control which information the
model takes into account. Adversarial discriminators (Goodfellow et
al., 2014) can prevent the model from learning a feature-representation
that is specific to a data source. Gui et al. (2017), Liu et al. (2017), Kasai
et al. (2019), Grießhaber et al. (2020) and Zhou et al. (2019) learned
domain-independent representations using adversarial training. Kim
et al. (2017), Chen et al. (2018) and Lange et al. (2020c) worked with
language-independent representations for cross-lingual transfer. These
examples show the beneficial exchange of ideas between NLP and the
machine learning community.

3.8 discussion

Guidelines are necessary to support practitioners in choosing the right
tool for their task. In this chapter, we highlighted that it is essential
to analyze resource-lean scenarios across the different dimensions of
data-availability. This can reveal which techniques are expected to be
applicable in a specific low-resource setting. More theoretic and exper-
imental work is necessary to understand how approaches compare to
each other and on which factors their effectiveness depends. Longpre
et al. (2020), for instance, hypothesized that data augmentation and
pre-trained language models yield similar kind of benefits. Often, how-
ever, new techniques are just compared to similar methods and not
across the range of low-resource approaches. While a fair comparison
is non-trivial given the different requirements on auxiliary data, we
see this endeavour as essential to improve the field of low-resource
learning in the future. This could also help to understand where the
different approaches complement each other and how they can be
combined effectively.

3.9 conclusion

In this chapter, we gave a structured overview of recent work in the
field of low-resource natural language processing. In the following
chapters, we will evaluate methods from the two main directions,
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obtaining labeled data and transfer learning, with a focus on the
former. We will also start addressing some of the identified issues,
such as realistic evaluations and testing across different levels of
resource availability.





4
T H E W E A K S U P E RV I S I O N P I P E L I N E

This chapter1 demonstrates the complete pipeline of obtaining labeled
data via distant supervision and handling incorrect labels via noise-
handling. We argue for combining a small amount of clean with a
large amount of noisy labels and propose a noise handling method
that leverages both. In the experiments, we show the usefulness of
modeling the noise for distantly supervised data.

4.1 introduction

For training statistical models in a supervised way, labeled datasets
are required. For many natural language processing tasks like named
entity recognition (NER), every word in a corpus needs to be annotated.
While the large effort of manual annotation is regularly done for
English, for other languages this is often not the case. And even
for English, the corpora are usually limited to certain domains like
newspaper articles. For tasks in low-resource areas there tend to be
no or only few labeled words available.

In the previous chapter, weak supervision has been presented as
an alternative to manually creating labels. These exploit the fact that
frequently large amounts of unannotated texts do exist in the targeted
domain, e.g. from web crawls. The labels are then assigned using a
(semi-)automatic technique like a simple look-ups in knowledge bases
or gazetteers. Once such an automatic labeling system is set up, the
amount of text to annotate becomes nearly irrelevant, especially in
comparison to manual annotation. Also, it is often rather easy to apply
the system to different settings, e.g. by using a knowledge base in a
different language.

However, while easily obtainable in large amounts, the automati-
cally annotated data usually contains more errors than the manually
annotated. When training a machine learning algorithm on such noisy
training data, this can result in a low performance. Furthermore, the
combination of noisy and clean training instances can perform even
worse than just using clean data, as we will see below.

To overcome the negative effects of the noisy training data, we
model the noise explicitly using a noise layer that is added to the
network architecture. This allows us to directly optimize the network
weights using standard techniques. After training, the noise layer is
not needed anymore, removing any added complexity.

1 This chapter is based on (Hedderich and Klakow, 2018).
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In the noisy label literature, it is common to assume that all training
data is noisy (cf. e.g. Berg (2016) and Goldberger and Ben-Reuven
(2016)). In our practical experience, it is, however, usually rather easy
to also obtain a small clean training set since some data needs to be
anyways manually annotated for testing. An additional motivation is
the recent trend in few-shot learning. Specific works like (Lauscher et
al., 2020a) have shown that it is both realistic and beneficial to assume
a small amount of manually labeled instances. This motivates us to
also study noise handling in the scenarios where a small amount of
clean, gold-standard data, as well as a large amount of noisily labeled
data, are available.

This technique is applicable to different classification scenarios. In
this chapter, we apply it to Named Entity Recognition (NER). NER is
the task of assigning entities in text with their corresponding type (like
Person, Organisation or Location). It is a core NLP task and the basis
for various applications, from information retrieval to virtual assistants.
While there exist some large, hand-annotated corpora like CoNLL03

(Tjong Kim Sang and De Meulder, 2003) or OntoNotes (Weischedel et
al., 2011), these are limited to a selected set of languages and domains.
If such large corpora are not available, weakly supervised but noisy
supervision can be an option to obtain labeled data.

To evaluate the use of noisily-labeled data on a non-synthetic, re-
alistic source of noise, we use distant supervision via look-ups from
gazetteers for automatically annotating the data. In the low-resource
setting, we show the performance boost obtained from training with
both clean and noisy instances and from handling the noise in the data.
We also compare to another neural network noise handling approach
and we give some more insight into the impact of using additional
noisy data and into the learned noise model.

4.2 related work

In Chapter 3, we divided noise handling techniques for NLP into
noise filtering and noise modeling approaches. Here, we explore a
noise modeling technique. Specifically, the idea of a noise channel,
as proposed by Bekker and Goldberger (2016). They assume that all
clean labels pass through a noisy channel that transforms the clean
into a noisy label. One does only observe the noisy labels. The model
of the noise channel, as well as the clean labels, are estimated using
an EM algorithm. A neural network is then trained on the estimated
labels. Berg (2016) applied this model to different tasks, obtaining
small improvements on NER with automatically annotated data. A
disadvantage of this approach is that the neural network needs to be
retrained in every iteration of the EM algorithm, making the model
difficult to scale to complex neural architectures.
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Goldberger and Ben-Reuven (2016) transformed this model into an
end-to-end trainable neural network by replacing the EM component
with a noise adaptation layer. They experimented with simple image
classification data and Dgani et al. (2018) applied it on the medical
image domain. Both limit their approach to only using noisy data. Also,
they just evaluate the effectiveness of their noise handling method on
simple synthetic noise (uniform and permutation). When applied to
real-life scenarios, the noise might have a more complex structure.

Veit et al. (2017) presented an alternative noise modeling approach
which also leverages clean labels. It consists of two components. A
cleaning network learns to map noisy labels to clean ones. The second
network is used to learn the actual task from clean and cleaned labels.
We adapt their image classification model to the NER setting and
compare our approach to this idea in the experiments.

4.3 noise layer

Given a clean dataset C consisting of feature and label tuples (x, y),
we can construct a multi-label neural network softmax classifier

p(y = i|x; w) =
exp(uT

i h(x))

∑k
j=1 exp(uT

j h(x))
, (4.1)

where k is the number of classes, h is a non-linear function or a more
complex neural network and w are the network weights including the
softmax weights u.

The noisy dataset N is a set of additional training instances. Follow-
ing the approach of Goldberger and Ben-Reuven (2016), we assume
that each originally clean (but unseen) label y went through a noise
channel or process transforming it into the noisy label z. We only
observe the noisy label, i.e. N consists of tuples (x, z).

The noise transformation from a clean label y with class i to a noisy
label z with class j is modeled using a stochastic matrix

θ(i, j) = p(z = j|y = i) =
exp(bij)

∑k
l=1 exp(bil)

, (4.2)

for i, j ∈ {1, ..., k} and where b are learned weights. We call this the
noise layer here. The probability for an observed, noisy label then
becomes

p(z = j|x; w; θ) =
k

∑
i=1

p(z = j|y = i; θ)p(y = i|x; w) , (4.3)

for (x, z) ∈ N.
In contrast to the work by Goldberger and Ben-Reuven (2016), we

also have access to clean data C. From this, we create two models,
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Figure 4.1: General architecture of the approach. Above is the base model
trained on clean data C and predicting clean labels y. Below is the
noise layer model trained on noisy label data N. The predicted
labels y are transformed into the seen, noisy labels z using the
noise layer.

as illustrated in Figure 4.1. The base model without noise layer is
trained on C and the noise model with the noise layer is trained on
N. Both models share the same network weights. The models are
trained alternatingly, each for one epoch of its corresponding clean
or noisy data. For prediction, the noise layer is removed and just the
base model is used.

As stated by Goldberger and Ben-Reuven (2016), the initialization of
θ is important. Since we have access to a small amount of clean data
C, we use it for initializing the stochastic matrix. We assume that we
can create noisy labels for the clean instances using the same process
as for the noisy data N. We then initialize the weights of θ as

bij = log(
∑|C|t=1 1{yt=i}1{zt=j}

∑|C|t=1 1{yt=i}
) , (4.4)

where zt is obtained by creating a noisy label for (xt, yt) ∈ C. In
Chapter 7, we will revisit the noise process and the estimation of the
stochastic matrix more in detail.

4.4 dataset and automatic annotation

Named Entity Recognition (NER) is the task of assigning phrases in a
text an entity label. In the sentence

Only France backed Fischler’s proposal.

the country France is of the entity class location and Fischler refers
to a person. Creating training data for this task requires that each
word in the text is labeled with its corresponding class. The effort to
create a sufficiently large dataset might be too large for a low-resource
language.

To tackle this problem, Dembowski et al. (2017) proposed to use
external lists and gazetteers of entities to automatically label words in a
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Class Precision Recall F1

PER 48.09% 25.90% 33.67%

ORG 52.45% 10.02% 16.83%

LOC 56.76% 65.42% 60.78%

MISC 0.00% 0.00% 0.00%

Overall 53.31% 27.36% 36.16%

Table 4.1: Evaluation of the automatic labeling on the full English CoNLL-
2003 training set (which we use as noisy dataset N).

training corpus. A list of person names can e.g be extracted from all of
the entries appearing in Wikipedia’s person category. Equipped with
such lists for all entity classes, one can then label a text automatically.
A word gets assigned a specific class if it appears in the corresponding
entity list. A word or token that does not appear in any list gets
assigned the null class "O". Additionally, simple heuristics help to
resolve conflicts between lists and to remove some sources of errors.
One might e.g. not label the day of the weeks as names, although
"Friday" might be in the list of person names.

For this work, we use the English CoNLL03 NER corpus (Tjong
Kim Sang and De Meulder, 2003). The dataset is labeled with the
classes person (PER), location (LOC), organization (ORG), miscella-
neous name (MISC) and the null class (O). It consists of a training,
a development and a test set. To obtain a low-resource setting, we
randomly sample a subset of the training set as clean data C. In the
experiments, we vary this size between ca. 400 and 20000 words. The
rest of the labels are removed from the training set.

We then label the whole training set using the method by Dem-
bowski et al. (2017) in the version with heuristics. This approach of
automatically labeling words allows to quickly obtain large amounts
of labeled text. However, both precision and recall tend to be lower
than for manually labeled corpora (cf. Table 4.1). It should be noted
that the MISC class is not covered with this technique which is an
additional source of noise in the automatically annotated data. We use
this as our noisy data N.

4.5 model architectures and training

In this section, we present the different model architectures we evalu-
ated in our experiments and we give details on the training procedure.

For each instance, the input x is a sequence of words with the target
word in the middle surrounded by 3 words from the left and from the
right of the original sentence, e.g. x = "countries other than Britain until
the scientific" where "Britain" is the target word with label y = LOC.



32 the weak supervision pipeline

Sentence boundaries are padded. We encode the words using the
300-dimensional GloVe vectors trained on cased text from Common
Crawl (Pennington et al., 2014).

The base-model uses a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) with state size 300 to encode the input. Then a dense
layer is applied with size 100 and ReLU activation (Glorot et al., 2011).
Afterwards, the softmax layer is used for classification. This model is
only trained on the clean data C.

The noise-model is built upon the base model and uses the noise
layer architecture explained in section 4.3. First, the model is trained
without noise layer for one epoch on the clean data. Then, we alternate
between training with the noise layer on the noisy data and without
the noise layer on the clean, each for one epoch. Instead of training on
the full noisy corpus, we use a subsample Ñ, randomly picked in each
epoch. This allows the model to see many different noisy samples
while preventing the noise from being too dominant. In section 4.6.2,
we evaluate this effect.

For the base-model-with-noise we use the same clean and noisy
data but the noise layer is left out, using only the base model architec-
ture without an explicit noise handling technique.

To evaluate the importance of the initialization of the stochastic
matrix θ, the noise-model-with-identity-init uses the same training
approach and data as the noise-model. However, θ is initialized with
the identity matrix instead of using formula 4.4.

The noise-adaptation-model uses the original model of Goldberger
and Ben-Reuven (2016). It consists of the base model with the noise
layer and is trained on the whole noisy dataset in each epoch. It does
not use the clean data. For initializing θ, the base model is pretrained
on the noisy data and its predictions are used as an approximation to
the clean labels.

We also compare to the recent work by Veit et al. (2017). They train
a noise cleaning component which learns to map from a noisy label
and a feature representation to a clean label. These cleaned labels are
then used for training of what we call the base model. The authors
did not report specific layer sizes and their architecture is developed
for an image classification task, which differs structurally from our
NER dataset (e.g. their label vector is much sparser). We, therefore,
adapt their concept to our setting. As feature representation, we use
the output of the BiLSTM which is projected to a 30-dimensional space
with a linear layer. This is concatenated with the noisy label and used
as input to the noise cleaning component. It is passed through a dense
layer with the same dimension as the label vector. The skip-connection
and clipping are used as in their publication. We use the same training
approach and data as with the noise-model, replacing the step where
the noise layer is trained. Instead, in each epoch the noise cleaning
component is trained on C and the corresponding noisy labels. The
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base model is then trained on a cleaned version of Ñ and C. We call
this the noise-cleaning-model.

All models are trained using cross-entropy loss, except for the noise
cleaning component of the noise-cleaning-model which is trained with
the absolute error loss like in the original paper. All models are trained
for 40 epochs and the weights of the best performing epoch are selected
according to the F1 score on the development set. Adam (Kingma and
Ba, 2015) is used for stochastic optimization.

4.6 experiments and evaluation

In this section, we report on our experiments and their results. The
training on noisy data as well as the randomness in training neural
networks in general lead to a certain amount of variance in the evalua-
tion scores. Therefore, we repeat all experiments five times and report
the average as well as the standard error. To obtain meaningful results,
no noise is added to the test data.

4.6.1 Model Comparison

To simulate different degrees of low-resource settings, we trained the
models on different amounts of clean data. We vary the size between
407 labeled words (0.2% of the CoNLL-2003 training data) and 20362

labeled words (10%) in six steps. Since the noisy labels are easy to
obtain, we use the whole corpus N. The size of the random subsample
Ñ in each epoch is set to the same size as the clean data.

The results of this experiment are given in Figure 4.2. There is a
general trend that the larger the amount of clean data is, the lower
the differences between the models are. It seems that once we have
obtained enough clean training data, the additional noisy data cannot
add much more information, even when cleaned. This is reminiscent
of results from semi-supervised learning (e.g. in Nigam et al. (2006)).

For the two settings with the lowest amount of data, the base-model-
with-noise (which is trained on clean and noisy data without a noise
channel) performs worst. For the four settings with more data, it is
better than base-model (which is only trained on C). This could indicate
that noisy labels do hurt the performance in low-resource settings.
However, once a certain amount of clean training data is obtained,
this is enough to cope with the noise to a certain degree and obtain
improvements, even when the noise is not explicitly handled.

The models that do handle noise, outperform these baselines. When
comparing noise-model and noise-model-with-identity-init, we see a large
gap in performance. This shows the importance of a good initialization
of the noise model θ in the low-resource setting.

The original noise-adaptation-model model by Goldberger and Ben-
Reuven (2016) obtains an average F1 score of 38.8. This shows that a



34 the weak supervision pipeline

Figure 4.2: Evaluation results of the models. Experiments were run for dif-
ferent sizes of the clean data C and the per epoch randomly
subsampled data Ñ. The average F1 score on the test set is given
over five runs. The error bars show two-times standard error in
both directions.

model purely trained on a large amount of automatically annotated
data can be an alternative to a model trained on very few clean
instances. However, the effect of cleaning noisy labels without access
to any clean data seems limited, as the model cannot even reach the
performance of either the base-model trained on 1018 instances nor our
noise-model on the smaller set of 407 instances.

Our proposed noise-model outperforms the cleaning-model in the four
lower-resource settings while the latter performs slightly better in the
two scenarios with more data. With its access to the features in the
noise cleaning component, the cleaning-model might be able to model
more complex noise transformations. However, it does not seem to
be able to leverage this capability in a low-resource setting. In the
low-resource settings, our noise-model is able to handle the noise well
and it gains over ten points in F1 score over not using a noise handling
mechanism or only training on clean data.

4.6.2 Amount of Noisy Data

In this experiment, we evaluate the effect of using different amounts of
noisy data during each epoch, i.e. we vary the size of the subsampled,
noisy data Ñ. We experiment with the noise-model and fix the amount
of clean data C to 2036 labeled words (1% of the CoNLL-2003 training
data). We choose |Ñ| as multiples of |C| using factors 0.5, 1, 2, 10, 20,
30 and 50.
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Figure 4.3: Evaluation results for varying the size of the per epoch randomly
subsampled noisy data Ñ. The noise-model was used and the
amount of clean data C fixed to 2036 labeled words. The average
F1 score on the test set is given over five runs. The error bars
show two-times standard error in both directions.

The results are given in Figure 4.3. One can see a trend that increas-
ing the size of Ñ results in an improvement in F1 score. This holds
until factor 5. Afterwards, the performance degrades again. This might
indicate that the noisy data becomes too dominant and the cleaning
effect of the noise layer is not able to mitigate it.

4.6.3 Learned Weights

Figure 4.4 shows the stochastic matrix θ that was learned in one run
of training the noise-model with |C| = |Ñ| = 2036 labeled words (1%
of the CoNLL-2003 training data).

One can see that the learned weight matrix represents a reasonable
model of the noise. For the classes PER, ORG and MISC, the recall is
very low in the noisy data and therefore the corresponding weights
in the first column of the matrix are high: Instances (or a certain
percentage of the probability mass) which the base model correctly
classifies as PER/ORG/MISC, are mapped to the class O because this
is the most common noisy label for these classes (indicated by the low
recall we can see in Table 4.1). For the LOC class, the recall in the noisy
labels is much higher and we see this reflected in the learned weights.
The highest weight for this class is θLOC, LOC, i.e. a prediction of the
label LOC is mostly left unchanged because it tends to be correctly
labeled in the noisy data.
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Figure 4.4: Representation of the noise transition weights θ learned in the
noise layer. Each square is a value exp(θij) where i is the vertical
and j the horizontal index in the visualization.

4.7 conclusions and open questions

In this chapter, we presented the pipeline of distant supervision and
noise handling for low-resource classification. We proposed a tech-
nique to train a neural network on a combination of clean and noisy
annotations and to model the noise explicitly using a noise layer. We
evaluated our approach on an NER task using real noise in the form of
automatically annotated labels. We found that the probabilistic noise
matrix learned is a useful model of the noise. In the low-resource
setting where only a few manually annotated instances are available,
we showed the improvements of up to 35% obtained from using
additional, noisy data and handling the noise.

In the experiments, we saw that the ranking of the best performing
baselines changed depending on the amount of clean data available.
The base-model e.g. developed a certain robustness against noise
given enough clean labels. This highlights the importance of evaluating
across different levels of resource availability as argued in the previous
chapter.

While this first study indicates the usefulness of the approach,
several questions are still open. While we used a realistic source of
noisy labels, the setting itself - NER for English news text - was only a
simulated low-resource scenario. It is necessary to evaluate how this
idea performs for true resource-lean settings.

Also, the base model used an LSTM with pre-trained word embed-
dings. While such a model architecture is comparatively light-weight
and easy to deploy in a low-resource scenario, recent advances like
BERT (Devlin et al., 2019) have shown much improved performance in
the high-resource case. One advantage of the noise handling method
we proposed is its independence of the underlying base model. We are,
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therefore, interested to see how well this noisy label idea combines
with more modern architectures.

Last but not least, this study only evaluated one task and one form
of weak supervision. We, therefore, want to test how it performs for
different tasks and different sources of noisy labels. These questions
are addressed in the following chapters.





5
A T O O L F O R D I S TA N T S U P E RV I S I O N

A limitation of the evaluation from the previous chapter was the use of
a simulated low-resource setting with English data. In Chapter 3, we
argued that simulations might miss assumptions like the dependency
on auxiliary data. This chapter1 presents a tool that facilitates distant
supervision for Named Entity Recognition. It aims to support many
languages and entity types including those from realistic low-resource
scenarios such as developing countries. It allows to retrieve entity lists
and to automatically annotate unlabeled text in an easy to use and fast
way while also empowering the domain expert to adapt the automatic
annotation.

5.1 introduction

Named Entity Recognition is a basic task which is essential for a
variety of NLP applications like advanced search methods, personal
assistants or information extraction systems. For many low-resource
languages and domains, it is, however, not possible to manually label
every token of large corpora due to time and resource constraints.
As seen in Chapter 3, the absence of labeled data is prevalent for
languages from developing countries. We see this as a significant
factor limiting the development of NLP technologies in these regions
with respect to the ongoing tendency towards data-driven models.

In the previous chapter, we have seen that distant supervision can
be a useful training resource in the absence of expensive, high-quality
labels. Even in low-resource settings, unlabeled text is often available,
and for NER, a widespread approach is to use lists, dictionaries or
gazetteers of named entities (e.g. a list of person names or cities). Each
word in the corpus is assigned the corresponding named entity label
if it appears in this list of entities. Introduced by Mintz et al. (2009),
this is still a popular technique and used e.g. by Peng et al. (2019),
Adelani et al. (2020) and Lison et al. (2020). For an extensive list of
recent works using distant supervision for low-resource NER, we refer
to Chapter 3 on related work.

While distant supervision performs very well on high-resource
languages and on simulated low-resource settings (like we have seen
in Chapter 4), it has been shown to be more difficult to leverage in real
low-resource scenarios due to the lack of external information (Kann
et al., 2020a). Additionally, several difficulties arise when applying it
in a practical way, such as obtaining these dictionaries (e.g. a list of city

1 This chapter is based on (Hedderich et al., 2021b).
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names in Yorùbá) or adapting the matching procedure to the specific
language and domain (e.g. deciding for or against lemmatization and,
thus, trading off recall and precision). Distant supervision can only be
beneficial and save resources if it is easy to use and fast to deploy.

The ANEA tool we present provides the functionality to actually
use distant supervision approaches in practice for many languages
and named entity types while minimizing the amount of manual
effort and labeling cost. A process is provided to automatically extract
entity names from Wikidata, a free and open knowledge base. The
information is used to annotate named entities for large amounts
of unlabeled text automatically. The tool also supports the user in
tuning the automatic annotation process. It enables language experts
to efficiently include their knowledge without having to annotate
many tokens manually. Both a library and a graphical user interface
are provided to assist users of varying technical backgrounds and
different use-cases. In an experimental study on six different scenarios,
we show that ANEA outperforms two baselines in nearly all cases
regarding the quality of the automatic annotation. When used to
provide distantly supervised training data for a neural network model,
it creates on average a boost of 18 F1 points with less than 30 minutes
of manual interaction. The tool, further information and technical
documentation and the additional model code and evaluation data
are made publicly available online.2

5.2 related work

A variety of open-source tools exist to annotate text manually. While
their focus is on the manual annotation of data, some support the
user with certain degrees of automation. A token can be labeled
automatically if it has been labeled before by the user in WebAnno
(Yimam et al., 2014) and TALEN (Mayhew and Roth, 2018). In TALEN,
a bilingual lexicon can be integrated but just to support annotators that
do not speak the text’s language. WebAnno and brat (Stenetorp et al.,
2012) allow importing the annotations of external tools as suggestions
for the user. The focus is, however, still on the user manually checking
all tokens. Also, the annotator cannot use their insight to directly
influence and improve the external tool like in the tuning process of
ANEA.

In the area of information extraction, the tools by Gupta and Man-
ning (2014), Li et al. (2015) and Dalvi et al. (2016) allow the user to
create rules or patterns, e.g. “[Material] conducts [Energy]”. This can,
however, require a large amount of manual rule creation effort to
obtain good coverage for NER. With Snorkel (Ratner et al., 2020), a
user can define similar and more general labeling functions. Oiwa
et al. (2017) presented a tool to create entity lists manually. These

2 https://github.com/uds-lsv/anea

https://github.com/uds-lsv/anea
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Figure 5.1: Overall workflow of ANEA.

lists could be imported into ANEA. NER is closely related to entity
linking. Zhang et al. (2018) presented a system to link entities in many
languages automatically but they focus on disaster monitoring and,
therefore, only consider persons, geopolitical entities, organizations,
and locations.

5.3 workflow

The workflow is visualized in Figure 5.1 and we provide an online
video that shows an exemplary walkthrough.3 The process is split into
four parts:

5.3.1 Extraction

The user starts by searching for the category names of the entity
types that should be extracted (e.g. person or film). The tool will then
automatically extract the names of all the corresponding entities (e.g.
for person: “Alan Turing”, “Edward Sapir”, ...). As the source for
the extractions, we use a dump of Wikidata. It is a free and open
knowledge base that is created both by manual edits and automatic
processes. At the time of writing, it contains over 100 million items.

For most items, the names are available in multiple languages (e.g.
32k person names for Yorùbá or 26k movie names for Spanish). The
user searches for and specifies the entity types they want to extract and
which language should be used for the names (Figure 5.2). The tool
will then extract all items that have the “is an instance of” property
of the given entity types. The results are the lists of entity names.
Additionally, the user can also provide existing lists of entity names
in case of a very specific domain.

5.3.2 Automatic Annotation

The automatic annotation is performed by checking each word against
the list of extracted entities. A word (or token) is assigned the label of
the entity name it matches. If matches of several entity names overlap,

3 https://www.youtube.com/watch?v=eXwho2Pq6Eg

https://www.youtube.com/watch?v=eXwho2Pq6Eg
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Figure 5.2: Interface in ANEA to search for Wikidata categories from which
to extract entity names.

Figure 5.3: Interface in ANEA to manually inspect the automatic labeling.

the longest match is used. I.e. for the string “United Arab Emirates”
the entity name of the country is preferred over the substring “United”
(the airline) if both are in lists of entities.

5.3.3 Evaluation

If a small set of labeled data exists, it can be used to evaluate the
automatic annotation. The tool can calculate precision, recall and F1-
score directly. It also reports the tokens that were most often labeled
incorrectly or not labeled. For a more in-depth analysis, for each token,
one can check which label was assigned, which alternative labels could
have been assigned and to which entities they correspond (Figure 5.3).
These forms of feedback allow a user to understand issues of the
automatic annotation . Specific labels can also be changed manually.

5.3.4 Tuning

ANEA provides multiple options with which the automatic annota-
tion can be improved. Guided by the evaluation from the previous
step, this allows the user to easily insert language expertise into the
annotation process and prevent common mistakes while still avoiding
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to annotate or post-edit many tokens manually. The options include
lemmatization, filtering common false positives, stopword removal,
adding alias names (like "ICLR" for the "International Conference on
Learning Representations"), splitting entity names, removing diacritics,
requiring a minimum length for the entities, prioritization of lists for
resolution of conflicts or fuzzy matching of entities.

The effects of such a tuning process are visualized in Figure 5.4 for
an Estonian dataset and the location label. Adding lemmatization in
tuning-step 1 increases recall due to the language’s rich morphological
structure that can hinder the matching. In step 3, location entities
are given a higher priority if they conflict with person entities on the
same token. In the last tuning-step, another gain can be obtained by
extracting additional entity lists for Estonian locations based on the
evaluation feedback. After the (optional) tuning process, unlabeled
text can be automatically annotated for use as distant supervision.

5.4 experimental evaluation

5.4.1 Datasets

We selected a variety of datasets that reflect different languages and
entity granularities. The first 1500 tokens of each dataset are used as
labeled training instances. Garrette and Baldridge (2013) reported this
as the number of tokens that can be annotated within two hours for
a low-resource POS task. We think that this is a reasonable amount
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of labeled data that one can expect even in a low-resource setting,
and it is also necessary for training the baselines we compare to. For
English (En), the CoNLL03 dataset is probably the most popular NER
dataset. It was created for the CoNLL-2003 shared task (Tjong Kim
Sang and De Meulder, 2003). To obtain a more specialized domain,
we manually annotated the location labels from the CoNLL03 dataset
with more specific labels. For Spanish (Es), we manually annotated
news articles with the label movie to resemble a Latin-American setting
where e.g. a start-up requires a fine-grained and less common label.
For Yorùbá (Yo), a language spoken predominantly in West Africa, we
evaluate on the dataset by Alabi et al. (2020a). We also evaluate on two
European low-resource languages, namely Estonian (Et) (Tkachenko
et al., 2013) and West Frisian (Fy) (Pan et al., 2017). All results are
reported on held-out test sets. The manually labeled data created for
this evaluation is made publicly available online.

5.4.2 Machine Learning Models

We evaluate against two baselines that should, like ANEA, be easy
and quick to use, do not require extensive development of hand-
engineered features and do not have large hardware requirements.
The Stanford NER tagger (Finkel et al., 2005) is a popular tool based
on Conditional-Random-Fields (CRF) which we use in their suggested
configuration.4 For the second baseline, a neural network (NN), we
performed preliminary experiments on held-out, English data in a
low-resource setting and chose a combination of a bidirectional Gated
Recurrent Unit (Cho et al., 2014a) and a ReLU with Dropout (Srivastava
et al., 2014) between the layers. To easily apply the model to many
different languages, we used pretrained fastText embeddings (Grave
et al., 2018a) which are available in 157 languages. Model details are
given in the code. In the high-resource setting on the full CoNLL03

dataset (>250k labeled tokens), both baselines achieve an F1 test score
of 87.

5.4.3 Experimental Setup

Experiment A: Here, the quality of the automatic annotation is evalu-
ated. The CRF is trained on the 1500 labeled training tokens of each
dataset. Similarly, for the neural network, the first 1000 tokens are used
for the training. The remaining 500 tokens are held-out as the devel-
opment set to select the best performing epoch and avoid overfitting.
For ANEA, we report the scores with and without the tuning phase.
ANEA No Tuning just uses the default settings without any labeled
supervision and no manual interaction. For ANEA + Tuning, the 1500

labeled training token are used for the manual tuning. The manual

4 https://nlp.stanford.edu/software/crf-faq.html#a

https://nlp.stanford.edu/software/crf-faq.html#a
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CRF NN ANEA ANEA

No Tuning + Tuning

P R F1 P R F1 P R F1 P R F1

En PER 75 14 23 54 40 46 36 51 42 67 49 57

En LOC 66 22 33 54 52 52 70 45 55 56 74 64

En ORG 24 08 12 23 13 16 17 07 10 21 09 13

En CITY 100 14 25 27 43 33 16 30 21 29 51 37

En COUN. 94 05 10 63 51 56 93 80 86 84 90 87

En CONTI. 00 00 00 00 00 00 75 94 83 75 94 83

Es MOVIE 75 02 05 08 07 08 32 35 33 40 40 40

Et PER 66 24 35 61 30 40 75 17 27 41 51 45

Et LOC 59 27 37 44 25 32 71 36 48 76 63 69

Et ORG 00 00 00 17 09 12 75 12 21 81 17 29

Fy PER 07 06 07 04 03 04 55 42 48 55 42 48

Fy LOC 32 55 41 33 42 37 68 24 37 61 34 43

Fy ORG 00 00 00 00 00 00 89 07 13 90 08 14

Yo PER 33 05 10 15 22 18 11 13 12 49 43 46

Yo LOC 100 07 12 48 27 35 64 72 68 65 74 69

Yo ORG 00 00 00 07 08 08 16 28 20 46 52 49

Table 5.1: Results of Experiment A comparing the automatic annotation
approaches. We report precision/recall/F1-score in percentage
(higher is better).

steps were performed by a subject with experience in NLP and fluency
in English and Spanish but not in the other languages. Interaction
was limited to no more than 10 manual steps and 30 minutes of user
interaction per dataset.

Experiment B: For evaluating the effect of the distant supervision,
unlabeled tokens are automatically annotated by the CRF, the NN
and ANEA with Tuning. The NN model is then retrained on both the
manually labeled and the distantly-supervised instances. 200k tokens
from each of the datasets are used as unlabeled data. For Spanish,
West Frisian and Yorùbá, ca. 15k and 70k and 18k tokens are used,
respectively, due to the smaller dataset sizes. These texts are disjoint
of the labeled training and test data.

5.4.3.1 Results

The results of Experiment A are given in Table 5.1. The CRF approach
can provide a high precision but often has a very low recall due
to the limited amount of training data. The NN can leverage the
pre-training of the embeddings on large amounts of unlabeled text.
However, the training data seems not enough to reach a competitive
performance. Our tool struggles most with organizations as these are
stored as several different entity types in Wikidata. Another issue is the
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NN + Distant Supervision by ...

CRF NN ANEA

En PER -35 +5 +15

En LOC -20 +1 +13

En ORG -6 0 -5

En CITY -13 +1 +6

En COUN. -45 -6 +30

En CONTI. 0 0 +88

Es Movie -7 +2 +14

Et PER -7 -7 +14

Et LOC +10 -1 +39

Et ORG -2 0 +17

Fy PER +1 0 +26

Fy LOC +4 +1 +4

Fy ORG +1 +1 +7

Yo PER -4 +6 -5

Yo LOC -25 +4 +5

Yo ORG -1 +1 +20

Table 5.2: Results of Experiment B comparing the use of the automati-
cally annotated data for distant supervision. We report change
in precision/recall/F1-score in percentage points compared to the
NN baseline in Table 5.1 (higher is better).

existence of false positives of words that have other meanings beyond
entity names, e.g. the Turkish city “Of”. Nevertheless, reasonable
results are obtained even if the amount of labeled tokens is too low
for the baselines to learn anything meaningful (cf. En CONTINENT
or Et ORG). Even without any labeled data, we are often able to
reach competitive performance. Using the tuning process is helpful to
boost the performance further. The possibility for the user to trade-off
precision and recall can be seen in several cases (e.g. En LOC or Et
PER). Overall, ANEA outperforms the other baselines in all metrics in
a majority of the settings. It achieves the best F1-score in all but one
case.

The higher quality of the automatic annotation is also reflected
in Experiment B (Table 5.2). For 14 out of 16 evaluated entity types,
the distant supervision provided by ANEA achieves the largest im-
provements. On average, it increases the classifier’s performance by
18 points F1-score.
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5.5 technical aspects

The tool consists of both a library for the core functionalities as well
as a graphical user interface. The user can control the interface in the
browser with the back end running on the local system. Alternatively,
the back end can run on a different, more powerful machine and
is then accessed remotely. All the code is published as open-source
under the Apache 2 license, and we welcome contributions from other
authors. The tool is implemented in Python 3 using Flask5 for the
webserver’s back end and Bootstrap 4

6 for the front end. To overcome
the rate limitations of the Wikidata Web API, a database dump of
Wikidata is used. To reduce hardware requirements, care was taken
during the implementation to limit the RAM footprint.

The user can upload text files or insert them directly into a text field.
For labeled data, the CoNLL column format is supported. Annotated
text can be downloaded in the same format. Tokenization and lemma-
tization are provided for a variety of languages via SpaCy (Honnibal
et al., 2020) and EstNLTK (Laur et al., 2020). For other languages, the
text can be preprocessed with an external system before inputting it,
or the external tool can be easily integrated into ANEA. Stopword
lists for 58 languages are included.

5.6 conclusion

We presented an open-source tool to obtain large amounts of distantly
supervised training data for NER in a quick way and with few manual
efforts and costs. While the annotation itself is automatic, the user can
tune it to add their expertise. To support users of varying technical
backgrounds, both a library and a graphical user interface are pro-
vided. The experiments showed its usefulness in six different language
and domain settings.

ANEA has already been used in several projects including (Lange
et al., 2019c), (Lange et al., 2019a) and (Adelani et al., 2020). We will
leverage the tool to generate the distant supervision in Chapters 6

and 7 to be able to evaluate our noise handling methods on realistic
low-resource languages.

5 http://flask.pocoo.org

6 https://getbootstrap.com

http://flask.pocoo.org
https://getbootstrap.com




6
L O W- R E S O U R C E T E C H N I Q U E S M E E T P R E - T R A I N E D
L A N G UA G E M O D E L S

In the previous chapters, we presented a system to obtain distant
supervision in an efficient way and we have seen that weak supervision
and noise handling can be effectively used to boost performance. This
chapter1 addresses previous limitations, such as the simulated low-
resource scenario. Here, we study two NLP tasks on three African
languages. For this aim, we also collected and published new datasets
for settings where data was previously lacking.

While the work above used LSTM-based models, in this chapter
we focus on the recent multilingual transformer models and evaluate
how they can be combined with low-resource techniques. Following
the categorization in Chapter 3, we study both an approach to obtain
labeled data - the previously introduced weak supervision - as well as
a transfer learning method.

6.1 introduction

Deep learning techniques, including contextualized word embeddings
based on transformers and pretrained on language modelling, have
resulted in considerable improvements for many NLP tasks. However,
they often require large amounts of labeled training data, and there is
also growing evidence that transferring approaches from high to low-
resource settings is not straightforward. In (Loubser and Puttkammer,
2020), rule-based or linguistically motivated CRFs still outperform
RNN-based methods on several tasks for South African languages. For
pretraining approaches where labeled data exists in a high-resource
language, and the information is transferred to a low-resource lan-
guage, Hu et al. (2020b) find a significant gap between performance
on English and the cross-lingually transferred models. Concurrent
to the first publication of our results, Lauscher et al. (2020b) found
that the transfer for multilingual transformer models is less effective
for resource-lean settings and distant languages but also that a small
amount of target language supervision helps to boost performance. A
popular technique to obtain labeled data quickly and cheaply is dis-
tant and weak supervision. Kann et al. (2020b) recently inspected POS
classifiers trained on weak supervision. They found that in contrast
to scenarios with simulated low-resource settings of high-resource
languages, in truly low-resource settings this is still a difficult problem.

1 This chapter is based on (Hedderich et al., 2020).
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These findings also highlight the importance of aiming for realistic
experiments when studying low-resource scenarios.

In this chapter, we analyze multilingual transformer models, namely
mBERT (Devlin, 2019; Devlin et al., 2019) and XLM-RoBERTa (Con-
neau et al., 2020). We evaluate both sequence and token classification
tasks in the form of news title topic classification and named entity
recognition (NER). A variety of approaches have been proposed to im-
prove performance in low-resource settings. In this work, we study (i)
transfer learning from a high-resource language and (ii) weak supervi-
sion. We selected these as they are two of the most popular techniques
in the recent literature and are rather independent of a specific model
architecture. Both need auxiliary data. For transfer learning, this is
labeled data in a high-resource language, and for weak supervision,
this is expert insight and a mechanism to (semi-)automatically gener-
ate labels. We see them, therefore, as orthogonal and depending on
the scenario and the data availability, either one or the other approach
might be more applicable.

Our study is performed on three linguistically different, African
languages: Hausa, isiXhosa and Yorùbá. These represent languages
with millions of speakers and active use of digital infrastructure, but
with only very limited support for NLP technologies. For this aim,
we also collected three new datasets that are made publicly available
alongside the code and additional material.2

We show both challenges and opportunities when working with
multilingual transformer models evaluating trends for different levels
of resource scarcity. We start with an overview about the languages we
study (Section 6.2) and present the datasets we evaluate on (Section
6.3). The paper is then structured into the following questions we are
interested in:

• How do more complex transformer models compare to estab-
lished RNNs? (Section 6.5)

• How can transfer-learning be used effectively? (Section 6.6)

• Is distant and weak supervision helpful? (Section 6.7)

• What assumptions do we have to consider when targeting a
realistic treatment of low-resource scenarios? (Section 6.8)

All experimental details are given at the end of the chapter in Section
6.9.

6.2 languages

In this work, we evaluate on three African languages, namely Hausa,
isiXhosa and Yorùbá. Hausa is from the Afro-Asiatic family while

2 https://github.com/uds-lsv/transfer-distant-transformer-african

https://github.com/uds-lsv/transfer-distant-transformer-african
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isiXhosa and Yorùbá belong to different branches of the large Niger-
Congo family. Hausa and Yorùbá are the second and third most spoken
languages in Africa, and isiXhosa is recognized as one of the official
languages in South Africa and Zimbabwe.

The Hausa language is native to the northern part of Nigeria and
the southern part of the Republic of Niger with more than 45 million
native speakers (Eberhard et al., 2019). It is the second most spoken
language in Africa after Swahili. Hausa is a tonal language, but this
is not marked in written text. The language is written in a modified
Latin alphabet.

Yorùbá, on the other hand, is native to south-western Nigeria and
the Republic of Benin. It has over 35 million native speakers (Eberhard
et al., 2019) and is the third most spoken language in Africa. Yorùbá is
a tonal language with three tones: low, middle and high. These tones
are represented by the grave (“\”), optional macron (“−”) and acute
(“/”) accents respectively. The tones are represented in written texts
along with a modified Latin alphabet.

Lastly, we consider isiXhosa, a Bantu language that is native to
South Africa and also recognized as one of the official languages in
South Africa and Zimbabwe. It is spoken by over 8 million native
speakers (Eberhard et al., 2019). isiXhosa is a tonal language, but the
tones are not marked in written text. The text is written with the Latin
alphabet.

Kann et al. (2020b) used as an indicator for a low-resource lan-
guage the availability of data in the Universal Dependency project
(Nivre et al., 2020). The languages we study suit their indicator having
less than 10k (Yorùbá) or no data (Hausa, isiXhosa) at the time of
writing. Yorùbá has been part of the unlabeled training data for the
mBERT multilingual, contextual word embeddings. Texts in Hausa
and isiXhosa have been part of the XLM-RoBERTa training.

6.3 datasets

The three languages have few or no labeled datasets online for popular
NLP tasks like named entity recognition (NER) and topic classification.
We use the NER dataset by Eiselen (2016) for isiXhosa and the one by
Alabi et al. (2020b) for Yorùbá. We collected and manually annotated
a NER dataset for Hausa and news title topic classification datasets
for Hausa and Yorùbá. Table 6.1 gives a summary of the datasets.

6.3.1 Existing Datasets

The WikiAnn corpus (Pan et al., 2017) provides NER datasets for 282

languages available on Wikipedia. These are, however, only silver-
standard annotations and for Hausa and isiXhosa less than 4k and
1k tokens respectively are provided. The LORELEI project announced
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Dataset Name Data Source Train/Val/Test

Sentences

Hausa NER* VOA Hausa 1,014 / 145 / 291

Hausa Topic Classification* VOA Hausa 2,045 / 290 /582

isiXhosa NER (Eiselen, 2016) SADiLaR 5,138 / 608 / 537

Yorùbá NER (Alabi et al., 2020b) GlobalVoices 816 / 116 / 236

Yorùbá Topic Classification* BBC Yoruba 1,340 / 189 / 379

Table 6.1: Datasets Summary. *Created for this work.

the release of NER datasets for several African languages via LDC
(Strassel and Tracey, 2016; Tracey et al., 2019) but have not yet done so
for Hausa and Yorùbá at the time of writing.

Eiselen and Puttkammer (2014) and Eiselen (2016) created NLP
datasets for South African languages. We use the latter’s NER dataset
for isiXhosa. For the Yorùbá NER dataset (Alabi et al., 2020b), we use
the authors’ split into training, dev and test set of the cased version
of their data.3 For the isiXhosa dataset,4 we use an 80%/10%/10%
split following the instructions in (Loubser and Puttkammer, 2020).
The split is based on token-count, splitting only after the end of the
sentence (information obtained through personal conversation with
the authors). For the fine-tuning of the zero- and few-shot models, the
standard CoNLL03 NER (Tjong Kim Sang and De Meulder, 2003) and
AG News (Zhang et al., 2015) datasets are used with their existing
splits.

6.3.2 New Datasets

6.3.2.1 Hausa NER

For the Hausa NER annotation, we collected 250 articles from VOA
Hausa,5 50 articles each from the five pre-defined categories of the
news website. The categories are Najeriya (Nigeria), Afirka (Africa),
Amurka (USA), Sauran Duniya (the rest of the world) and Kiwon
Lafiya (Health). We removed articles with less than 50 tokens which
results in 188 news articles (over 37K tokens). We asked two volun-
teers who are native Hausa speakers to annotate the corpus separately.
Each volunteer was supervised by someone with experience in NER
annotation. Following the named entity annotation in Yorùbá by Alabi
et al. (2020b), we annotated PER, ORG, LOC and DATE (dates and
times) for Hausa. The annotation was based on the MUC-6 Named

3 https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yor%

C3%B9b%C3%A1-NER

4 https://repo.sadilar.org/handle/20.500.12185/312

5 https://www.voahausa.com

https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yor%C3%B9b%C3%A1-NER
https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yor%C3%B9b%C3%A1-NER
https://repo.sadilar.org/handle/20.500.12185/312
https://www.voahausa.com
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Entity Task Definition guide.6 Comparing the annotations of the vol-
unteers, we observed a conflict for 1302 tokens (out of 4838 tokens)
excluding the non-entity words (i.e. words with ’O’ labels). One of
the annotators was better in annotating DATE, while the other was
better in annotating ORG especially for multi-word expressions of
entities. We resolved all the conflicts after discussion with one of the
volunteers. The split of annotated data of the Yoruba and Hausa NER
data is 70%/10%/20% for training, validation and test sentences.

6.3.2.2 Hausa and Yorùbá Text classification

For the topic classification datasets, news titles were collected from
VOA Hausa and the BBC Yoruba news website.7 Two native speakers
of the language annotated each dataset. We categorized the Yorùbá
news headlines into 7 categories, namely “Nigeria”, “Africa”, “World”,
“Entertainment”, “Health”, “Sport”, “Politics”. Similarly, we annotated
5 (of the 7) categories for Hausa news headlines, excluding “Sport”
and “Entertainment” as there was only a limited number of examples.
The “Politics” category in the annotation is only for Nigerian political
news headlines. Comparing the two annotators, there was a conflict
rate of 7.5% for Hausa and 5.8% for Yorùbá. The total number of
news titles after resolving conflicts was 2,917 for Hausa and 1,908 for
Yorùbá.

6.4 experiments

To evaluate different amounts of resource-availability, we use subsets
of the training data with increasing sizes from ten to the maximally
available number of sentences. All the models are trained on their
corresponding language-model pretraining. Except if specified other-
wise, the models are not fine-tuned on any other task-specific, labeled
data from other languages. We report mean F1-score on the test sets
over ten repetitions with standard error on the error bars. Additional
experimental details are given in the following sections and at the end
of the chapter. We made the code as well as a table with the scores for
all the runs available online.

6.5 comparing to rnns

Loubser and Puttkammer (2020) showed that models with compara-
tively few parameters, like CRFs, can still outperform more complex,
neural RNNs models for several task and low-resource language com-
binations. This motivates the question whether model complexity is
an issue for these low-resource NLP models. We compare to simple

6 https://cs.nyu.edu/faculty/grishman/NEtask20.book_1.html

7 https://www.bbc.com/yoruba

https://cs.nyu.edu/faculty/grishman/NEtask20.book_1.html
https://www.bbc.com/yoruba
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Figure 6.1: Comparing to RNNs on NER datasets.

GRU based (Cho et al., 2014b) models as well as the popular (non-
transformer) combination of LSTM-CNN-CRF (Ma and Hovy, 2016a)
for NER and to the RCNN architecture (Lai et al., 2015) for topic
classification. For these models, we use pre-trained, non-contextual
word embeddings trained for the specific language. Figures 6.1 and
6.2 show that an increase in model complexity is not an issue in these
experiments. For Hausa and Yorùbá and for the low resource settings
for isiXhosa, BERT and XLM-RoBERTa actually outperform the other
baselines, possibly due to the larger amounts of background knowl-
edge through the language model pre-training. For larger amounts
of task-specific training data, the LSTM-CNN-CRF and the trans-
former models perform similarly. One should note that for isiXhosa,
the linguistically motivated CRF (Eiselen, 2016) still outperforms all
approaches on the full dataset.

6.6 transfer learning

The mBERT and XLM-RoBERTa models are trained with tasks that can
be obtained from unlabeled text, like masked language modelling. Ad-
ditionally, the multilingual models can be fine-tuned on task-specific,
supervised data but from a different, high-resource language. There is
evidence that the multilingual transformer models can learn parallel
concepts across languages (Hu et al., 2020b; Pires et al., 2019; Wu
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Figure 6.2: Comparing to RCNN and using transfer learning on topic classi-
fication datasets.

and Dredze, 2019). This allows to then apply or evaluate the model
directly without having been fine-tuned on any labeled data in the
target language (zero-shot) or on only a small amount of labeled data
in the target language (few-shot).

For NER, we pre-train on the English CoNLL03 NER dataset (Tjong
Kim Sang and De Meulder, 2003). For topic classification, the models
are pre-trained on the English AG News corpus (Zhang et al., 2015).
The texts in the high-resource English and the low-resource Hausa and
Yorùbá target datasets share the same domain (news texts). One issue
that is visible in these experiments is the discrepancy between classes.
While some classes like “Politics” are shared, the topic classification
datasets also have language- and location-specific classes like “Nigeria”
and “Africa” which are not part of the English fine-tuning dataset. In
our experiments, we use the intersection of labels for NER (excluding
DATE and MISC for Hausa and Yorùbá) and the union of labels for
topic classification.

The results for NER in Figure 6.3 confirm the benefits of fine-tuning
on high-resource languages already shown in past research. They show,
however, also the large gains in performance that can be obtained by
training on a minimal number of target instances. While the zero-
shot setting in (Hu et al., 2020b) is interesting from a methodological
perspective, using a small training set for the target language seems
much more beneficial for a practical application. In our experiments,
we get - with only ten labeled sentences - an improvement of at least
10 points in the F1-score for a shared label set on NER. The difference
between training with and without transfer learning disappear once
enough target language training data is available - in our settings with
around 600 to 800 labeled sentences. For topic classification (Figure
6.2), the transfer learning is not beneficial, which might be due to the
mismatch in the label sets. Taking the label space into account, as done
e.g. by Halder et al. (2020) for single-language data, might help the
transfer to unseen, cross-lingual labels.
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Figure 6.3: Using transfer learning for NER.

6.7 weak supervision

Distant and weak supervision are popular techniques when labeled
data is lacking. It allows a domain expert to insert their knowledge
without having to label every instance manually. This kind of (semi-)
automatic supervision tends to contain more errors which can hurt the
performance of classifiers (see e.g. Fang and Cohn (2016)). To avoid
this, it can be combined with label noise handling techniques. We
introduced this pipeline in Chapter 4 and similar approaches have
also been successfully applied for several other NLP tasks (see Chapter
3), however, mostly for RNN based architectures. In Section 6.5 we
saw that the RNN models have a lower baseline performance. We
are, therefore, interested in whether weak supervision is still useful
for the better performing transformer models. Several of the past
works evaluated their approach only on high-resource languages or
simulated low-resource scenarios. We are, thus, also interested in how
the weak supervision performs for the actual resource-lean African
languages we study.

To create the weak supervision, native speakers with a background
in NLP were asked to write labeling rules. For the NER labels PER,
ORG and LOC, we match the tokens against lists of entity names.
These were extracted from the corresponding categories from Wikidata.
For the DATE label, the insight is used that date expressions are
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Figure 6.4: Using weak and distant supervision for NER.

usually preceded by date keywords in Yorùbá, as reported by Adelani
et al. (2020). We find similar patterns in Hausa like “ranar”(day),
“watan” (month), and “shekarar”(year). For example, “18th of May, 2019”
in Hausa translates to “ranar 18 ga watan Mayu, shekarar 2019”. The
annotation rules are based on these keywords and further heuristics.
Directly applying this weak supervision on the NER test sets results
in an F1-score of 54% and 62% on Hausa and Yorùbá, respectively.

For the topic classification task, the weak supervision rules are based
on a dictionary of words relating to each of the classes. To induce the
dictionaries, we collected terms related to different classes from web
sources. For example, for the “Sport” label, names of sportspeople
and sport-related organizations were collected and similarly for the
“Africa” label, names of countries, their capitals and major cities and
their politicians. To label a news headline, the intersection between
each class-dictionary and the text was computed, and a class was
selected with a majority voting scheme. We obtain an F1-score of
49% and 55% on the Hausa and Yorùbá test set respectively when
applying the weak supervision directly to the topic classification test
sets. Additional details on the weak supervision are given in Section
6.9.

For label noise handling, we use the confusion matrix approach for
NER introduced in Chapter 4, marked as cm in the plots. Additionally,
we propose to combine it with the smoothing concept by Lv et al.
(2020), marked as cm-smooth.

The Figures 6.4 and 6.5 show that when only a small amount of
manually labeled data is available, weak supervision can be a helpful
addition. E.g. for the NER task in Yorùbá, combining weak supervi-
sion and noise handling with 100 labeled sentences achieves similar
performance to using 400 manually labeled sentences. For label noise
handling, combining the confusion matrix with the smoothing ap-
proach might be beneficial because the estimated confusion matrix
is flawed when only small amounts of labeled data are given. When
more manually labeled data is available, the noisy annotations lose
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Figure 6.5: Using weak and distant supervision for topic classification.

their benefit and can become harmful to performance. Improved noise-
handling techniques might be able to mitigate this.

6.8 questioning assumptions

In this section, we want to discuss certain assumptions taken by us
and previous work in low-resource learning to see if these hold and
what challenges and opportunities they could bring for future work.

6.8.1 Development Set

Kann et al. (2019) criticized that research on low-resource often as-
sumes the existence of a development set. Addressing this, we perform
hyperparameter optimization on high-resource English data. For early-
stopping (to avoid overfitting), Kann and her colleagues experiment
with obtaining an early-stop-epoch from the average of several other
languages. To avoid this multi-language set-up and the need to obtain
labeled data for multiple languages, we suggest using instead a devel-
opment set downsized by the same factor as the training data. This
approach keeps the ratio between training and development set giving
the development set a reasonable size to obtain in a low-resource
setting. For the setting with ten labeled sentences for training, also
ten sentences are used for the dev set. The results in Figure 6.6 show
that a similar performance can be reached with a limited development
set compared to the full development set. All other experiments in
this chapter use, therefore, the limited development set to reduce the
assumed availability of labeled data.

6.8.2 Hardware Resources

While the multilingual transformer models show impressive improve-
ments over the RNN baselines, they also require more hardware
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Figure 6.6: Studying the use of the development set for Hausa and Yorùbá.
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Figure 6.7: Comparing mBERT to its distilled version for Yorùbá.

resources. The LSTM-CNN-CRF model, e.g. has ca. 5M parameters
compared to mBERT’s over 150M parameters. The computing capa-
bilities for training and deploying such models might not always be
given in low-resource scenarios. Through personal conversations with
researchers from African countries, we found that this can be an issue.
There are approaches to reduce model size while keeping a similar
performance quality, e.g. the 25% smaller DistilBERT (Sanh et al., 2019).
Figure 6.7 shows that this performs indeed similar in many cases but
that there is a significant drop in performance for NER when only few
training sentences are available.

6.8.3 Annotation Time

In (Hu et al., 2020b) and (Kann et al., 2020b), it is assumed that no
labeled training data is available for the target language. In the previ-
ous sections, we showed that even with ten labeled target sentences,
reasonable model quality can be achieved. For our annotation efforts,
we measured on average 1 minute per annotator per sentence for NER
and 6 seconds per sentence for topic classification. We, therefore, think
that it is reasonable to assume the availability of small amounts of
labeled data. Especially, as we would argue that it is beneficial to
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have a native speaker or language expert involved when developing a
model for a specific language.

For weak supervision, these annotation times pose a challenge.
Extracting named entities from knowledge bases requires minimal
manual effort assuming a set-up system (as introduced in Chapter
5) and manual crafting rules took 30 minutes for the DATE label.
Given our annotators’ speed, they would be able to label 30 sentences
in the same time. This makes the weak supervision an interesting
competitor to manual annotation. In contrast, 2.5 hours were needed
to create the rules for each topic classification dataset. In that time, 1500

sentences could be manually labeled. There, manual annotation easily
outperforms weak supervision, if annotation time is the only criterium.
When reporting results for weak supervision, the performance benefits
should therefore also be compared against manual annotation in the
same time frame.

6.9 experimental details

In this section, we give additional details about the experimental set-
up, the weak and distant supervision and the model hyperparameters.

6.9.1 Word Embeddings

For the RNN models, we make use of word features obtained from
Word2Vec embeddings for the Hausa language and FastText embed-
dings for Yorùbá and isiXhosa languages. We utilize the better quality
embeddings recently released by Abdulmumin and Galadanci (2019)
and Alabi et al. (2020b) for Hausa and Yorùbá respectively instead
of the pre-trained embeddings by Facebook that were trained on a
smaller and lower quality dataset from Wikipedia. For isiXhosa, we did
not find any existing word embeddings, therefore, we trained FastText
embeddings from data collected from the I’solezwe news website8 and
the OPUS corpus (Tiedemann, 2012b). The corpus size for isiXhosa is
1.4M sentences (around 15M tokens). We trained FastText embeddings
for isiXhosa using Gensim9 with the following hyper-parameters: em-
bedding size of 300, context window size of 5, minimum word count
of 3, number of negative samples ten and number of iterations 10.

6.9.2 Weak and Distant Supervision

6.9.2.1 Distant Supervision for Person Names, Organisations and Locations

We make use of lists of entities to annotate PER, ORG and LOC
automatically. We use ANEA (see Chapter 5) to extract personal names,

8 https://www.isolezwelesixhosa.co.za/

9 https://radimrehurek.com/gensim/

https://www.isolezwelesixhosa.co.za/
https://radimrehurek.com/gensim/
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organizations and locations from Wikidata as entity lists and assign
a corresponding named entity label if tokens from an unlabeled text
match an entry in an entity list. The option to tune the automatic
annotation is used to improve matching. For Yorùbá, a minimum
token length of 3 was set for extraction of LOC and PER, while the
minimum length for ORG was set to 2. This reduces the false positive
rate, e.g. preventing matches with function words like “of”.

Applying this on the test set, we obtained a precision of 80%, 38%
and 28% for LOC, ORG and PER respectively; a recall of 73%, 52%
and 14% for LOC, ORG and PER respectively; and an F1-score of 76%,
44% and 19% for LOC, ORG and PER respectively.

For Hausa NER, a minimum token length of 4 was set for extraction
of LOC, ORG and PER. Based on these manual heuristics, on the test
set, we obtained a precision of 67%, 12% and 47% for LOC, ORG and
PER respectively; a recall of 63%, 37% and 56% for LOC, ORG and
PER respectively; and an F1-score of 65%, 18% and 51% for LOC, ORG
and PER respectively.

6.9.2.2 DATE Rules for NER

Rules allow us to apply the knowledge of domain experts without
the manual effort of labeling each instance. We asked native speakers
with knowledge of NLP to write DATE rules for Hausa and Yorùbá. In
both languages, date expressions are preceded by date keywords, like
“ranar” / “o. jó. ” (day), “watan” / “os.ù” (month), and “shekarar” / “o. dú. n”
(year) in Hausa/Yorùbá. For example, “18th of December, 2019” in
Hausa / Yorùbá translates to “ ranar 18 ga watan Disamba, shekarar 2019”
/ “o. jó. 18 os.ù O. pè. , o. dún 2019”. The annotation rules are based on the
following three criteria: (1) A token is a date keyword or follows a date
keyword in a sequence. (2) A token is a digit, and (3) other heuristics
to capture relative dates and date periods connected by conjunctions
e.g between July 2019 and March 2020. Applying these rules results
in a precision of 49.30%/51.35%, a recall of 60.61%/79.17% and an
F1-score of 54.42%/62.30% on the Hausa/Yorùbá test sets respectively.

6.9.2.3 Rules for Topic Classification

For the Yorùbá topic classification task, we collected terms that cor-
respond to the different classes into sets. For example, the set for the
class Nigeria contains names of agencies and organizations, states and
cities in Nigeria. The set for the World class is made up of the name
of countries of the world, their capitals and major cities and world af-
fairs related organizations. Names of sporting clubs and sportspeople
across the world were used for the Sports class and list of artists and
actresses and entertainment-related terms for the Entertainment class.
Given a news headline to be annotated, we get the union set of 1- and
2-grams and obtain the intersection with the class dictionaries we have.
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The class with the highest number of intersecting elements is selected.
In the case of a tie, we randomly pick a class out the classes with a
tie. Just as we did for Yorùbá, we collected the class-related tokens
for the Hausa text classification. We, however, split the classification
into two steps, checking some important tokens first and then using
the same approach as we used for Yorùbá. If a headline contains the
word cutar (disease), it is classified as Health, if it contains tokens such
as inec, zaben, pdp or apc (which are all politics related tokens) it is
classified as Politics. Furthermore, sentences with any of the tokens
buhari, legas, kano, kaduna or sokoto are classified as Nigeria while sen-
tences with afurka, kamaru or nijar are classified as Africa. If none of
the tokens highlighted above is found, we apply the same approach
as we did for the Yorùbá setting, which is a majority voting of the
intersection set of the news headline with a keyword set for each class.
Applying these rules results in a precision of 59.54%/60.05%, a recall
of 46.04%/53.66% and an F1-score of 48.52%/54.93% on the Hausa
/Yorùbá test set respectively.

6.9.3 Model Settings

6.9.3.1 General

All experiments were repeated ten times with varying random seeds
but with the same data (subsets). We report mean F1 test score and
standard error (σ/

√
10). For NER, the score was computed following

the standard CoNLL approach (Tjong Kim Sang and De Meulder, 2003)
using the seqeval implementation.10 Labels were in the BIO2-scheme.
For evaluating topic classification, the implementation by scikit-learn
was used.11 All models were trained for 50 epochs, and the epoch that
performed best on the (possibly size-reduced) development set was
used for evaluation.

6.9.3.2 BERT and XLM-RoBERTa

As multilingual transformer models, mBert and XLM-RoBERTa were
used, both in the implementation by Wolf et al. (2019). The specific
model IDs were bert-base-multilingual-cased and xlm-roberta-base.12 For
the DistilBERT experiment it was distilbert-base-multilingual-cased. As
is standard, the last layer (language model head) was replaced with a
classification layer (either for sequence or token classification). Models
were trained with the Adam optimizer and a learning rate of 5e−5.
Gradient clipping of value 1 was applied. The batch size was 32 for
NER and 128 for topic classification. For weak supervision and XLM-

10 https://github.com/chakki-works/seqeval

11 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

classification_report.html

12 https://huggingface.co/transformers/pretrained_models.html

https://github.com/chakki-works/seqeval
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://huggingface.co/transformers/pretrained_models.html
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RoBERTa on the Hausa topic classification data with 100 or more
labeled sentences, we observed convergence issues where the trained
model would just predict the majority classes. We, therefore, excluded
for this task runs where on the development set the class-specific F1 score
was 0.0 for two or more classes. The experiments were then repeated
with a different seed.

6.9.3.3 Other Architectures

For the GRU and LSTM-CNN-CRF model, we used the implementa-
tion by Chernodub et al. (2019) with modifications to support FastText
embeddings and the seqeval evaluation library. Both model architec-
tures were bidirectional. Dropout of 0.5 was applied. The batch-size
was 10 and SGD with a learning rate of 0.01, and a decay of 0.05 and
momentum of 0.9 was used. Gradients were clipped with a value of 5.
The RNN dimension was 300. For the CNN, the character embedding
dimension was 25 with 30 filters and a window-size of 3.

For the topic classification task, we experimented with the RCNN
model proposed by Lai et al. (2015). The hidden size in the Bi-LSTM
was 100 for each direction. The linear layer after the Bi-LSTM reduced
the dimension to 64. The model was trained for 50 epochs.

6.9.3.4 Transfer Learning

For transfer learning, the model was first fine-tuned on labeled data
from a high-resource language. Following Hu et al. (2020b), we used
the English CoNLL03 NER dataset (Tjong Kim Sang and De Meulder,
2003) for NER. It consists of ca. 8k training sentences. The model was
trained for 50 epochs and the weights of the best epoch according to
the development set were taken. The training parameters were the
same as before. On the English CoNLL03 test set, the model achieved a
performance of 0.90 F1-score. As the Hausa and Yorùbá datasets have
slightly different label sets, we only used their intersection, resulting
in the labels PER, LOC and ORG and excluding MISC from CoNLL03

and the DATE label from Hausa/Yorùbá. For isiXhosa, the label sets
were identical (i.e. also including MISC). After fine-tuning the model
on the high-resource data, the model was directly evaluated on the
African test set (for zero-shot) or fine-tuned and then evaluated on the
African data (for few-shot).

For topic classification, the AG News corpus was used (Zhang et al.,
2015). It consists of 120k training sentences. The model was trained for
20 epochs and the weights of the best epoch according to the test set
were used. On this set, an F1-score of 0.93 was achieved. The training
procedure was the same as above. For the labels, we used the union
of the labels of the AG News corpus (Sports, World, Business and
Sci/Tech) and the African datasets.
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6.9.3.5 Label Noise Handling

We used the specific approach presented in Chapter 4 that was de-
veloped to work with small amounts of manually labeled, clean data
and a large amount of automatically annotated, noisy labels obtained
through weak supervision. To get the confusion matrix of the noise,
the weak supervision was applied on the small set of clean train-
ing instances. From the resulting pairs of clean and noisy labels, the
confusion matrix was estimated.

In a setting where only a few instances were available, the estimated
confusion matrix might not be close to the actual noise distribution.
We, therefore, combined it with the smoothing approach by Lv et al.
(2020). Each entry of the probabilistic confusion matrix was raised to
the power of β and then row-wise normalized.

Following the insights from Chapter 4, we did not use the full
amount of available, weakly supervised instances in each epoch. In-
stead, in each epoch, only a randomly selected subset of the size of the
clean, manually labeled training data was used to lessen the negative
effects of the noisy labels additionally. For smoothing, β = 0.8 was
used as this performed best for Lv et al. (2020).

6.10 conclusions

In this chapter, we evaluated transfer learning and weak supervision
on multilingual transformer models, studying realistic low-resource
settings for African languages. We showed that even with a small
amount of labeled data, reasonable performance can be achieved. With
few-shot transfer learning, just 10 labeled target language sentences
are needed to reach a similar performance as a model trained on
several hundred labeled sentences of only the target language. While
transfer learning performed well for NER, the study also showed that
the method struggled on the topic classification datasets, possibly due
to the label mismatch. Here, weak supervision could shine with its
higher flexibility for language specific labels. With our new datasets,
we hope that we can foster future research in this area.

Realistic evaluations are important to ensure that methods are appli-
cable in the real world. In the second part of the analysis, we reflected
on assumptions taken by us and previous low-resource work and how
realistic they are. Assuming access to a large development set seems
unrealistic in a low-resource scenario. We showed that, instead, a
development set of limited size can be an alternative obtaining similar
test performance. Another assumption is the availability of expensive
hardware such as GPUs with large memory. As this might not be
the case in low-resource scenarios, distilled versions of these models
could be an option to reduce the memory requirements. While these
models achieve similar performance as their original counterparts in
the higher resourced settings, we saw that the performance difference
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is more noticeable in some of the low-resource cases. Last but not least,
we argue that one should compare to the strong baseline of spending
the same time manually labeling data as is needed to set-up the weak
supervision by the domain expert. This provides a challenge for weak
supervision as well as motivating the development of better and faster
weak supervision systems in the future.

Above, we saw the benefit that label noise handling can bring to
improve weak supervision. In the next chapter, we will take a closer
look at noise modeling and identify from a theoretic perspective the
factors that influence the estimation of label noise models.
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N O I S E M O D E L E S T I M AT I O N O N R E A L I S T I C N O I S E

In Chapters 4 and 6, we showed that label noise modeling can be used
to better leverage weakly labeled data in applied low-resource NLP
settings. In this chapter,1 we will revisit label noise modeling from
a more task-independent and theoretic perspective. We identify the
factors that influence the estimation of the noise model. Bridging back
to the applied evaluation, we also compare the types of synthetic noise
often assumed in theoretic work to realistic noise that might be found
“in the wild.”

7.1 introduction

One of the factors in the success of deep neural networks is the
availability of large, labeled datasets. Where such labeled data is not
available, weak and distant supervision have become popular. Related
but different to semi-supervised learning, in distant supervision, the
unlabeled data is automatically annotated by a separate process using
e.g. rules and heuristics created by expert (Ratner et al., 2016) or
exploiting the context of images (Mahajan et al., 2018). For information
extraction from text (Mintz et al., 2009), this has become one of the
dominant techniques to overcome the lack of labeled data.

While distant supervision allows generating labels in a cheap and
fast way, these labels tend to contain more errors than gold stan-
dard ones. We have seen in previous chapters that training with this
additional data might even deteriorate the performance of a classifier.

Effectively leveraging this noisily-labeled data for machine learning
algorithms has become a very active field of research. One of the major
approaches is the explicit modeling of the noise. This general concept
is task-independent and can be added to existing deep learning archi-
tectures. It is visualized in Figure 7.1. The base model is the model that
was originally developed for a specific classification task. It is directly
used during testing and when dealing with other clean data. When
working with noisily-labeled data during training, a noise model is
added after the base model’s output. The noise model is an estimate of
the underlying noise process. The training process of the base model
can benefit from it as the noise model can be seen as changing the
distribution of the labels from the clean to the noisy. This will be
properly defined below.

Many works on noise modeling assume that no manually annotated,
clean data is available. In Chapter 6, we have shown, however, that it

1 This chapter is based on (Hedderich et al., 2021c).
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Figure 7.1: Visualization of the general noise model architecture. The base
model works directly on the clean data and predicts the clean label
y. For noisily-labeled data, a noise model is added after the base
model’s predictions.

is both realistic and beneficial to assume a small amount of manually
labeled instances. This motivates us to study in this work scenarios
where a small amount of clean, gold-standard data, as well as a large
amount of noisily labeled data, are available.

In this chapter, we focus on the quality of the noise model. The
better such a model is estimated, the better it can model the relation-
ship between clean and noisy labels. We are interested in the factors
on which the quality of the noise model depends. We show, both
theoretically and empirically, the influence of the clean data and the
noise properties. We also propose to adapt the sampling technique
to obtain more accurate estimates. Apart from helping to improve
the understanding of these noise models in general, we hope that the
insights can also be useful guidance for practitioners.

In the noisy labels literature, theoretical insights are often evaluated
only on simulated noise processes, e.g. on MNIST with added single-
label-flip noise (e.g. in Reed et al. (2015), Goldberger and Ben-Reuven
(2016), Bekker and Goldberger (2016), Patrini et al. (2017) and Han et al.
(2018)). This synthetic noise has the advantage that it can be controlled
completely and allows to rigorously and continuously evaluate aspects
like the noise level. However, certain assumptions about the noise
have to be taken. And these are usually the same assumptions that
are chosen for the noise model itself. It might, therefore, not be too
surprising that such a model is suited for such a noise.

Recently, efforts have been taken to also evaluate on more realistic
scenarios, mostly in the vision domain, e.g. the Clothing1M dataset
by Xiao et al. (2015). We want to add to this by making available
a noisy label dataset from the natural language processing (NLP)
domain based on an existing named entity recognition (NER) corpus.
It provides parallel clean and noisy labels for the full data allowing to
evaluate different scenarios of resource availability of both clean and
noisy data. This new dataset also contains properties that can make
learning with noisy labels more challenging such as skewed label
distributions and a noise level higher than the true label probability in
some settings. In contrast to existing work, we provide seven different
sets of noisy labels, each obtained by a realistic noise process via
different heuristics in the distant supervision. This makes it possible
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to experiment with different noise levels for the same instances. The
dataset along with the code for the experiments is made publicly
available.2

Our key contributions:

• A derivation of the expected error of the noise model estimated
from pairs of clean and noisy labels with empirical verification of
the derived results on both simulated and realistic noisy labels.

• A set of experiments analyzing how the noise model estimation
influences the test performance of the base model.

• NoisyNER, an NLP dataset with noisy labels obtained through
non-synthetic, realistic distant supervision that also provides
different levels of noise and parallel clean labels.

7.2 background

We are given a dataset D consisting of instances (x, ŷ) where ŷ is
a noisy label that can differ from the unknown, clean/true label y.
Both clean and noisy label have one of k possible label values/classes.
We assume that the change from the clean to the noisy label was
performed by a probabilistic noise process described as p(ŷ = j|y = i).
This describes the probability of a true label y being changed from
value i to the noisy label ŷ with label value j. With probability p(ŷ =

j|y = j) the label value is kept unchanged. This is a common approach
to describe noisy label settings. Under this process, a uniform noise
(Larsen et al., 1998) with noise level ε is obtained with

puni(ŷ = j|y = i) =

{
1− ε, for i = j

ε
k−1 , for i 6= j

, (7.1)

and a single label-flip noise (Reed et al., 2015) via

pflip(ŷ = j|y = i) =


1− ε, for i = j

ε, for one i 6= j

0, else

. (7.2)

In this work, we will use the more general form that just requires
that a noise process can be described with a valid noise transition
probability p(ŷ = j|y = i) (Bekker and Goldberger, 2016), i.e.

k

∑
j=1

p(ŷ = j|y = i) = 1 and p(ŷ = j|y = i) ≥ 0 ∀i, j. (7.3)

2 https://github.com/uds-lsv/noise-estimation

https://github.com/uds-lsv/noise-estimation
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(a) uniform (b) single-flip (c) multi-flip

Figure 7.2: Different noise processes visualized as noise matrices M: uniform
noise (ε = 0.5), single-flip noise (ε = 0.3) and multi-flip noise
(ε = 0.4).

This allows to model more complex noise processes where a true
label can be confused with multiple other labels at different noise
rates/probabilities. We call this multi-flip noise. This definition gener-
alizes to multi-class classification what in the binary case Natarajan
et al. (2013) and Scott et al. (2013) describe as class-conditional and
asymmetric noise. It is called Markov label corruption by Rooyen and
Williamson (2017).

The noise process can also be described as a matrix M ∈ Rk×k where

Mi,j = p(ŷ = j|y = i) . (7.4)

The matrix M is called confusion or noise transition matrix. See Figure
7.2 for example matrices with uniform, single-flip and a more complex
multi-flip noise.

For a multi-class classification setting, this noise process results in
the following relation:

p(ŷ = j|x) =
k

∑
i=1

p(ŷ = j|y = i)p(y = i|x) . (7.5)

This is used to adapt the predictions from the clean label distribution
p(y = i|x) (learned by the base model) to the noisy label distribution
p(ŷ = j|x) for the noisily labeled data via the noise process or model
p(ŷ = j|y = i).

Several ways have been proposed to estimate the noise model when
only noisy data is available. This includes the use of expert insight
(Mnih and Hinton, 2012), EM-algorithm (Bekker and Goldberger,
2016; Chen et al., 2019a; Paul et al., 2019), backpropagation with
regularizers (Luo et al., 2017; Sukhbaatar et al., 2015) and the estimates
of a pretrained neural network (Dgani et al., 2018; Goldberger and
Ben-Reuven, 2016; Patrini et al., 2017; Wang et al., 2019). In Chapters 4

and 6, we studied a setting where a small portion of clean data can be
used. Noise model estimation methods have also been proposed for
such a scenario by Fang and Cohn (2016), Hendrycks et al. (2018), and
Xiao et al. (2015) and Lange et al. (2019c).
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Out of the different approaches to estimate a noise model given a
small amount of clean labels, we will follow the specific definitions
from Chapter 4 which are based on (Goldberger and Ben-Reuven,
2016) and are also used in (Lange et al., 2019c). We assume that a small
dataset DC with clean labels exists, i.e. (x, y) ∈ DC is known. The size
of this clean dataset is much smaller than that of the noisy dataset D.
We then relabel the instances in DC with the same mechanism that
was used for D (e.g. distant supervision) to obtain ŷ. This results in a
set SNC of pairs (y, ŷ) with |SNC| = |DC|. The noise matrix M is then
estimated as M̃ using the transitions from y to ŷ (or equivalently the
confusion between y and ŷ):

M̃ij =
mij

ni
=

∑
(y,ŷ)∈SNC

1{y=i,ŷ=j}

∑
(y,ŷ)∈SNC

1{y=i}
, (7.6)

where mij is the number of times that the label was observed to change
from i to j due to the noise process and ni is the number of instances
in DC with label y = i. M̃ is the estimated model of the noise process.
This noise model is then integrated into the training process using
Equation 7.4 and 7.5 and as visualized in Figure 7.1.

7.3 expected error of the noise model

The noise model obtained in Equation 7.6 is an approximation of
the underlying true noise process estimated on a small number of
instances DC. In this section, we derive a formula for the expected
error of the estimated noise model M̃. This gives us insights into the
factors that influence the noise model’s quality as well as their effect.

Assumptions: In the following proofs, we assume that M describes
a noise process following Equations 7.3 and 7.4. M̃ij is estimated using
Equation 7.6.

We study two sampling techniques on how to obtain the set of clean
and noisy label pairs |SNC|. Commonly, a fixed number of unlabeled
instances n is obtained and then manually annotated with gold labels.
The value of ni then follows the distribution of classes in the data. We
call this Variable Sampling as the value of ni varies.

In contrast to that, for Fixed Sampling, for each label value i, we
sample ni instances with y = i. This could be conducted e.g. by
asking annotators to provide a specific number of labeled instances
per class. In this case, ni is fixed. For readability, we write E for E∼SNC

and analogously for Var and Cov. We assume that the instances are
sampled independently.

As quality metric for evaluating the noise model, we use squared
error which is in this matrix case the square of the Frobenius norm
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SE = ||M− M̃||2F =
k

∑
i=1

k

∑
j=1

(Mij − M̃ij)
2 . (7.7)

Theorem 1
The expected squared error of the noise model is

E[SE] =
k

∑
i=1

k

∑
j=1

Var[M̃ij] .

Sketch of the proof: We show that M̃ is an unbiased estimator, i.e.
E[M̃ij] = Mij. From that, Theorem 1 can be followed. For readability,
the full proofs are given at the end of the chapter.

Theorem 2a Assuming Variable Sampling, it holds Var[M̃ij] = Mij(1−

Mij)
n
∑

ni=1
P(ni)

1
ni

where P(ni) is the probability of sampling ni in-

stances with label y = i from the data.

Theorem 2b Assuming Fixed Sampling, it holds Var[M̃ij] =
Mij(1−Mij)

ni
.

Sketch of the proof: The proofs for both variants of the theorem work
on the main insight that given ni, the value of mij follows a multinomial
distribution defined by Mij.

Combining Theorem 1 and 2, we obtain a closed-form solution for
the expected error of the estimated noise model for both Fixed and
Variable Sampling. From this, we can see that

• the error changes with the amount of sampled instances by factor
1
ni

.

• the error depends on the noise distribution as well as the level
of noise Mij. In the single-flip scenario, it reaches its maximum
when the noise is as dominant as the true label value.

• Fixed Sampling obtains lower error than Variable Sampling in
most cases.

These results are visualized and experimentally verified below.

7.4 data with synthetic noise

Experiments with synthetic or simulated noise allow fine-grained
control of the noise level and type of noise. An existing dataset is
taken and the labels are assumed to be all correct and clean. Then,
to obtain a noisy label dataset, for each instance, the label is flipped
according to the noise process. Reed et al. (2015) and Goldberger and
Ben-Reuven (2016) use the MNIST dataset (LeCun et al., 1998) and
apply single-flip noise (Equation 7.2) to obtain the noisy labels. We
follow their approach and label-flip pattern. Additionally, we also
generate noisy labels with uniform noise (Equation 7.1) and a more
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complex, multi-flip noise where one label can be changed into one of
several incorrect labels. All three noise types are visualized in Figure
7.2. We see the multi-flip noise as the most realistic of these synthetic
noises, as it resembles most the two realistic datasets presented in the
next section.

7.5 data with realistic noise

While evaluating on synthetically generated noise is popular and
allows for an easy evaluation in a controlled environment, it is limited
by the assumptions on the noise. Certain assumptions are taken when
building a model of the noise and the same assumptions are used to
generate the noisy labels.

In real-world scenarios, some of these assumptions might not apply.
Inspecting realistic noise matrices (Figures 7.3 and 7.4), it is already
quite obvious that these do not resemble the popular uniform or
single-flip noise. We think it is therefore important to also evaluate
on more realistic data that does not rely on the noise being simulated.
Nevertheless, having parallel clean and noisy labels for the same
instances is very useful as it allows e.g. to compute the upper bounds
of training on clean data compared to training with noisy labels. In
this specific work, it is required to obtain an approximation of the
true noise pattern and to flexibly vary the number of clean labels.
The Clothing1M dataset by Xiao et al. (2015) and our newly proposed
NoisyNER dataset offer these possibilities.

7.5.1 Clothing1M

The Clothing1M dataset is part of a classification task to label clothing
items present in an image. The noisy labels were obtained through a
distant supervision process that used the text context of the images
appearing on a shopping website. For 37k images, both clean and
noisy labels are available. The percentage of correct labels in the noisy
data is 38% and a visualization of the noise is given in Figure 7.3.
One can see that the noise distributes neither uniformly nor is there a
single label flip. Rather a label tends to be confused with several other
related labels, e.g. a "Jacket" with a "Hoodie" and a "Downcoat".

7.5.2 NoisyNER

In this work, we propose another noisy label dataset. It is from the
text classification domain with word-level labels for named entity
recognition (NER). The labels are persons, locations and organizations.
The language is Estonian, a typical low-resource language with a
demand for natural language processing techniques. The text and the
clean labels were collected by Laur (2013) through expert annotations
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Figure 7.3: Noise matrix for Clothing1M computed over all pairs of clean
and noisy labels.

(Tkachenko et al., 2013). The noisy labels are obtained through a
distant supervision approach. Via the ANEA tool, lists of named
entities were extracted from Wikidata and matched against the words
in the text as presented in Chapter 5.

However, these labels are not error-free. Reasons include non-complete
lists of entities, grammatical complexities of Estonian that do not allow
simple string matching or entity lists in conflict with each other (e.g.
"Tartu" is both the name of an Estonian city and a person name). The
heuristic functions in ANEA allow to leverage insights from experts
and they can be applied to correct some of these error sources, e.g.
by normalizing (lemmatizing) the grammatical form of a word or
by excluding certain high false-positive words. Specifically the fol-
lowing manual heuristics were chosen after inspecting the automatic
annotation:

• Label Set 1: No heuristics.

• Label Set 2: Applying Estonian lemmatization to normalize the
words.

• Label Set 3: Splitting person entity names in the list, i.e. both
first and last names can be matched separately. Person names
must have a minimum length of 4. Also, lemmatization.

• Label Set 4: If entity names from two different lists match the
same word, location entities are preferred. Also, lemmatization.

• Label Set 5: Locations preferred, lemmatization, splitting names
with minimum length 4.
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Figure 7.4: Noise matrices for NoisyNER (label sets 1, 3, 4 and 7) computed
over all pairs of clean and noisy labels.

• Label Set 6: Removing the entity names "kohta", "teine", "naine"
and "mees" from the list of person names (high false-positive
rate). Also, all of label set 5.

• Label Set 7: Using alternative, alias names for organizations and
retrieving additional entity lists for locations and organizations.
Also, all of label set 6.

In contrast to Clothing1M, we provide seven sets of labels that differ
in the noise process and therefore in the amount of noise and the noise
pattern. Four of these are visualized in Figure 7.4. Table 7.1 lists an
overview of the percentage of correct labels. The different amounts
of heuristics reflect different levels of manual effort that one might
be able to spend on the creation of distantly supervised data. Having
these multiple sets of labels for the same instances allows to directly
evaluate for different noise levels while excluding side effects that
differing features might have. We want to highlight several properties
of the dataset:

• Clean labels are available for all instances. This allows studying
different splits of clean and noisy labels as well as computing
upper bounds of performance on only clean data.

• The distribution of the labels is skewed. Out of the ca. 217k
instances, ca. 8k are persons, 6k are locations and 6k are organi-
zations. All other instances are labeled as non-entity O. Such a
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Label Set 1 2 3 4 5 6 7

Precision 67 73 37 75 48 53 59

Recall 18 27 31 27 41 41 49

F1 28 39 34 40 44 46 54

Table 7.1: Percentages of correct labels in the NoisyNER dataset for the seven
different label sets. For each subsequent label set, more manual ef-
fort in the labeling heuristics was invested. As the label distribution
is highly skewed, precision, recall and F1 score are reported. Fol-
lowing the standard approach for named entity recognition (Tjong
Kim Sang and De Meulder, 2003), the micro-average is computed
excluding the non-entity label.

skewed label distribution is typical for a named entity recogni-
tion dataset.

• In past works, experiments were often only performed until the
probability of a noisy class reaches the probability of the true
class, i.e. it is assumed that p(ŷ = j|y = i) < p(ŷ = i|y = i) ∀j 6=
i. This assumption does not hold for several of our label sets
which can make learning on the data more challenging.

• While not studied in this work, the labels in the dataset also
contain sequential dependencies. A clean or noisy label can span
over several words/instances, e.g. for the mention of a person
with a first and last name. These sequential dependencies could
be leveraged in future work.

7.6 analysis of the noise model error

In this section, the theoretically expected squared error between the
noise model estimate and the true noise matrix is compared to the
empirically measured one. We vary the two parameters found in
Theorem 2: the amount of sampled data ni/n and the amount of
noise Mij. For Clothing1M only the data size can be varied while for
NoisyNER the variation of the sample size can be compared across
different noise levels and noise distributions.

7.6.1 Experimental Setup

From the full dataset, a small subset DC and corresponding SNC is
sampled uniformly at random either using the Fixed or Variable
Sampling approach. The noise model M̃ is estimated on this sample
and compared to the true noise process M. The process is repeated
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500 times and the average empirical squared error is reported as well
as its standard deviation on the error bars.

For the synthetic noisy labels, the true noise process is known
by construction. For the realistic datasets, the true noise process is
unknown. Instead, the noise matrix M is computed over the whole
data as an approximation. For the distribution P(y), that is part of
the Variable Sampling formula, we assume a uniform distribution for
MNIST and a multinomial distribution for Clothing1M and NoisyNER
with the parameters of the distribution estimated over the whole
dataset. In praxis, one might also rely on expert knowledge for this
distribution (e.g. from Augenstein et al. (2017) for NER).

7.6.2 Results & Analysis

On the synthetic data (Figure 7.5), the theoretically expected error
of the noise model follows closely the empirical measurements. This
holds across different noise types, sample sizes and noise levels. Only
for a very small set of clean labels in combination with a high noise
level, there is a slight deviation.

As stated above, we can see the influence of the sample size and
noise process. The error changes with the amount of sampled instances
by factor 1

ni
and it depends on the noise distribution as well as the

level of noise Mij. For the evaluated scenarios, due to the additional
dependency on the clean label distribution P(y), the Variable Sam-
pling technique has a higher expected error than the Fixed Sampling
approach, especially for settings with large noise. From the empirical
experiments, one can see that the variance of the noise model error
mostly depends on the sample size.

The theoretical and experimental results also match on the realistic
noisily labeled datasets Clothing1M and NoisyNER (Figure 7.6). Again,
only for the very low sample size, one can observe a deviation. It is
interesting to note that for NoisyNER the estimation error of the noise
model is higher for the data with overall lower noise level (measured
in F1 score in Table 7.1). This is due to how the noise distribution
changes in the realistic setting. The difference between Fixed Sampling
and Variable Sampling is most noticeable for NoisyNER increasing the
error by a factor of around 3. This suggests that in practice, especially
for such skewed distributions, a sampling technique is beneficial which
focuses on each label separately.

7.7 analysing the base model performance

In the previous sections, we studied the factors on which the quality
of the noise model’s estimate depends. The noise model is part of a
larger classifier and it is combined with the actual base model that
performs the task-specific classification (cf. Figure 7.1). In this section,
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Figure 7.5: Comparison between the theoretically expected mean error (circle
marker) and the empirically measured mean error (cross) of the
noise model on the MNIST dataset. In the columns, the three
different synthetic noise types "uniform", "single-flip" and "multi-
flip" are given. Upper part uses Fixed Sampling, lower part uses
Variable Sampling. On the x-axis, either the sample size (ni or n
respectively) or the noise level ε is varied. Error bars show the
empirical standard deviation.
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(a) Clothing1M - Fixed Sampling (b) Clothing1M - Variable Sampling

(c) NoisyNER - Fixed Sampling (d) NoisyNER - Variable Sampling

Figure 7.6: Comparison between the theoretically expected mean error (circle
marker) and the empirically measured mean error (cross) of the
noise model on the Clothing1M and NoisyNER datasets.
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we evaluate in different experiments the base model on clean test data
and analyze the effects of the noise modelling and the noise model
estimation on the base model and its task performance.

7.7.1 Experimental Details

As in the experimental setup detailed in the previous section, a clean
subset DC of the data is sampled and the noise model estimated on
it. The base model is then trained directly on the clean data DC. The
noise model is added to the base model for training on the noisy
dataset D (cf. Figure 7.1). For evaluation, a test set is held-out from
the data. We follow the training procedure presented in Chapter 4.
Due to the longer runtimes, the experiments are repeated 50 times
for Clothing1M and NoisyNER. The error bars show the empirical
standard deviation. For additional plots, we refer to the Appendix of
(Hedderich et al., 2021c).

on noisyner For the NoisyNER dataset, we create an 80/10/10

train/dev/test split. Following the standard approach for named
entity recognition (Tjong Kim Sang & De Meulder, 2003), we evaluate
with the micro-average F1 score excluding the non-entity label. For
each run of the experiment, a small subset DC is sampled uniformly
at random from the full dataset. Either Fixed or Variable Sampling are
used. The noise model M̃ is estimated on this sample.

As base model, we use the architecture for named entity recognition
proposed in Chapter 4. It consists of a Bi-LSTM model (state size 300

for each direction) with an additional fully connected layer (size 100)
and a softmax classification layer. The context size is 3 on each side.
The tokens are embedded using fixed FastText embeddings (Grave et
al., 2018). The weights of the noise matrix M̃ are fixed during training.
The model is optimized using Adam (Kingma & Ba, 2014) with a
learning rate of 0.001. Training is performed for 80 epochs. We test
using the learned weights of the epoch that performed best according
to the clean development set. In each epoch, the model is alternately
trained on the clean and the noisy instances (the latter with the noise
model). Following the findings in the earlier chapter, the model is
trained with a noisy subset of the full noisy data. This noisy subset is
sampled uniformly at random for each epoch. We set the size to 15

times |DC|.
In the experiments where the number of clean instances is fixed for

the base model (to separate the effect on noise estimation from the
effect of the base model just having access to more clean data), the
base model is trained on 50 instances per class for Fixed Sampling and
50 instances in total for Variable Sampling. The other hyperparameters
remain the same in both cases.
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on clothing1m For the Clothing1M dataset, we extract the 33,747

images from the original dataset where both clean and noisy labels are
available. Among these images, we use a 90/10 split for training/test
sets. Again we take a small fraction out from the training set as our
DC and in training, the noise matrix is estimated by SNC.
As base model, we employ a pre-trained ResNet18 (He et al, 2016)
classifier obtained from the Pytorch library (Paszke et al, 2019). Specif-
ically, we first switch the CNN header (i.e. the final linear classifier) to
have the correct output dimension (14 in our case). Then we only train
the new header and freeze all other layers. We fine-tune the network
for 10 epochs. In training, an Adam optimizer with a learning rate of
0.005 is used for training. Again the noisy subset used in training is
sampled uniformly at random for each epoch, with a size of 10 times
the |DC|.

In the experiments where the amount of clean labels is fixed for the
base model, the base model is trained on 25 clean instances per class
for Fixed Sampling and 250 instances in total for Variable Sampling.
Again, the other hyperparameters remain the same in both settings.

7.7.2 Effect of Noise Handling

Figure 7.7 shows the test performance of the base model for increasing
size of DC. It compares training the base model directly on the clean
and the noisy label data to handling the noisy labels via a noise
model. The latter improves the results in most cases. This confirms
past findings that noise handling is an important technique to leverage
distantly supervised training data. Comparing the different noise
levels on NoisyNER, one can see that larger noise levels also result
in larger improvements via noise handling. Only in a few cases with
a very small amount of clean training samples does noise handling
deteriorate the results, possibly due to a bad estimation of the noise
model.

7.7.3 Relationship between Noise Estimation and Base Model Performance

There are several factors on which the base model’s performance de-
pends. These could include the amount of clean and noisy training
data, the noise distribution and the quality of the estimated noise
model. Here, we show experimentally on Clothing1M and NoisyNER
that the noise model estimation error directly influences the perfor-
mance of the base model.

In Figure 7.8, the expected noise model error is plotted against the
test performance of the base model for Fixed Sampling. They show
a clear negative correlation. The influence of the noise distribution is
visible in the different slopes in the plots for the different noisy label
sets of NoisyNER. For all settings, the Pearson Correlation between
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(a) Clothing1M (b) NoisyNER - label set 1

(c) NoisyNER - label set 4 (d) NoisyNER - label set 7

Figure 7.7: Mean test performance (F1 score) of the base model on Cloth-
ing1M and NoisyNER (label sets 1, 4 and 7) on clean and noisy
data with and without noise handling using Fixed Sampling.

the mean test performance and the expected noise model error is at
least −0.96.

Increasing the number of clean labels is not only beneficial to the
estimation of the noise model but also to the base model itself. To
remove this effect, the experiment is repeated with a fixed amount
of training instances for the base model (ni = 50 for NoisyNER and
ni = 25 for Clothing1M) and a varying amount of clean labels for the
noise model estimation. The same linear relationship can be seen. The
Pearson Correlation is again at least −0.96 for all settings.

7.7.4 Effect of Sampling during Estimation

Above, we saw both from the theoretical analysis as well as in the
experiments that Variable versus Fixed Sampling has a strong influence
on the noise model estimation error. Figure 7.9 shows that this effect
also transfers to the performance of the base model on the test set.
Fixed Sampling consistently outperforms Variable Sampling on the
average performance across different noise levels. It also reduces the
variance of the reached test performance, another important issue
models trained on noisy labels suffer from. The same holds again
when a fixed amount of training instances for the base model is used
to remove the effect of just having more clean data.
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(a) Clothing1M (b) NoisyNER

Figure 7.8: Relationship between the theoretically expected noise model error
and the test performance (Accuracy/F1 score) of the base model
for Clothing1M and NoisyNER (label set 1, 4 and 7) with Fixed
Sampling. Each point corresponds to one sample size ni (cf. Figure
7.7).

(a) label set 1 (b) label set 4 (c) label set 7

Figure 7.9: Comparing Variable and Fixed Sampling by mean test perfor-
mance (F1 score) of the base model on NoisyNER label set 1, 4

and 7. The two approaches were given the same amount of clean
data with ni = n/k for Fixed Sampling.
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As far as we are aware, Variable Sampling is more common in
the literature, suggesting that Fixed Sampling could be a useful and
model-independent way to improve noise handling.

7.8 other related work

Apart from the publications mentioned in the previous sections, we
want to highlight the following related work. The survey by Frenay
and Verleysen (2014) gives a comprehensive overview of the literature
on learning with noisily labeled data. More recently, Algan and Ulusoy
(2021) surveyed deep learning techniques for noisy labels in the image
classification domain.

Other aspects of learning with noisy labels have been studied from
a theoretical viewpoint. For the binary classification setting, Liu and
Tao (2016) prove an upper bound for the noise rate. Natarajan et
al. (2013) and Patrini et al. (2016) derive upper bounds on the risk
when learning in a similar noise scenario. Assuming a known and
correct noise model, Rooyen and Williamson (2017) derive upper and
lower bounds on learning with noisy labeled data. The existence of
anchor points is an important assumption for several recent works
on estimating a noise matrix, i.a. by Liu and Tao (2016) and Patrini
et al. (2017) and Xia et al. (2019). Yao et al. (2020) propose to learn an
intermediate class to reduce the estimation error of the noise matrix.
Chen et al. (2019b) propose a formula to calculate the test accuracy
assuming, however, that the test set is noisy as well.

On the empirical side, Veit et al. (2017) model the relationship p(y|ŷ),
i.e. the opposite of the noise models in this work. They also use pairs of
clean and corresponding noisy labels. Rahimi et al. (2019) include the
concept of noise transition matrices in a Bayesian framework to model
several sources of noisy supervision. In their few-shot evaluation, they
also leverage pairs of clean and noisy labels. Ortego et al. (2020) study
the behaviour of the loss for different noise types. Some recent works
have taken instance-dependent (instead of only label-dependent) noise
into consideration both from a theoretic and an empiric viewpoint
(Cannings et al., 2018; Cheng et al., 2020; Luo et al., 2017; Menon
et al., 2018; Xia et al., 2020). Luo et al. (2017) successfully modeled
instance-dependent noise for an information extraction task, making
instance-dependence an interesting future work for the NoisyNER
dataset.

In the image classification domain, further noisy label datasets exist.
The distantly supervised WebVision (Li et al., 2017) was obtained
by searching for images on Google and Flickr where the labels (and
related words) are used as search keywords. It contains 2.4 million
images but it lacks clean labels for the training data. The Food101N
dataset (Lee et al., 2018) was created similarly, focusing, like Cloth-
ing1M, on a specific image domain. The authors provide ca. 300k
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images, ca. 50k of which have additional, human-annotated labels.
The noise rate is lower with around 20%. The older Tiny Images
dataset (Torralba et al., 2008) consists of 80 million images at a very
low resolution with 3526 training images having clean labels. Recently,
Jiang et al. (2020) proposed artificially adding different amounts of
incorrectly labeled images to existing datasets for evaluation. For the
task of text sentiment analysis, Wang et al. (2019) proposed a dataset
that obtained sentence level labels by exploiting document level rat-
ings. Clean sentence level labels exist for two of their studied text
domains.

7.9 proofs

We now give the full proofs of the previously introduced theorems.

lemma 1 : Assuming a noise process following Equation 7.3 and
7.4 with p(ŷ = j|y = i) = Mij and assuming (y, ŷ) ∈ SNC is sampled
independently at random with fixed n = |SNC|,3 then E∼SNC [M̃ij] is an
unbiased estimator of Mij.

proof : For readability, we write E for E∼SNC and analogously for
Var and Cov. Let Ni be the random variable describing how often y = i,
i.e. Ni = ∑(y,ŷ)∈SNC

1y=i. Let S be the random variable describing how
often y = i and ŷ = j on the same instance, i.e. S = ∑(y,ŷ)∈SNC

1{y=i,ŷ=j}.
Note that, given Ni = ni and independent sampling, S is multinomi-
ally distributed with probabilities Mi and ni trials. M̃ is defined by
Equation 6. For ni = 0, we define M̃ij = 0.

3 This holds both for Fixed and Variable Sampling.
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E[M̃ij] = E[

∑
(y,ŷ)∈SNC

1{y=i,ŷ=j}

∑
y∈SNC

1{y=i}
]

=
n

∑
s,ni=1

P(S = s, Ni = ni)
s
ni

=
n

∑
s,ni=1

P(S = s|Ni = ni)P(Ni = ni)
s
ni

=
n

∑
ni=1

P(Ni = ni)
1
ni

ni

∑
s=1

P(S = s|Ni = ni)s

=
n

∑
ni=1

P(Ni = ni)
1
ni

E[S|Ni = ni]

=
n

∑
ni=1

P(Ni = ni)
1
ni

ni Mij

= Mij .

theorem 1 : Let the assumptions be as in Lemma 1 and let SE be
defined as in Formula 7.7. Then E[SE] = ∑k

i=1 ∑k
j=1 Var[M̃ij].

proof : Using Lemma 1, the proof follows from the definition of
SE:

E[SE] = E

[
k

∑
i=1

k

∑
j=1

(Mij − M̃ij)
2

]

=
k

∑
i=1

k

∑
j=1

E[(E[M̃ij]− M̃ij)
2]

=
k

∑
i=1

k

∑
j=1

Var[M̃ij] .

theorem 2a : Let the assumptions be as in Theorem 1 and as-

suming Variable Sampling, it holds Var[M̃ij] = Mij(1−Mij)
n
∑

ni=1
P(ni)

1
ni

where P(ni) is the probability of sampling ni instances with label y = i
from the data.
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proof :

Var[M̃ij] = E[M̃2
ij]−E[M̃ij]

2

= E[M̃2
ij]−M2

ij

=
n

∑
s,ni=1

P(S = s, Ni = ni)
s2

n2
i
−M2

ij

=
n

∑
s,ni=1

P(S = s|Ni = ni)P(Ni = ni)
s2

n2
i
−M2

ij

=
n

∑
ni=1

P(Ni = ni)
1
n2

i

ni

∑
s=1

P(S = s|Ni = ni)s2 −M2
ij

=
n

∑
ni=1

P(Ni = ni)
1
n2

i

ni

∑
s=1

E[S2|Ni = ni]−M2
ij

=
n

∑
ni=1

P(Ni = ni)
1
n2

i
(n2

i M2
ij + ni Mij(1−Mij))−M2

ij

= Mij(1−Mij)∑
ni

P(Ni = ni)
1
ni

,

where we use E[S2] = Var[S] + E[S]2 with Var[S] = ni Mij(1− Mij)

and E[S]2 = n2
i M2

ij as S is multinomial distributed.

theorem 2b : Let the assumptions be as in Theorem 1 and assum-

ing Fixed Sampling, it holds Var[M̃ij] =
Mij(1−Mij)

ni
.

proof : Given Fixed Sampling with ni = n′i ∀i, it follows that P(Ni =

n′i) = 1 and 0 otherwise. The derivation of the variance from Theorem
2a then simplifies to

Var[M̃ij] =
Mij(1−Mij)

n′i
.

7.10 conclusion

In this chapter, we analyzed the factors that influence the estimation
of the noise model in noisy label modeling for weak supervision. We
derived the expected error of a noise model estimated from pairs of
clean and noisy labels highlighting factors like noise distribution and
sampling technique. Extensive experiments on synthetic and realistic
noise showed that it matches the empirical error. We also analyzed
how the noise model estimation affects the test performance of the
base model. Our experiments show the strong influence of the noise
model estimation and how theoretical insights on e.g. the sampling
technique can be used to improve the task performance.
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A major contribution of this chapter is our newly created NoisyNER
dataset, a named entity recognition dataset consisting of seven sets of
labels with differing noise levels and patterns. It allows a simple and
extensive evaluation of noisy label approaches in a realistic setting
and for different levels of resource availability. With its interesting
properties, we hope that it is useful for the community to develop
noise handling methods that are applicable to real scenarios.



8
U N D E R S TA N D I N G T H E R E A S O N S F O R L A B E L
E R R O R S

The ANEA tool presented in Chapter 5 allowed the users to inspect the
automatically annotated data. They then could use the insights they
obtained about annotation errors to improve the automatic process.
Understanding where a system labels data incorrectly is crucial to
being able to improve it. This is not limited to weak supervision
but also holds for machine learning classifiers and their errors in
general. In this chapter,1 we propose the Premise algorithm that finds
statistically significant label-descriptive patterns. This method allows
us to describe in human-interpretable form where misclassifications
occur. Unlike existing solutions, it ably recovers ground truth patterns,
even over many unique items or where patterns are only weakly
associated to labels. Through two studies on visual question answering
and named entity recognition, we confirm that Premise gives clear and
actionable insight into the systematic errors made by NLP classifiers.

8.1 introduction

State-of-the-art deep learning methods are known for their ability to
achieve human-like performance on challenging tasks. As much as ‘to
err is human,’ these classifiers make errors too. Some of these errors
are due to noise that is inherent to the process we want to model, and
therewith relatively benign. Systematic errors, on the other hand, e.g.
those due to bias or misspecification, are much more serious as these
lead to models that are inherently unreliable. If we know under what
conditions a model performs poorly, we can actively intervene, e.g. by
augmenting the training data, and so improve overall reliability and
performance. Before we can do so, we first need to know whether a
classifier makes systematic errors, and if so, how to characterize them
in easily understandable terms.

Given a dataset with labels that specify which instances were classi-
fied correctly or incorrectly, we are interested in finding combinations
of features that describe where the classifier’s predictions are incorrect.
For a Natural Language Processing (NLP) task, the input features
are words. If, for example, the combination of words “how, many”
strongly correlates with misclassified instances, this can indicate that
our classifier struggles with the concept of counting. A toy example is
visualized in Figure 8.1.

1 This chapter is based on (Hedderich et al., 2022) with Jonas Fischer and Michael
Hedderich contributing equally as first authors.

89
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Instances Correct Prediction?

How many ducks are in the picture? 7

What are the ducks eating? 7

How many roosters are in the puddle? 7

Do you see ducks in the puddle? 3

Are there many ducks playing? 3

Figure 8.1: Toy example with input instances and the label specifying if the
classifier predicted correctly. The pattern ∧©(how, many) correlates
with misclassification. The word ducks is also a frequent pattern
but independent of the label and therefore not of relevance.

Local explanation methods like LIME (Ribeiro et al., 2016) describe
the decision boundary of each instance. In contrast, we are interested
in an efficient way to obtain a global and non-redundant description
of our classifier’s issues on the given input data. To this end, we turn
to data mining. Here, a combination of features is a pattern, and we
look for the set of patterns that best characterizes on which instances
the classifier tends to perform well or poorly. This can be phrased as
the more general problem of label description. For data with binary
features, we are interested in the associations between the feature data
and the labels. We formulate this problem in terms of the Minimum
Description Length (MDL) principle, which identifies the best set of
patterns as the one that best compresses the data without loss.

To capture phenomena of text input, e.g. synonyms, we consider a
rich pattern language that allows us to express conjunctions, mutual
exclusivity, and nested combinations thereof. As the search space is
double exponential and does not exhibit any easy-to-exploit structure,
we propose the efficient and hyper-parameter-free Premise algorithm
to heuristically discover the premises under which we see the given
predictions.

We evaluate Premise both on synthetic and real-world data. We
show that, unlike the state of the art in data mining, Premise is robust
to noise, scales to large numbers of features, and deals well with class
imbalance, as well as varying association strength of patterns to labels.
Through two case studies, we show that Premise discovers patterns
that provide clear insight into the systematic errors of NLP classifiers.
For Visual Question Answering (VQA), we elucidate the issues of two
classifiers (Tan and Bansal, 2019; Zhu et al., 2016), including aspects
like counting, spatial orientation and higher reasoning. For a neural
Named Entity Recognition (NER) model (Ma and Hovy, 2016b), we
show that Premise discovers patterns that are both interpretable and
that can be acted upon.
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8.2 related work

Label Description in Data Mining

Describing labels in terms of features is obviously related to classifi-
cation. Here, however, we are not so much interested in prediction,
but rather description and therewith value interpretability of the
results over accuracy. We share this notion with emerging pattern
mining (Dong and Li, 1999) which aims to discover those conditions
under which a target attribute has an exceptional distribution. The
key difference is that we are not interested in discovering all patterns
that are associated, which would be overly redundant and hard to
interpret as a whole, but rather want a small and non-redundant set
of patterns capturing relevant associations.

Subgroup discovery (García-Vico et al., 2018; Wrobel, 1997) returns
the top-k patterns that correlate most strongly. This keeps the result
sets of manageable size but does not solve the problem of redun-
dancy (Leeuwen and Knobbe, 2012). Statistical pattern mining aims to
discover patterns that correlate significantly to a class label (Llinares-
López et al., 2015; Papaxanthos et al., 2016; Pellegrina and Vandin,
2018; Webb, 2007). In practice, these methods discover many hundreds
of thousands of ‘significant’ patterns even for small data. For surveys
we refer to (Atzmueller, 2015; García-Vico et al., 2018; Novak et al.,
2009).

Rule mining aims to discover rules of the form X → Y (Agrawal
et al., 1993; Hämäläinen, 2012), lending themselves to describe labels,
too. Like above, most existing methods evaluate patterns individually,
thereby discovering millions of rules even if the data is pure noise.
Grab (Fischer and Vreeken, 2019) instead mines small sets of rules
that together summarize the data well, and Classy (Proença and van
Leeuwen, 2020) discovers rule lists characterizing a given label. We
show that both approaches do not scale well and are sensitive to label
imbalance.

Explainable ML and Misclassification

Specifically to explain classifiers, several approaches aim to capture
dependencies of features or attributes that a classifier uses to make a
prediction, e.g. in terms of patterns or rules (Barakat and Diederich,
2005; Henelius et al., 2014), by model distillation (Frosst and Hinton,
2017; Lakkaraju et al., 2017), or to discover patterns of neurons within
neural networks that drive a decision (Fischer et al., 2021). These, how-
ever, focus on the dependencies the classifier exploits for successful
prediction as opposed to understanding where – or why – something
goes wrong. Here, SliceFinder (Chung et al., 2020) explains where a
classifier performs particularly poorly in terms of feature subspaces.
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However, the approach was only evaluated on data with less than 50

features. Our experiments show that this method does not scale well
to the feature spaces common in NLP data.

For specific applications in NLP, there exist manual approaches
based on challenging test sets (Gardner et al., 2020; Ribeiro et al.,
2020) or testing a hypothetical cause for misclassification (Lee et
al., 2019; Rondeau and Hazen, 2018; Wu et al., 2019). Such manual
approaches, however, require existing knowledge about the difficulties
of the models. Local explanation methods like LIME (Ribeiro et al.,
2016) provide insights into what changes in the input influence a
classifier’s decision on a specific instance. Anchors (Ribeiro et al.,
2018) obtains such explanations in an interpretable form similar to
our patterns. As they need to explore the local decision boundary,
they require, however, multiple classifier evaluations per instance. For
a survey focused on local methods for explainable NLP, we refer to
Danilevsky et al. (2020).

Here, we propose to mine sets of patterns that provide concise,
interpretable, and global descriptions of the given label, which we
formulate in MDL terms. We further propose an efficient heuristic
to discover such pattern sets in practice, which we test against state-
of-the-art across all aforementioned fields on synthethic data with
known ground truth, as well as real world case studies. We show that
Premise is the only approach to be scalable and robust to noise and
label imbalance while retrieving succinct pattern sets, all of which is
crucial to tackle real world applications.

8.3 preliminaries

In this section, we introduce the notation we use throughout the paper
and give a brief primer to MDL.

8.3.1 Notation

We consider binary data, such as a sequence of input words of an
NLP task where each word of the vocabulary is a binary feature
(bag-of-words, word is present or not present). In data mining terms,
each instance of our dataset is a transaction and each word present
in the instance is an item of the transaction. For each instance, we
also have a label that expresses whether the instance is misclassified
by our classifier. Our whole dataset can then be described as binary
transaction data D over a set of items I , where each transaction t ∈ D
is assigned a binary label `(t) ∈ {l−, l+}. For ease of notation, we
define the partition of the database according to this binary label
D− = {t ∈ D | `(t) = l−} and D+ = {t ∈ D | `(t) = l+}. In general,
X ⊆ I denotes an itemset, the set of transactions that contain X is
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defined as TX = {t ∈ D | X ⊆ t}. The projection of D on an itemset X
is πX (D) = {t ∩ X | t ∈ D}.

We are looking for human-interpretable associations of items that
best explain a given database partition. We describe these associations
in terms of ’patterns’, which we define by logical conditions over
sets of items. For a logical condition c, we define a selection operator
as σc (D) = {t ∈ D | c(t) ≡ >}. For an item I ∈ I , it holds that
[cI(t) ≡ > ↔ I ∈ t]. The k-ary AND operator ∧©(c1, . . . , ck) describes
patterns of co-occurrence and holds iff all its conditions hold. Similarly,
the k-ary XOR operator ×© describes patterns of mutual exclusivity
and holds if exactly one of its condition holds. We denote it(c) for
the items in the condition and define the projection on a condition
as πc (D) = πit(c) (D). Conditions can be nested; specifically we are
interested in patterns of AND operator over XOR operations, i.e.
∧©(×©c1,...,ck , . . . , ×©c′1,...,c′k

)(t). An XOR operation is called clause, γ(c)
lists all clauses in conjunctive condition c. To simplify notation, we
drop t when clear from context, write I for conditions on a single item
c(I), and use condition and pattern interchangeably.

8.3.2 Minimum Description Length

The Minimum Description Length (MDL) principle (Rissanen, 1978) is
a practical approximation of Kolmogorov complexity (Li and Vitányi,
1993) that is both statistically well-founded and computable. It iden-
tifies the best model M∗ for data D out of a class of models M as
the one that obtains the maximal lossless compression. For refined, or
one-part, MDL, the length of the encoding in bits is obtained using
the entire model class L(D|M). While this variant of MDL provides
strong optimiality guarantess (Grünwald, 2007), it is only attainable for
certain model classes. In practice, crude two-part MDL is often used,
which computes the length of the model encoding L(M) and the length
of the description of the data given the model L(D|M) separately. The
total length of the encoding is then given as L(M) + L(D|M). We use
one-part MDL where possible and two-part MDL otherwise. When
applying MDL, we are only interested in the codelengths and not
the actual codes. Codelengths are measured in bits, hence all log
operations are base 2 and we define 0 log 0 = 0.

8.4 theory

To discover those patterns best describing the given labels, we here
introduce the class of modelsM and corresponding codelength func-
tions that yield the number of bits required to encode a model, respec-
tively the number of bits needed to encode data given a model. Before
we define these formally, we give the intuition.
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8.4.1 The Problem, informally

Given a dataset of binary transaction data and a binary label for each
transaction, we aim to find a set of patterns that together identify
the partitioning of the data according to the labels. As an application,
consider the input words of an NLP task as transactions, along with
labels that express whether an instance is misclassified by a given
model. We are now interested in patterns of words that describe these
labels. In essence, we want to find word combinations such as ∧©(how,
many), or mutual exclusive patterns, e.g. ×©(color, colour), that capture
synonyms or different writing styles, all occuring predominantly when
a misclassifcation happens. The pattern language we use here is a
combination of the two, namely conjunctions of mutual exclusive
clauses such as ∧©(what, ×©(color, colour)). We provide an example in
Figure 8.2.

We thus define a model M ∈ M as a set of patterns P containing all
patterns that help to describe given labels. Additionally, to ensure that
we can always encode any data over the set of items using our model,
M contains all singleton words I ∈ I , describing the entire data D
label unspecific. The model containing all singletons also serves as a
baseline implementing the assumption that there are no associations
that describe the label. Whenever there is a structure in the labels that
can be explained by a pattern, we transmit the data corresponding to
a label (D+, D−) separately. This allows us to more succinctly transmit
where a pattern holds.

Let us consider the example in Figure 8.2, where we would first
send ∧©(A, ×©(B, C)) occurrences in D+, and then its occurrences
in D−. Thus, we identify where A, C, and D hold at once, and we
leverage the fact that ∧©(A, ×©(B, C)) occurs predominantly in D+,
resulting in more efficient transmission. Intuitively, a bias of a pattern
to occur in one label more than in the other corresponds to a large
deviation between the conditional probability – the pattern occurrence
conditioned on the label – and the unconditional probability – the
pattern occurence in the whole database. We hence transmit more
efficiently by sending the pattern separately for D+ and D− if there
is a large deviation between these two probabilities. Coming back
to the example, F however occurs similarly often in both labels –
there is almost no deviation between conditional and unconditional
probability – hence it is unlikely that it identifies a structural error.
Here, the baseline encoding transmitting F as singleton in all of D
will be most efficient. This approach allows us to identify patterns
that occur predominantly for one of the labels as the patterns that
yield better compression when conditioned on the labels, and thus
characterise labels in easily understandable terms.

We are hence after the model M∗ ∈ M that minimizes the cost of
transmitting the data and model. In the following sections, we will
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Figure 8.2: Example database and model. A toy database D over a set of items,
separated by labels into D+ and D−, is given on the left. The
corresponding model M containing patterns, which describe the
data partitions D− and D+ induced by labels l− and l+, is given
on the right.

formalize this intuition using an MDL score to identify that pattern
set that best describes the data given the labels. We will first detail
how to compute the encoding cost for the data given the model and
then the cost for the model itself.

8.4.2 Cost of Data Given Model

Let us start by explaining how to encode a database D with singleton
items I in the absence of any labels, which will later serve as the
baseline encoding corresponding to independence between items and
labels. To encode in which transaction an item I holds, optimal data-
to-model codes are used, which are indices over canonically ordered
enumerations (Li and Vitányi, 1993). For the data cost, we thus obtain

L (πI (D) | I) = log
(
|D|
|σI (D) |

)
. (8.1)

Taking into account the partitioning of D along the label, yielding
D+ and D−, we encode I separately:

L (πI (D) | I) = log
(
|D−|
|σI (D−) |

)
+ log

(
|D+|
|σI (D+) |

)
. (8.2)

As such, we explicitly reward patterns (here, singletons) that have
a different distribution between the unconditional probability, i.e.
frequency in D of I and the conditional probability of I conditioned
on the label – i.e. frequency in D− respectively D+. It models the
property that we are interested in; a pattern that characterizes a certain
label. It is straightforward to extend to patterns of co-occurring items
P = ∧©(X1, . . . , Xk) by selecting on transaction where the pattern
holds

L (πP (D) | P) = log
(
|D−|

|σP (D−) |

)
+ log

(
|D+|

|σP (D+) |

)
. (8.3)
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There might be transactions where individual items of P are present,
but not the full pattern holds. To ensure a lossless encoding, the
singleton code L(πI (D) | I) is modified to cover all item occurrences
left unexplained after transmitting all patterns. Hence, we get

Ls (πI (D) | P) = log
( |D|
|σI (D) \

(⋃
P∈P ,I∈P σP (D)

)
|

)
.

For patterns expressing conjunctions over mutual exclusive items,
e.g. ∧©(×©(A, B), ×©(C, D)), we first send for both D− and D+ for
which transactions the pattern holds, after which we specify which of
the items is active where. We do that one by one, as we know that when
the pattern holds and A is present, B cannot be present too. With each
transmitted item of the clause, there are thus fewer transactions where
the remaining items could occur, hence the codelength is reduced.
More formally, the codelength for a pattern P of conjunctions of
clauses is given as

L(πP (D) | P) = ∑
l∈{−,+}

log
(
|Dl |

|σP (Dl) |

)
+ (8.4)

∑
cl∈γ(P)

∑
I∈cl

log
(|σP

(
Dl) | −∑I′∈cl,I′≤I |σI′

(
σP
(

Dl)) |
|σI (σP (Dl)) |

)
, (8.5)

assuming a canonical order on I . With clauses of only length 1 we
arrive at a simple conjunctive pattern, where the second term evaluates
to 0 and thus resolves to the codelength function for conjunctive
patterns discussed above. Note here that the codelength is the same
regardless of the order assumed on the I . This statement trivially
holds for clauses of length 2. For readability, we provide the proof for
the case of 3 items at the end in Section 8.8, the case for an arbitrary
number of items follows the same reasoning.

This concludes the definition of codelength functions for transmit-
ting the data, and we can define the overall cost of transmitting the
data D given a model M as

L(D | M) =
(

∑
P∈P

L(πP (D) | P)
)
+
(

∑
I∈I

Ls(πI (D) | P)
)

.

8.4.3 Cost of the Model

Let us now discuss how to transmit the model M for pattern set P .
First, we transmit the number of patterns |P| using the MDL-optimal
code for integers LN(|P|). It is defined as LN(n) = log∗ n + logc0

with log∗ n = log n + log log n + . . . and c0 being a constant so that
LN(n) satisfies the Kraft-inequality (Rissanen, 1983). Then, for each
pattern P, we transmit the number of clauses via LN(|γ(P)|). For each
such clause, we transmit the items it contains using a log binomial,
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requiring log (|I||cl|) bits plus a parametric complexity term Lpc(|I|).
The log binomial along with the parametric complexity form the
normalized maximum likelihood code for multinomials, which is a
refined MDL code. The parametric complexity for multinomials is
computable in linear time (Kontkanen and Myllymäki, 2007). Lastly,
we transmit the parametric complexities of all binomials used in the
data encoding.

Combining the above, the overall cost of the model is

L(M) = LN(|P|) + ∑
P∈P

(LN(|γ(P)|) + Lpc(|D+|)+ (8.6)

Lpc(|D−|)) + ∑
cl∈P

(
log
(
|I|
|cl|

)
+ Lpc(|I|)

)
+ ∑

I∈I
Lpc(|D|) , (8.7)

by which we have a lossless MDL score.

8.4.4 The Problem, formally

Based on the above, we can now formally state the problem.

Minimal Label Description Problem

Given data D over I and a split into D− and D+, find the model M ∈ M
that minimizes the codelength L(M) + L(D | M).

Solving this problem through enumeration of all possible models is
computationally infeasible as the model space is too large. Specifically,
the size of the model space is given by

|M| = 2∑|I|i=1 (
|I|
i )×∑i

j=1 {
i
j} ,

where the first term in the summation specifies the number of possible
item combinations in a pattern of length i, the second term counts the
number of possible ways to separate them into j different clauses via
the Stirling number of the second kind and the exponent is introduced
as a model M consists of arbitrary combinations of patterns. Next, we
introduce an efficient bottom-up search heuristic for discovering good
models.

8.5 premise

To find a good pattern set in practice, we present Premise. Instead
of enumerating all possible patterns, it efficiently explores the search
space in a bottom-up heuristical fashion.

8.5.1 Creating and Merging Patterns

Premise starts with with an empty set of patterns M, the dataset is
initially encoded only using singletons. It then iteratively improves
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the model by adding, extending, and merging patterns until no more
gain in the MDL score can be achieved. To ease the explanation, we
will first introduce the setting with conjunctive patterns only.

Pairs of items for which the transaction sets barely overlap are
unlikely to compress well as conjunctive patterns. Hence, we introduce
a minimum overlap threshold of 0.05 in all experiments, to speed
up the search by pruning infrequent and therewith uninteresting
patterns. This straightforwardly leads to algorithm createCandidates

that, based on a current model M, outputs a set of possible candidate
patterns that we will consider as additions to the model. We give the
full pseudo-code in Section 8.5.4 below.

8.5.2 Filtering Noise

Additionally to the MDL score, Fischer and Vreeken (2020) proposed
to use Fisher’s exact test as a filter for spurious patterns. Here, we
use it to test our candidate patterns. Fisher’s exact test allows to
assess statistically whether two items co-occur independently based
on contingency tables. We assume the hypothesis of homogeneity;
in our case that there is no difference in the pattern’s probability
between D− and D+. Fisher showed that the values of the contingency
table follow a hypergeometric distribution (Fisher, 1922). We can then
compute the p-value for the one-sided test directly via

p =
min(a,d)

∑
i=0

(a+b
a−i)(

c+d
c+i)

( n
a+c)

, (8.8)

with c = |σP (D) |, a = |D| − c, d = |σP (D+) |, b = |D+| − d and
n = |D| for a pattern P labeled with l+. For patterns labeled with l−,
the other tail of the distribution is tested (with a and b as well as c and
d switching places). A general problem for statistical pattern mining
is the lack of an appropriate multiple test correction. We here however
only use the test to filter candidates, false positive patterns passing the
test are still evaluated in terms of MDL.

8.5.3 The Premise Algorithm

Combining the candidate generation and the MDL score from Section
8.4, we obtain Premise. We give the pseudo-code in Algorithm 1.
Starting with the empty model, we generate candidates, and for each
of those, we compute the (negative-valued) gain in terms of MDL (line
6) as well as the pattern’s p-value (line 7). We select the candidate
below a significance threshold α that reaches the best gain (line 8-10)
and add it to the model. If we created the pattern through a merge,
we remove its parent patterns from M. We repeat the process until no
candidate provides further gain in codelength.
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Algorithm 1: Premise

input: D with D− and D+, significance threshold α

output: Heuristic approximation M of M *
1 do
2 ∆′ ← 0;
3 M′ ← M;
4 C ←createCandidates(M);
5 for P ∈ C do
6 ∆← L(D, M⊕ P)− L(D, M) ; // (negative) gain
7 p←FisherExactTest(P); // p-value
8 if p < α and ∆ < ∆′ then
9 ∆′ ← ∆;

10 M′ ← M⊕ P;
11 end
12 end
13 M← M′;
14 while ∆′ < 0;
15 return M

8.5.4 Mutual Exclusivity

In all practical applications that we consider, which are from the NLP
domain, we are interested in finding clauses expressing words that are
synonyms, that reflect similar concepts, or language variations, such as
∧©(which,×©(color, colour)) or ×©(could, can). Such statements, however,
require a richer pattern language than given by the purely conjunctive
patterns discovered by the state-of-the-art. We discussed above how to
identify the best model over such a richer pattern language of clauses
in terms of MDL.

For NLP applications, instead of enumerating all possible clauses
exhaustively, we follow a more informed approach, taking into account
information from pre-trained word embeddings. We are interested in
finding words that are synonyms or that reflect similar concepts, such
as ×©(color, colour) or ×©(could, can). Research in NLP has proposed
various techniques for identifying such pairs including manually
created ontologies such as WordNet (Miller, 1995) or word embeddings
that are learned through co-occurrences in text and map words to
vector representations. This information about related words can be
used to guide the search for mutually exclusive patterns. Using such
pretrained embeddings rather than deriving them from the given
input data has the advantage that we are independent of the size
of the input data set, and receive reliable embeddings, which were
trained on very large, domain independent text corpora.

While our approach is independent of the specific method, we have
chosen FastText word embeddings trained on CommonCrawl and
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Word 5-nearest neighborhood

photo photograph, photos, picture, pic, pictures

color colour, colors, purple, colored, gray

can could, will, may, might, able

say know, think, tell, mean, want

Table 8.1: Words and their nearest neighbors on Visual7W.

Wikipedia (Grave et al., 2018b). In contrast to word ontologies, word
embeddings have a broader vocabulary coverage. They also do not
impose strict restrictions such as a particular definition of synonyms
and instead reflect relatedness concepts learned from the text. FastText
embeddings have the additional benefit that they use subword infor-
mation, removing the issue of out-of-vocabulary words. The word
embeddings are independent of the machine learning classifier we
study. As measure of relatedness m between two items I1, I2, we use
cosine similarity, i.e. m = cos(emb(I1), emb(I2)) where emb is the map-
ping between an item/word and its vector representation. We define
nb(I, k) as the I′ ∈ I for which m(I, I′) is the k-highest. Examples for
words and their neighbours in FastText embeddings are given in Table
8.1.

Based on the information of the embedding, we derive ×©-clauses.
For each item I, we explore mutual exclusivity in its 1 . . . K clos-
est neighbors, i.e. from ×©(I, nb(I, 1)) until ×©(I, nb(I, 1), . . . , nb(I, K))
where K is the maximum neighborhood size. For that, we adapt the
createCandidates algorithm from Section 8.5.1 so that whenever we
consider merging with an item I, we also consider merging with the
×©-clauses containing additionally the 1, 2, . . . K closest neighbours.
We give the full pseudo-code in Algorithm 2.

Since not all words have K neighbors that represent similar words,
we additionally filter neighbourhoods such that

⋂
I σI(D)⋃
I σI(D)

< a and
m(I, nb(I, k)) > bk for all items I in the clause, i.e. we require that
their transactions barely overlap (mutual exclusivity), and that their
embeddings are reasonably close. In all experiments we set K = 5,
a = 0.05 and bk to the 3rd quartile of {m(I, nb(I, k)) | I ∈ I}.

In the general case for arbitrary labeled data, we could follow the
proposal of Fischer and Vreeken (2020) to search for potential XOR
structure, which however would lead to a much increased search space
and hence computational costs, without any benefits for the specific
NLP applications.
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Algorithm 2: createCandidates
input: D, set of patterns P from the current M, max neighbour

distance K
output: Set of candidate patterns P
// Define nb(I, 0) = I for simplicity

1 C ← {};
// Single item and its neighbours

2 foreach I ∈ I do
3 A← {};
4 foreach k ∈ {0, . . . , K} do
5 A← A ∪ {nb(I, k)};
6 C ← C ∪ {×©(A)};
7 end
8 end

// Pairs of items and their neighbours
9 foreach (I1, I2) ∈ I × I do

10 A1 ← {};
11 foreach k1 ∈ {0, . . . , K} do
12 A1 ← A1 ∪ {nb(I1, k1)};
13 A2 ← {};
14 foreach k2 ∈ {0, . . . , K} do
15 A2 ← A2 ∪ {nb(I2, k2)};
16 C ← C ∪ { ∧©(×©(A1), ×©(A2))};
17 end
18 end
19 end

// Pattern + item and its neighbours
20 foreach P in P do
21 foreach I ∈ I do
22 A← {};
23 foreach k ∈ {0, . . . , K} do
24 A← A ∪ {nb(I, k)};
25 C ← C ∪ { ∧©(γ(P) ∪ {A})};
26 end
27 end
28 end

// Pattern + Pattern
29 foreach (P1, P2) ∈ P ×P do
30 C ← C ∪ { ∧©(γ(P1) ∪ γ(P2)};
31 end

/* see Sections 8.4 and 8.5 for filter criteria */
32 C ← Filter(C) ;
33 return C
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8.5.5 Complexity

While it is common to consider the complexity in terms of the size
of the input, the bound it would give – which is exponential in the
number of items as discussed in the theory section – is neither helpful
nor tight considering the discovery of small models. As MDL ensures
the discovery of such small models, we thus analyze the complexity
of Premise in terms of the size of the discovered model. Consider
Premise finds k conjunctive patterns of maximum length l for a dataset
with m items. Since in every round either a new singleton or pair is
generated that belongs to one of the k final patterns, or two existing
patterns are merged, the algorithm runs for O(k l) rounds. In each
round, the dominating factor is the candidate generation, out of which
there are O(m) potential singletons, O(m2) pairs, and at maximum
O(k l) pattern merges, corresponding to the case that all parts of the
final patterns exist as singleton patterns in the current round. Hence,
we get a worst case time complexity of O(k l (k l + m2)).

For clauses containing mutual exclusivity, for all practical applica-
tions we consider XOR statements of the c closest words in a given
embedding, where c is a small constant. We hence consider O(m c)
single XOR clauses, O((m c)2) pairs, and at maximum O(k l) pattern
merges, where again this corresponds to the case that all parts of
the final patterns exist as singleton patterns in the current round.
Hence we get a worst case time complexity of O(k l (k l + (m c)2)).
For the general case, when searching for arbitrary AND and XOR
combinations, we refer to the work by Fischer and Vreeken (2020).

8.6 experiments

We evaluate and compare our approach on synthetic data with known
ground truth, as well as on real world NLP tasks to characterise mis-
classifications. Describing a labeled database in terms of its features
has been studied extensively in various fields. We here compare against
the state-of-the-art from each, in particular, subgroup discovery us-
ing weighted relative accuracy as quality function (Atzmueller, 2015),
significant pattern mining (SPuManTe by Pellegrina et al. (2019)),
rule sets mining (Grabby Fischer and Vreeken (2019)), and rule lists
(Classy by Proença and van Leeuwen (2020)). As baseline and rep-
resentative of interpretable machine learning models we consider
patterns derived from classification trees. Due to runtime issues, we
compare to Anchors (Ribeiro et al., 2018) only in the NER experiment.
For similar reason, we exclude SliceFinder (Chung et al., 2020), and
disjunctive emerging patterns (Vimieiro, 2012); neither completed a
single run within 12 hours.

Experiments were performed on an Intel i7-7700 machine with 31GB
RAM running Linux. All synthetic data experiments finished within
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Figure 8.3: Synthetic data results (soft F1 score). We visualize results on syn-
thetic data with varying number of items (a), label ratio (b), label
shift (c) and amount of background noise (d). The results are in
terms of a soft F1 score with respect to the ground truth, which
also rewards the discovery of fragments of patterns, as defined in
the text.

minutes for the moderately sized data sets, and within hours for the
larger datasets with 5k and 10k items. On the VQA datasets Premise

finished within 20 minutes and on the NER data within 4 hours. We
make our code, the data as well as the full list of patterns found by
the different methods publicly available.2

8.6.1 Synthetic Data

We evaluate all methods with respect to scalability, robustness to
noise, label imbalance, and the conditional probabilities of patterns.
A standard metric to evaluate success of a model is the F1 score –
the harmonic mean between precision and recall – which for dis-
covered pattern set Pd and ground truth pattern set Pg is defined as
F1(Pd, Pg) = |Pd ∩ Pg|/

(
|Pd ∩ Pg|+ 1

2 |Pd∆Pg|
)
, where ∆ is the symmet-

ric difference between two sets. As competitors only recover fragments
of patterns and hence they obtain very low F1 scores (see Figure 8.4),
for the analysis, we use a soft F1 score that rewards also fragments.

2 https://github.com/uds-lsv/premise

https://github.com/uds-lsv/premise
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Figure 8.4: Synthetic data results (original F1 score). We visualize results on
synthetic data with varying number of items (a), label ratio (b),
label shift (c) and amount of background noise (d). The results
are in terms of F1 score with respect to the ground truth.

We define it as harmonic mean between a soft precision and a soft
recall:

SoftPrec(Pd, Pg) = ∑
pd∈Pd

argmax
pg∈Pg

|pd ∩ pg|
|pg|

, (8.9)

SoftRec(Pd, Pg) = ∑
pg∈Pg

argmax
pd∈Pd

|pd ∩ pg|
|pg|

, (8.10)

F1(Pd, Pg) =
2 ∗ SoftPrec ∗ SoftRec

SoftPrec + SoftRec
. (8.11)

Unless specified differently, for each of the experiments we generate
a data matrix with 10 000 samples, half of which get label l+, the other
half l−. The set of items I has size 1000. We draw patterns of length
2− 5 from I with replacement until 50% of items are covered. For
each pattern we then draw k ∼ N (150, 20) and set the items of the
pattern in .9k random transactions from D+, and .1k transaction from
D− to 1. This corresponds to a typical sparsity level for pattern mining
problems. Additionally, for each item that is part of a pattern, we let
it occur in k ∼ N (50, 20) random transactions from D. For all items
not part of a pattern, we let them occur in k ∼ N (150, 20) transactions
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from D. Lastly, we introduce background noise by flipping .1% of the
matrix values.
Scalability. First, to investigate how the different methods scale to
larger item sets I , we vary the number of items in {100, 200, 500, 1000,
5000, 10 000}. We observe that that the performance of most existing
methods detoriates already for data with several hundred items, only
Premise and subgroup discovery are robust when it comes to scalabity
(see Fig. 8.3a). Note that we let subgroup discovery retrieve the top
k patterns, where k equals the number of ground truth patterns, it
hence has an advantage over all other approaches which would not
hold in a real-world scenario. Subgroup discovery, however, still only
yields (soft) F1 scores of around .35, whereas Premise recovers ground
truth patterns with scores close to 1. Moreover, we see that all MDL
based methods outperform the other approaches for data of smaller
dimension.
Label imbalancing. To investigate the effect of label imbalancing, we
vary the proportion of transactions having label l−, i.e. |D−|/|D| ∈
{0.2, 0.3, 0.4, 0.5}. An imbalancing of labels is commonly encountered
in real world datasets, where e.g. the number of misclassified samples
makes up only a small fraction of overall samples. We again find that
only subgroup discovery and Premise are robust and perform con-
sistently across the varying levels, with subgroup discovery yielding
a soft F1 score of .35 and Premise close to 1 (see Fig. 8.3b). All other
methods break down when there is a minor imbalance in the data.
Varying label shift. Next, we look at label shift, the effect of patterns
occurring not exclusively in one of the labels. This is again a likely
event in real world data. We adapt the occurrence of patterns between
1, meaning the pattern exclusive occurs in one partition of the database,
to .6, meaning that 60% of the transaction where a pattern occurs have
one label, the others have the other label. Similar to before, we observe
the subgroup discovery and Premise are robust to this change (see
Fig. 8.3c). For the statistical testing based SPuManTe, we find the
best performance for a label shift of .7 rather than 1. For Classy and
especially Grab, performance drops even for slight label shifts.
Robustness to background noise. Finally, we look at how the methods
cope with background noise, by flipping a fraction of ε ∈ {0, 0.001,
0.002, 0.005, 0.01} entries of the data matrix. We find that Classy,
Premise, SPuManTe, and Subgroup Discovery are robust even to
large amount of noise (see Fig. 8.3d).

8.6.2 Synthetic Text Data Experiments

Before experimenting with real-world scenarios, we also evaluate how
well all methods cope with item – or token – distributions similar to
real text. To obtain such data, we derive transactions/instances from
the around 3.4k sentences in the development set of the PennTreebank
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Corpus (Marcus et al., 1993). In particular, we draw 12 distinct patterns,
for each pattern choosing items from the vocabulary tokens at random.
To ensure that we introduce only new patterns into the data, we verify
that none of the items in the patterns co-occur in the original data. We
then insert each pattern into a random subset of the PennTreebank
instances, where the number of instances to be covered is drawn from
a normal N (150, 20). The data contains 6k unique items. To evaluate
settings typical for classification, we then vary two types of noise.
Shift noise indicates the percentage of instances with a pattern that
are actually labeled as misclassifications, lower values mean that the
model is still able to predict correctly in some of the instances – e.g.
because a network leverages additional information in the data. The
second type of noise is labeling instances as misclassification although
there is no pattern occurrence – i.e. non-systematic errors – which we
refer to as label noise. For all samples with pattern occurences, we label
a fraction of those as misclassification according to the shift noise, and
then introduce label noise.

experimental setups We generate four different sets of exper-
iments. In the first set, we introduce conjunctive patterns varying
pattern length of the introduced patterns between 1 and 8 without
noise. In the second set of experiments we vary the amount of shift
noise, introducing shifts of {0.6, 0.7, 0.8, 0.9, 1}, and choosing pattern
length uniformly in 1 to 5. In the third set we instead change the
amount label noise, varying in {0, 0.05, 0.1, 0.15, 0.2}. In the fourth set
of experiments, we introduce patterns consisting of conjunctions of
mutual exclusive itemsets. The number of clauses per pattern and
the number of items for each clause is chosen uniformly at random
between 1 and 5. A pattern is only added to an instance if this would
not break the mutual exclusivity assumptions of all patterns. For the
word neighborhoods, items in the same clause obtain embeddings
located around a randomly chosen centroid. All other items obtain
random embeddings. We repeat all experiments 10 times and report
the original F1 score as average across repetitions.

results For the first experiment set of varying pattern length
(Fig. 8.5a), we observe that subgroup discovery is able to retrieve short
patterns well, failing however to discover any larger patterns, instead
retrieving large sets of redundant patterns. Decision trees perform
similarly due to overfitting, finding a plethora of highly redundant
patterns. SPuManTe, although based on statistical testing, consistently
finds thousands of redundant patterns, performing worst of all in
this regard. The rule set miner Grab recovers small patterns well, it
performs however much poorer in retrieving patterns of larger size.
Premise is the only approach to consistently recover the ground truth
in all data sets.
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Figure 8.5: Synthetic text data results (original F1 score). On synthetic text data,
varying the number of items per pattern (a), the amount of shift
noise (b), and the amount of label noise (c), we visualize the results
in terms of F1 score with respect to the ground truth for existing
methods and Premise. We additionally provide the results of
Premise on data containing patterns of mutual exclusive clauses
for varying amounts of noise (d).
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For both noise experiments, visualized in Fig. 8.5b and 8.5c, the tree
based method completely breaks down already for moderate amounts
of noise. Subgroup Discovery and SPuManTe both perform consis-
tently bad with F1 scores below .2. Out of the existing approaches,
only Grab is able to recover the ground truth well. Premise outper-
forms all existing methods in each of our noise experiments, achieving
consistently high F1 scores beyond .92.

Since most baselines do not support discovering mutual exclusivity
or proved to fail in the more simple setup of conjunctions, we only
evaluate our proposed method on the fourth set of experiments with
mutually exclusive items. We observe that Premise is still able to
retrieve patterns even in this challenging setup of complex clauses,
with F1 scores close to .9, and is able to discover clauses in the presence
of noise (Fig. 8.5d).

Overall, these results show that existing methods are challenged by
datasets of larger scale and label imbalancing. In contrast, Premise

solves both these challenges also on data with distributions similar to
natural language text.

8.6.3 Real Data: VQA

Visual question answering (VQA) is the task of answering textual
questions about a given image. It is a popular and challenging task
at the intersection of vision and natural language processing. In this
section, we analyze the misclassification of Visual7W (Zhu et al., 2016)
and LXMERT (Tan and Bansal, 2019), both specific architectures for
different VQA tasks. The pretrained Visual7W reaches 54% accuracy
in 4-option multiple choice, LXMERT a validation score of 70% on
their minival split. Both classifiers perform far from optimal and
thus serve as interesting applications for describing (misclassification)
labels. Here, we derive misclassification data sets from application of
the classifiers to the development sets.

In Table 8.2 we provide statistics about the data and retrieved pat-
terns. Both the tree based method and SPuManTe retrieve several
hundred or thousand patterns making it difficult to interpret the re-
sults. Furthermore, we know from the previous experiments that these
methods find thousands of patterns even when there exist only few
ground truth patterns. The subgroup discovery approach requires the
user to specify the number of patterns a-priori, which is not known,
hence we search for the top 100 patterns to get a succinct set of patterns.
For the retrieved results, there are some patterns showing reasons for
misclassification. However, the patterns are highly redundant with
often ten or more patterns expressing the same cause for misclassi-
fication. It is thus hard to get a full description of what goes wrong,
it lacks the power of set mining approaches that evaluate patterns
together. The majority of patterns found by Classy consist of only
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Visual7W LXMERT

|I| 2429 5351

|D| 28032 25994

Premise

k− 29 41

k+ 26 34

|p| 3.38 2.69

Tree
k 4309 3371

|p| 3.55 2.71

Subgroup
k 100 100

|p| 2.32 2.52

SPuManTe

k 575 951

|p| 2.92 3.90

Classy

k 19 36

|p| 1.26 1.28

Grab

k 1 1

|p| 1 1

Table 8.2: VQA data statistics. For the two VQA classifiers, we provide general
statistics about data dimensions, and for each method the number
of discovered patterns (k = |P|) or if applicable number of patterns
explaining misclassification (k− = |P−|), respectively correct classi-
fication (k+ = |P+|). Additionally, we provide the average pattern
length |p|.
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one token. Grab fails to retrieve meaningful results, likely due to the
heuristic search.

Premise is able to provide a succinct and non-redundant description
of misclassification, and is the only method to recover patterns that
reflect synonyms or different styles of writings. In Tab. 8.3a, we list
patterns found by Premise for the Visual7W classifier, where we can
clearly see the advantage of the richer pattern language, allowing
to find patterns such as ∧©(what, ×©(color, colors, colour)). Generally,
the patterns found by Premise highlight different types of wrongly
answered questions, including counting questions, identification of
objects and their colors, spatial reasoning, and higher reasoning tasks
like reading signs. Furthermore, Premise retrieves both frequent pat-
terns, such as ∧©(how, many), rare patterns, such as ∧©(on, wall, hanging),
and patterns containing related concepts and synonyms.

Premise also finds patterns explaining correct classification. These
could indicate questions that are easy to answer but also questions
that are just memorized by the network, since within the data set the
answer is always the same. For instance, ∧©(who, took, ×©(photo, picture,
pic, photos, photograph)), although a difficult question, is nearly always
answered by ”photographer“. Thus, patterns that are biased towards
correct classification can indicate issues with the dataset. Another
type of problematic questions is indicated by the pattern ∧©(clock,
time), where usually the answer is ”UNK“, the actual time being
replaced with the unknown word token by the limited vocabulary
of Visual7W. The pattern hence indicates a setting where the VQA
classifier undeservedly gets a good score.

By adding additional information as items to each instance, it is
possible to gain further insights. Appending for example the correct
output to each instance, we observe for the question when the pic-
ture was taken two different trends. On the one hand, the discovered
pattern ∧©(when, ×©(daytime, nighttime)) is associated with correct classi-
fication, the pattern ∧©(when, ×©(evening, morning, afternoon, lunchtime)),
on the other hand, points towards misclassification. This is intuitively
consistent as the answers ”daytime“ and ”nighttime“ are easier to
choose based on a picture.

For the LXMERT classifier, a similar set of patterns is discovered
by Premise, with examples given in Table 8.3b. We observe that both
classifiers share certain issues, like the counting questions. However,
no patterns regarding color or spatial position are retrieved. This seems
to indicate that the more recent LXMERT classifier can handle these
better. Instead, many patterns indicate settings that require advanced
capabilities like noticing fine-grained details or reading text on the
images.

For the considered VQA classifiers, existing methods do not give
succinct descriptions, and can not handle the richer language over
conjunctions and mutual exclusivity. Such a language, however, pro-
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pattern example

UNK how are the UNK covered

∧©(how, many) how many elephants are there

∧©(what, ×©(color, what color is the bench

colors, colour))

∧©(on, top, of ) what is on the top of the cake

∧©(left, to) what can be seen to the left

∧©(on, wall, hanging) what is hanging on the wall

∧©(how, does, look) how does the woman look

∧©(what, does, ×©(say, what does the sign say

like, think, know, want))

(a) Visual7W

pattern example

∧©(How, many) How many kites are flying?

∧©(hanging, from) What is hanging from a hook?

∧©(×©(kind, sort), of) What kind of birds are these?

∧©(×©(would, could, How would you describe the decor?

might, can), you)

∧©(name, of ) What is the name of this restaurant?

number What is the pitchers number?

×©(letter, letters) What letter appears on the box?

∧©(How, much, ×©(cost, How much does the fruit cost?

costs))

(b) LXMERT

Table 8.3: VQA example patterns. Our method discovers meaningful and easily
interpretable patterns. For Visual7W (top) and LXMERT (bottom),
we show a subset of the patterns highlighting different reasons
for misclassification along with examples from the corresponding
datasets. The full list of retrieved patterns for all methods is given
in the additional material.
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vides a deeper understanding of misclassification errors. In contrast,
the patterns discovered by Premise give intuitive and informative
descriptions over such a richer language that allow to understand
both, the issues of the dataset, as well as limits of the VQA classifier
and hence can be used to improve classifier performance.

8.6.4 Real Data: NER

A machine learning classifier might perform well on the training
and test data, its performance when deployed ”in the wild“ however
is often much worse. Understanding the difference between the re-
stricted training set-up and the open application of the classifier in
real-life is important for being able to improve. Here, we investigate
the popular LSTM+CNN+CRF architecture (Ma and Hovy, 2016a) for
named entity recognition. The classifier is trained on the standard
NER dataset CoNLL03 (Tjong Kim Sang and De Meulder, 2003), where
it achieves an F1-score of 0.93, a performance good enough for produc-
tion settings. When evaluated on OntoNotes (Weischedel et al., 2011),
a dataset covering a wider range of topics, the performance drops to
0.61 F1 on the development set. We evaluate on this split of the data
consisting of 16k sentences and 23k unique items.

Anchor (Ribeiro et al., 2018) allows to obtain conjunctive patterns
to explain NLP instances locally. It took, however, several days to
analyze all misclassifications on modern GPU hardware due to the
necessary, repeated queries to the NER classifier. Anchor finds 4.1k
unique patterns with many redundant and overly long and specific
patterns. Premise retrieves a concise set of 190 patterns. An example
is ∧©(-LRB-, -RRB-) that indicates different preprocessing of the text,
where -LRB- is an alternative form for the opening bracket, which is
specific to the OntoNotes data, and thus should be properly handled
by the NER classifier. Patterns also indicate problems with differing
labeling conventions. For example, we find the patterns ∧©(’s) and
∧©(Wall, Street), which turn out to be handled differently for entities in
OntoNotes, respectively CoNLL03. Apart from patterns that highlight
dataset differences, we can also isolate issues with OntoNotes alone,
which contains bible excerpts that are not labeled at all. We discover
this through several patterns that describe this domain (God, Jesus,
Samuel).

To empirically validate that the found patterns affect the classifier’s
performance, we select the top 50 patterns according to gain in MDL
and for each pattern sample 5 sentences containing it uniformly at
random from the OntoNotes training data. The CoNLL03 classifier
is then fine-tuned on this data. Sampling and fine-tuning is repeated
20 times with different seeds. Using the pattern-guided data, the
performance is improved to 0.67 mean F1 score (SE 0.003) compared
to sampling fully at random where only a small improvement to
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0.62 (SE 0.005) is achieved. This shows that the patterns discovered
by Premise provide actionable insights into how a classifier can be
improved.

8.6.5 Experimental Details

For the decision tree, patterns are exracted from a tree trained on
the misclassification data. Each of the tree’s inner nodes is a binary
decision regarding the presence of an item and a pattern is the con-
junctive path from the tree’s root to one of its leafs. The model is
trained with Gini impurity as decision criterion in the implementation
from scikit-learn.

For the subgroup discovery, the implementation by Lemmerich and
Becker (2018) is used with depth-first search. The size of the result set
and the maximum depth are set to the ground truth for the synthetic
data and to 100 and 5 respectively for the VQA datasets. SPuManTe is
used with the authors’ default parameters, setting its sample size to the
dataset size. For Grab, we use the publicly available implementation
by the authors, which we tailored for the task at hand by restricting the
possible rule-heads to the labels only, but allowing tails over all other
items. For Classy, we used the publicly available implementation by
the authors as used in the original publication. Minimum support is
set to 1 and maximum rule length to the ground truth for the synthetic
data and 5 for the VQA datasets.

For Visual7W and LXMERT, we use the published, pretrained mod-
els by the corresponding authors. For the LSTM+CNN+CRF classifier
for NER, we follow the specific set-up from Chapter 6 with English
FastText embeddings. For OntoNotes, the data split by Pradhan et
al. Pradhan et al. (2013) is used. The fine-tuning data consists of 240

instances/sentences as two patterns did not match any training data.
Fine-tuning on the additional data is performed for 30 epochs. As
labels, the intersection between CoNLL03 and OntoNotes is used (PER,
LOC, ORG) in the BIO2 format.

8.7 discussion

Experiments show that Premise provides concise and interpretable
descriptions of labeled data. On synthetic data we find that the state-
of-the-art methods across different fields related to supervised pattern
mining, including subgroup discovery, emerging pattern mining, sta-
tistical pattern mining, rule mining, and tree based classification, all
have severe difficulties finding the ground truth pattern set, while
Premise accurately retrieves it. Moreover, we observe that Premise is
the only approach that is at the same time robust to noise, label imbal-
ance, and easily scaling to thousands of items. It thus renders itself
as the most suitable method for challenging real world applications
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revolving around characterising misclassifications of NLP models. For
such tasks, the labels are inherently imbalanced and the sets of items –
in this case tokens – is large. Besides, to capture the rich structures of
word associations, such as synonyms or language variations, we need
a richer pattern language capturing mutual exclusiveness, which only
Premise is able to express.

On two widely adopted NLP models for visual question answering,
we set for characterising their misclassifications comparing Premise

against existing approaches. While some of the competing methods
did retrieve reasonable explanations, these were highly redundant
and barely interpretable for human experts with several hundred or
thousand patterns. Moreover, important concepts, such as patterns that
are similar across related words or synonyms, are completely missed.
Premise, on the other hand, discovers succinct sets of patterns that
provide interesting characterizations of classification errors, revealing
that models struggle with counting, spatial orientation, reading, and
identifies shortcomings in training data.

To show that the pattern sets are not only interpretable and give
interesting insights, but also actionable, we analyze a popular classi-
fier for named entity recognition. In particular, we consider a model
applied to text of a different source and characterize the resulting
classification errors with Premise, and compare it with the recent local
explanation method Anchors. While Premise is able to retrieve a
pattern set swiftly in few hours on commodity hardware, Anchors

requires several days on a modern GPU to deliver results. Inspecting
the retrieved patterns confirms that also for NER models Premise

is able to retrieve meaningful patterns explaining misclassification,
while Anchors finds a very large set of overly long and redundant
patterns. Furthermore, as expected from a local method, the patterns
are highly specific and thus identify problems of the model for par-
ticular instances rather than identifying the general issues that the
model has.

8.8 proof : order of items

Here, we provide a proof that the codelength is independent on the
order of items in mutual exclusive clauses. The proof closely follows
that of Fischer & Vreeken Fischer and Vreeken (2020).

Given a clause cl = ×©(i, j, k) with corresponding margins ni, nj, nk,
it does not matter in which order we transmit where the items hold.
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We show that we can flip the item order without changing the cost.
Assume a new order P = ×©(k, i, j), then we show
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With the definition of the binomial using factorials and standard math,
adding new terms that add up to 0, we show that the above equation
hold.
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Other permutations and larger clauses follow the same reasoning.

8.9 conclusion

We considered the problem of finding interpretable and succinct de-
scriptions of a given label, and proposed to discover succinct pattern
sets to describe the labels based on the Minimum Description Length
Principle. To solve this formulation in practice, we formulated an
efficient bottom-up heuristic Premise. While this problem has been
studied extensively, Premise showed to be the only approach that
scales well to data typical in real world problem settings, while at
the same time being robust to noise, and label imbalance. With these
abilities, combined with a more expressive pattern language compared
to the state-of-the-art capturing also mutual exclusive relationship,
Premise discovered succinct, informative, and actionable pattern sets
that characterize misclassifications of NLP models in two challenging
settings, which capture general problems of the model rather than in-
stance specific (local) issues. It hence fills the gap of a robust approach
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to describe labels in terms of human-interpretable patterns, suited
to take on problems such as characterizing misclassifications of deep
NLP models.

While our approach scales already to tens of thousands of features,
it makes for engaging future work to scale it even further towards
hundreds of thousands of features, which would make it applicable
other domains, like large-scale biomedical data considering patients
vs. healthy individuals, or to extend the work on characterizing mis-
classifications incorporating elements of the classifier itself, such as
neuron activations.

We performed the evaluation for high-resource, black-box NLP
models. Low-resource settings bring additional challenges like vali-
dation sets of limited size that could make it more difficult to find
statistically significant error patterns. On the other hand, the decision
processes of weak supervision systems are often easier to understand
than that of large, black-box neural networks. This could make it
possible for future work to automatically identify the parts within the
weak supervision system that cause the error patterns we find with
Premise.



9
C O N C L U S I O N & F U T U R E W O R K

This chapter summarizes the results of this thesis and gives some
suggestions for future directions in this field.

9.1 summary

Advances in machine learning and deep learning have transformed the
landscape of natural language processing in recent years. In Chapter 3,
we saw, however, that many of the advances require large amounts of
labeled data and are, therefore, limited to a selected set of languages.
There exists a large gap in NLP support between these high-resource
languages and many low-resource languages with millions of speakers.
Closing this gap is essential to allow speakers of these languages
participation in the digital world. Similar to languages, the data for
many tasks is also restricted to specific domains, even in English.
Lowering the data requirements could enable more small businesses
or individuals to set up NLP applications of their own.

9.1.1 The State of Low-Resource NLP

The survey in Chapter 3 gave a structured overview of the methods
that have been proposed to handle low-resource scenarios. Based on
this, we argued that there is no fixed definition for what a low-resource
setting is. Instead, one needs to consider multiple dimensions of data
availability, namely labeled, unlabeled and auxiliary data. The latter
is especially relevant, as most low-resource approaches assume the
availability of specific types of auxiliary resources. We identified as
open issues, among others, the necessity for realistic evaluations to
verify if these assumptions are met in real-life.

9.1.2 The Weak Supervision Pipeline

As we saw in the survey, weak supervision is one of the most popular
methods to approach resource-lean scenarios. Instead of expensive,
manually-labeled data, one uses (semi-)automatic annotation pro-
cesses. While this kind of supervision is cheaper and quicker to obtain,
the rate of incorrect labels is usually also much higher. This label noise
can hurt performance during training and label noise modeling has
been proposed in the past to overcome these negative effects of the
weak supervision. In Chapter 4, we presented a pipeline for NER with
weak supervision. It started with the distant supervision obtained
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through matching external entity lists, included the modeling of the
label noise and concluded with the evaluation of the base model on
clean test data.

While many works on noise handling assume that only noisily
labeled data is available, we argued that it is often comparatively easy
also to obtain a minimal amount of clean supervision, e.g., when a test
set is annotated. We, therefore, proposed a new method to leverage
the combination of a small amount of clean with a large amount of
noisy label data. The model is trained on both types of data while
integrating a noise model that is estimated based on pairs of clean
and noisy labels.

When testing the weak supervision pipeline, we could see the im-
portance of evaluating across different levels of resource availability.
The base model without noise handling, e.g., developed certain noise
robustness once it had enough access to clean data. We also saw the
effectiveness of the combination of weakly supervised data and noise
handling. This approach reached the same performance as the base
model with half as much clean data.

9.1.3 A Tool for Distant Supervision

Weak and distant supervision can only work in practice if the user can
employ it efficiently. To this aim, in Chapter 5, we presented ANEA, a
tool to automatically extract entity lists from Wikidata and annotate
large amounts of unlabeled text with it. While it minimizes the manual
effort for the core annotation process, it also helps the human experts
in understanding errors of the annotation and allows them to improve
it. This control over the process is given by heuristics that can be
enabled and configured. The graphical interface we developed makes
our tool accessible to users without programming knowledge. We
verified the effectiveness of the distant supervision provided by ANEA
for specific domains like movies as well as low-resource languages
like Estonian or Yorúbà. This tool was also used to generate distantly
supervised data in the following chapters.

9.1.4 Low-Resource Techniques Meet Pre-Trained Language Models

Pre-trained language models like BERT have rapidly become an es-
sential part of many NLP architectures. Past work indicated, however,
that there could be a gap in performance when using these language
models for high and low-resource languages. Also, it was shown that
weak supervision might underperform when applied to actual re-
source lean scenarios compared to simulated ones. Taking the distant
supervision and noise handling pipeline from previous chapters, we
evaluated in Chapter 6 how they combine with modern pre-trained
language model architectures as base models. This was tested on
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three actual low-resource languages from African language families
(Hausa, isiXhosa and Yorúbà) and two different tasks (NER and text
classification).

We also experimented with combining BERT-like models with an-
other popular low-resource technique, namely few-shot transfer learn-
ing. We saw that both approaches could help when only limited
amounts of clean data are available. With few-shot transfer learning,
we obtained the most impressive results, reaching in several cases
with only ten labeled sentences in the target language the same perfor-
mance as the baseline trained on several hundred labeled sentences.
Few-shot learning showed, however, also its limitations as it was
struggling when the label sets did not match for the transfer.

Distant supervision was helpful when limited amounts of clean data
were available. Once we used more clean labels, the additional, weak
and noisy supervision actually hurt performance. This indicated that
the question of noise handling is far from solved and further research
in noise handling methods is necessary to boost performance in these
cases.

We also used these settings to reflect on how realistic our evaluations
were. One assumption was, e.g., the availability of large GPU hardware.
In a low-resource scenario, access to large hardware resources might
also be limited. In experiments, we saw that the gap between normal
and distilled models (that can run on limited hardware) can be larger
in settings with limited amounts of labeled data. One of the other
issues we highlighted is the annotation time on which we will expand
in the future work section below.

9.1.5 Noise Model Estimation on Realistic Noise

Chapter 7 aimed at bridging the practical evaluation with a more
theoretical analysis. We revisited the noise modeling approach and
derived the expected error of the noise model estimated from pairs of
clean and noisy labels. This gave insights into the factors on which the
noise estimation depends, such as the noise distribution or the data
sampling method. We verified these results on synthetic and realistic
noise as well as empirically showing the connection between noise
model estimation and downstream performance of the base model.

We highlighted the differences in the noise distribution when com-
paring common synthetic noises (like single flip or uniform) with
realistic noise sources (both from others and from our work). Since
we previously showed the importance of the noise distribution on the
noise handling method, it is, therefore, also essential to evaluate new
methods on realistic forms of noisy labels. For this aim, we presented
the NoisyNER dataset. It was created through a distant supervision
process and provides multiple different noise levels for the same fea-
tures. It also includes additional, challenging factors like uneven label
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distributions and noise classes with higher probability than the true
class.

9.1.6 Understanding The Reasons for Label Errors

To improve a weak supervision system, or a machine learning classifier
in general, it is important to understand where they make labeling
errors. In Chapter 8, we presented a novel approach to character-
izing errors of a black-box classifier. Approaching this task from a
data mining perspective, we proposed a new method for finding
label-descriptive patterns. Instead of local explanations, our Premise
algorithm identifies a global set of patterns. We developed an encod-
ing that describes the data using the Minimum Description Length
principle. This gave us pattern sets that are concise and statistically
significant. We extended the pattern language to contain not only the
typical conjunctions but also mutual exclusivity, allowing to model
natural language phenomena like synonyms or related words.

Experiments on synthetic data showed that Premise outperformed
the state-of-the-art competitors, scaled to large datasets and was robust
against several types of noise. Applied to the misclassifications of
Visual Question Answering and NER classifiers, we saw that our new
method could handle the large search spaces of natural language
text inputs and could find a compact set of human-interpretable and
actionable insights.

9.2 conclusion

With the growing need for labeled machine learning data, weak su-
pervision has become a popular solution, moving from the academic
setting into real-world usage in start-ups and industry projects, e.g.
by Bach et al. (2019) and Snorkel AI (2022). In this dissertation, we
studied how weak supervision can be used in low-resource settings
with a focus on resource-lean languages. We showed that with the
right software support, weak supervision can be an efficient way to
translate expert insights into labeled data. It is orthogonal to other
approaches like transfer learning and, therefore, a useful contribution
to the toolbox of low-resource methods.

Incorrect labels are a crucial aspect of weak supervision. We de-
veloped a method to make reasons for misclassification easily under-
standable and studied how noise modeling can remove the negative
effects of these label errors on the training process. We also high-
lighted, however, where weak supervision and noise handling still fall
short and why realistic evaluations are necessary to ensure they can
impact real-world applications.
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9.3 future directions

One aspect that is seldomly considered in the field is the human expert.
Often the expert is just mentioned as an abstract motivation for why
weak supervision is needed. When one aims at developing methods
that are actually useful in practice, the human element is a part of the
system that one should not ignore.

In Chapter 6, we saw that for text classification, weak supervision
needed a set-up of 2.5 hours. One of our annotators could annotate
over thousand sentences in the same time span. This makes a standard
annotation a competitive baseline. In contrast, for NER, setting up
the distant supervision took only ca. 30 minutes thanks to the sup-
port of the ANEA tool. In the same time, an annotator would only
have annotated 30 NER sentences. Additionally, the distant supervi-
sion could then be applied to a nearly arbitrary amount of unlabeled
text. This shows that it is essential to take the annotating expert into
consideration. This includes human factors like willingness to anno-
tate, expertise, personal preferences and mental load. Such research
questions connect weak supervision with the field of human-computer-
interaction. The goal here is to develop tools that better support the
human expert.

From a more general perspective, weak supervision can be seen as
one form of transferring the insights and knowledge of a human expert
to a machine learning system (via, e.g., heuristics). Other approaches
to doing so include normal per instance annotation or active learning.
First ideas have been proposed to combine active learning with weak
supervision in a practical way, e.g. by Gonsior et al. (2020), Brust et al.
(2020) and Biegel et al. (2021). We are interested to see if and how these
different forms of knowledge transfer distinguish themselves from an
information-theoretic perspective, i.e., if the information they provide
is similar or orthogonal. A per instance annotation might provide high
accuracy information but with a small coverage compared to a weak
supervision approach that can cover a wide range of documents with
less accuracy. These different types of information might be useful
in different stages of training a machine learning system. Insights on
these questions could then guide ways to combine different annotation
approaches in an efficient form.
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Sophia Ananiadou, and Jun’ichi Tsujii. “brat: a Web-based
Tool for NLP-Assisted Text Annotation.” In: Proceedings of the
Demonstrations at EACL 2012. 2012. url: http://aclweb.org/
anthology/E12-2021.

[297] Stephanie Strassel and Jennifer Tracey. “LORELEI Language
Packs: Data, Tools, and Resources for Technology Development
in Low Resource Languages.” In: Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC’16).
European Language Resources Association (ELRA), 2016. url:
https://www.aclweb.org/anthology/L16-1521.

[298] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir
Bourdev, and Rob Fergus. “Training Convolutional Networks
with Noisy Labels.” In: Workshop Track of the International Con-
ference on Learning Representations (ICLR). 2015.

[299] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christo-
pher D. Manning. “Multi-instance Multi-label Learning for Re-
lation Extraction.” In: Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning. Association for Computational
Linguistics, 2012. url: https://www.aclweb.org/anthology/
D12-1042.

[300] Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald,
and Joakim Nivre. “Token and Type Constraints for Cross-
Lingual Part-of-Speech Tagging.” In: Transactions of the Associa-
tion for Computational Linguistics 1 (2013). doi: 10.1162/tacl_
a_00205.

[301] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao
Yang, and Chunfang Liu. “A survey on deep transfer learning.”
In: International conference on artificial neural networks. Springer.
2018. url: https://link.springer.com/chapter/10.1007/
978-3-030-01424-7_27.

https://snorkel.ai/case-studies/
https://snorkel.ai/case-studies/
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/https://doi.org/10.1007/s10579-011-9165-9
https://doi.org/https://doi.org/10.1007/s10579-011-9165-9
http://aclweb.org/anthology/E12-2021
http://aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/L16-1521
https://www.aclweb.org/anthology/D12-1042
https://www.aclweb.org/anthology/D12-1042
https://doi.org/10.1162/tacl_a_00205
https://doi.org/10.1162/tacl_a_00205
https://link.springer.com/chapter/10.1007/978-3-030-01424-7_27
https://link.springer.com/chapter/10.1007/978-3-030-01424-7_27


156 bibliography

[302] Hao Tan and Mohit Bansal. “LXMERT: Learning Cross-Modality
Encoder Representations from Transformers.” In: EMNLP. 2019.

[303] Jörg Tiedemann. “Parallel Data, Tools and Interfaces in OPUS.”
In: Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC’12). European Language Re-
sources Association (ELRA), 2012. url: http://www.lrec-
conf.org/proceedings/lrec2012/pdf/463_Paper.pdf.

[304] Jörg Tiedemann. “Parallel Data, Tools and Interfaces in OPUS.”
In: Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12). European Language Re-
sources Association (ELRA), 2012. isbn: 978-2-9517408-7-7.

[305] Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to
the CoNLL-2003 Shared Task: Language-Independent Named
Entity Recognition.” In: Proceedings of HLT-NAACL 2003. 2003.

[306] Alexander Tkachenko, Timo Petmanson, and Sven Laur. “Named
Entity Recognition in Estonian.” In: Proceedings of the 4th Bi-
ennial International Workshop on Balto-Slavic Natural Language
Processing, BSNLP@ACL 2013, Sofia, Bulgaria, August 8-9, 2013.
2013.

[307] Antonio Torralba, Robert Fergus, and William T. Freeman. “80

Million Tiny Images: A Large Data Set for Nonparametric
Object and Scene Recognition.” In: IEEE Trans. Pattern Anal.
Mach. Intell. 30.11 (2008).

[308] Jennifer Tracey and Stephanie Strassel. “Basic Language Re-
sources for 31 Languages (Plus English): The LORELEI Rep-
resentative and Incident Language Packs.” English. In: Pro-
ceedings of the 1st Joint Workshop on Spoken Language Technolo-
gies for Under-resourced languages (SLTU) and Collaboration and
Computing for Under-Resourced Languages (CCURL). European
Language Resources association, 2020. isbn: 979-10-95546-35-1.
url: https://www.aclweb.org/anthology/2020.sltu-1.39.

[309] Jennifer Tracey et al. “Corpus Building for Low Resource Lan-
guages in the DARPA LORELEI Program.” In: Proceedings of
the 2nd Workshop on Technologies for MT of Low Resource Lan-
guages. European Association for Machine Translation, 2019.
url: https://www.aclweb.org/anthology/W19-6808.

[310] Tatiana Tsygankova, Francesca Marini, Stephen Mayhew, and
Dan Roth. “Building Low-Resource NER Models Using Non-
Speaker Annotations.” In: (2021). doi: 10.18653/v1/2021.dash-
1.11.

[311] Aminu Tukur, Kabir Umar, and Anas Saidu Muhammad. “Tag-
ging Part of Speech in Hausa Sentences.” In: 2019 15th In-
ternational Conference on Electronics, Computer and Computation

http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://www.aclweb.org/anthology/2020.sltu-1.39
https://www.aclweb.org/anthology/W19-6808
https://doi.org/10.18653/v1/2021.dash-1.11
https://doi.org/10.18653/v1/2021.dash-1.11


bibliography 157

(ICECCO). IEEE. 2019. url: https://ieeexplore.ieee.org/
abstract/document/9043198/.

[312] Clara Vania, Yova Kementchedjhieva, Anders Søgaard, and
Adam Lopez. “A systematic comparison of methods for low-
resource dependency parsing on genuinely low-resource lan-
guages.” In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). As-
sociation for Computational Linguistics, 2019. doi: 10.18653/
v1/D19-1102.

[313] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. “Attention is All you Need.” In: Advances in Neural
Information Processing Systems 30. Curran Associates, Inc., 2017.
url: http://papers.nips.cc/paper/7181-attention-is-
all-you-need.pdf.

[314] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav
Gupta, and Serge J. Belongie. “Learning From Noisy Large-
Scale Datasets With Minimal Supervision.” In: Proceedings of
CVPR 2017. 2017.

[315] R. Vimieiro. “Mining disjunctive patterns in biomedical data
sets.” PhD thesis. The University of Newcastle, Australia, 2012.

[316] Hao Wang, Bing Liu, Chaozhuo Li, Yan Yang, and Tianrui
Li. “Learning with Noisy Labels for Sentence-level Sentiment
Classification.” In: Proceedings of EMNLP-IJCNLP 2019. 2019.

[317] Geoffrey I. Webb. “Discovering Significant Patterns.” In: 68.1
(2007).

[318] Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Tech-
niques for Boosting Performance on Text Classification Tasks.”
In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics, 2019. doi: 10.18653/v1/D19-
1670.

[319] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha
Palmer, Nianwen Xue, Mitchell Marcus, Ann Taylor, Craig
Greenberg, Eduard Hovy, Robert Belvin, et al. “OntoNotes
Release 4.0.” In: LDC2011T03 (2011).

[320] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A
survey of transfer learning.” In: Journal of Big data 3.1 (2016).
url: https://journalofbigdata.springeropen.com/article
s/10.1186/s40537-016-0043-6.

https://ieeexplore.ieee.org/abstract/document/9043198/
https://ieeexplore.ieee.org/abstract/document/9043198/
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D19-1102
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6


158 bibliography

[321] Garrett Wilson and Diane J Cook. “A survey of unsupervised
deep domain adaptation.” In: ACM Transactions on Intelligent
Systems and Technology (TIST) 11.5 (2020). url: https://dl.acm.
org/doi/abs/10.1145/3400066.

[322] Guillaume Wisniewski, Nicolas Pécheux, Souhir Gahbiche-
Braham, and François Yvon. “Cross-Lingual Part-of-Speech
Tagging through Ambiguous Learning.” In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational Linguistics,
2014. doi: 10.3115/v1/D14-1187.

[323] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. 2019. arXiv: 1910.03771.

[324] Stefan Wrobel. “An algorithm for multi-relational discovery of
subgroups.” In: Principles of Data Mining and Knowledge Discov-
ery. Springer, 1997.

[325] Shijie Wu and Mark Dredze. “Beto, Bentz, Becas: The Surprising
Cross-Lingual Effectiveness of BERT.” In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, 2019. doi: 10.18653/v1/D19-1077.

[326] Shijie Wu and Mark Dredze. “Are All Languages Created Equal
in Multilingual BERT?” In: Proceedings of the 5th Workshop on
Representation Learning for NLP. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.repl4nlp-1.16.

[327] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel
Weld. “Errudite: Scalable, Reproducible, and Testable Error
Analysis.” In: ACL. 2019.

[328] Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming
Gong, Haifeng Liu, Gang Niu, Dacheng Tao, and Masashi
Sugiyama. “Part-dependent Label Noise: Towards Instance-
dependent Label Noise.” In: Proceedings of NeurIPS 2020. 2020.

[329] Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong,
Gang Niu, and Masashi Sugiyama. “Are Anchor Points Re-
ally Indispensable in Label-Noise Learning?” In: Proceedings of
NeurIPS 2019. 2019.

[330] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang
Wang. “Learning from massive noisy labeled data for image
classification.” In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015.

https://dl.acm.org/doi/abs/10.1145/3400066
https://dl.acm.org/doi/abs/10.1145/3400066
https://doi.org/10.3115/v1/D14-1187
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/2020.repl4nlp-1.16


bibliography 159

[331] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and
Quoc V. Le. “Unsupervised Data Augmentation for Consistency
Training.” In: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual. 2020. url:
https://proceedings.neurips.cc/paper/2020/hash/44feb

0096faa8326192570788b38c1d1-Abstract.html.

[332] Hu Xu, Bing Liu, Lei Shu, and Philip Yu. “DomBERT: Domain-
oriented Language Model for Aspect-based Sentiment Anal-
ysis.” In: Findings of the Association for Computational Linguis-
tics: EMNLP 2020 (2020). doi: 10.18653/v1/2020.findings-
emnlp.156.

[333] Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He,
and Min Zhang. “Distantly Supervised NER with Partial Anno-
tation Learning and Reinforcement Learning.” In: Proceedings
of the 27th International Conference on Computational Linguistics.
Association for Computational Linguistics, 2018. url: https:
//www.aclweb.org/anthology/C18-1183.

[334] Ze Yang, Wei Wu, Jian Yang, Can Xu, and Zhoujun Li. “Low-
Resource Response Generation with Template Prior.” In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-1197.

[335] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang
Deng, Gang Niu, and Masashi Sugiyama. “Dual T: Reducing
Estimation Error for Transition Matrix in Label-noise Learn-
ing.” In: Proceedings of NeurIPS 2020. 2020.

[336] David Yarowsky, Grace Ngai, and Richard Wicentowski. “In-
ducing Multilingual Text Analysis Tools via Robust Projection
across Aligned Corpora.” In: Proceedings of the First International
Conference on Human Language Technology Research. 2001. url:
https://www.aclweb.org/anthology/H01-1035.

[337] Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev. “Ro-
bust Multilingual Part-of-Speech Tagging via Adversarial Train-
ing.” In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018. doi: 10.18653/v1/N18-1089.

[338] Qinyuan Ye, Liyuan Liu, Maosen Zhang, and Xiang Ren. “Look-
ing Beyond Label Noise: Shifted Label Distribution Matters in
Distantly Supervised Relation Extraction.” In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language

https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.156
https://doi.org/10.18653/v1/2020.findings-emnlp.156
https://www.aclweb.org/anthology/C18-1183
https://www.aclweb.org/anthology/C18-1183
https://doi.org/10.18653/v1/D19-1197
https://www.aclweb.org/anthology/H01-1035
https://doi.org/10.18653/v1/N18-1089


160 bibliography

Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, 2019. doi: 10.18653/v1/D19-1397.

[339] Seid Muhie Yimam, Chris Biemann, Richard Eckart de Castilho,
and Iryna Gurevych. “Automatic Annotation Suggestions and
Custom Annotation Layers in WebAnno.” In: Proceedings of ACL
2014: System Demonstrations. 2014. doi: 10.3115/v1/P14-5016.

[340] Jihene Younes, Emna Souissi, Hadhemi Achour, and Ahmed
Ferchichi. “Language resources for Maghrebi Arabic dialects’
NLP: a survey.” In: LANGUAGE RESOURCES AND EVALUA-
TION (2020). url: https://link.springer.com/article/10.
1007%5C%2Fs10579-020-09490-9.

[341] Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar,
Yu Cheng, Gerald Tesauro, Haoyu Wang, and Bowen Zhou. “Di-
verse Few-Shot Text Classification with Multiple Metrics.” In:
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computa-
tional Linguistics, 2018. doi: 10.18653/v1/N18-1109.

[342] BI Yude. “A Brief Survey of Korean Natural Language Pro-
cessing Research.” In: Journal of Chinese Information Processing 6

(2011). url: http://en.cnki.com.cn/Article_en/CJFDTotal-
MESS201106022.htm.

[343] Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu, Jonathan May,
Kevin Knight, and Heng Ji. “ELISA-EDL: A Cross-lingual Entity
Extraction, Linking and Localization System.” In: Proceedings of
NAACL-HLT 2018: Demonstrations. 2018. doi: 10.18653/v1/N18-
5009.

[344] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang,
Mao Yang, and Alexander Ratner. “WRENCH: A Compre-
hensive Benchmark for Weak Supervision.” In: arXiv preprint
arXiv:2109.11377 (2021). url: https://arxiv.org/abs/2109.
11377.

[345] Meishan Zhang, Yue Zhang, and Guohong Fu. “Cross-Lingual
Dependency Parsing Using Code-Mixed TreeBank.” In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-1092.

[346] Rui Zhang, Caitlin Westerfield, Sungrok Shim, Garrett Bing-
ham, Alexander Fabbri, William Hu, Neha Verma, and Dragomir
Radev. “Improving Low-Resource Cross-lingual Document Re-
trieval by Reranking with Deep Bilingual Representations.”
In: Proceedings of the 57th Annual Meeting of the Association for

https://doi.org/10.18653/v1/D19-1397
https://doi.org/10.3115/v1/P14-5016
https://link.springer.com/article/10.1007%5C%2Fs10579-020-09490-9
https://link.springer.com/article/10.1007%5C%2Fs10579-020-09490-9
https://doi.org/10.18653/v1/N18-1109
http://en.cnki.com.cn/Article_en/CJFDTotal-MESS201106022.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-MESS201106022.htm
https://doi.org/10.18653/v1/N18-5009
https://doi.org/10.18653/v1/N18-5009
https://arxiv.org/abs/2109.11377
https://arxiv.org/abs/2109.11377
https://doi.org/10.18653/v1/D19-1092


bibliography 161

Computational Linguistics. Association for Computational Lin-
guistics, 2019. doi: 10.18653/v1/P19-1306.

[347] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level
Convolutional Networks for Text Classification.” In: Advances in
Neural Information Processing Systems 28. Curran Associates, Inc.,
2015. url: http://papers.nips.cc/paper/5782-character-
level-convolutional-networks-for-text-classification.

pdf.

[348] Shun Zheng, Xu Han, Yankai Lin, Peilin Yu, Lu Chen, Ling
Huang, Zhiyuan Liu, and Wei Xu. “DIAG-NRE: A Neural
Pattern Diagnosis Framework for Distantly Supervised Neural
Relation Extraction.” In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/P19-1137.

[349] Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu, Meng
Fang, Rick Siow Mong Goh, and Kenneth Kwok. “Dual Adver-
sarial Neural Transfer for Low-Resource Named Entity Recogni-
tion.” In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/P19-1336.

[350] Mengfei Zhou, Anette Frank, Annemarie Friedrich, and Alexis
Palmer. “Semantically Enriched Models for Modal Sense Clas-
sification.” In: Proceedings of the First Workshop on Linking Com-
putational Models of Lexical, Sentential and Discourse-level Se-
mantics. Association for Computational Linguistics, 2015. doi:
10.18653/v1/W15-2705.

[351] Yi Zhu, Benjamin Heinzerling, Ivan Vulić, Michael Strube, Roi
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