1,561 research outputs found

    Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition

    Full text link
    In this paper we address the problem of human action recognition from video sequences. Inspired by the exemplary results obtained via automatic feature learning and deep learning approaches in computer vision, we focus our attention towards learning salient spatial features via a convolutional neural network (CNN) and then map their temporal relationship with the aid of Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models. We also extensively evaluate their strengths and weaknesses. We find that by combining both the sets of features, the fully connected features effectively act as an attention mechanism to direct the LSTM to interesting parts of the convolutional feature sequence. The significance of our fusion method is its simplicity and effectiveness compared to other state-of-the-art methods. The evaluation results demonstrate that this hierarchical multi stream fusion method has higher performance compared to single stream mapping methods allowing it to achieve high accuracy outperforming current state-of-the-art methods in three widely used databases: UCF11, UCFSports, jHMDB.Comment: Published as a conference paper at WACV 201

    Dilated Context Integrated Network with Cross-Modal Consensus for Temporal Emotion Localization in Videos

    Full text link
    Understanding human emotions is a crucial ability for intelligent robots to provide better human-robot interactions. The existing works are limited to trimmed video-level emotion classification, failing to locate the temporal window corresponding to the emotion. In this paper, we introduce a new task, named Temporal Emotion Localization in videos~(TEL), which aims to detect human emotions and localize their corresponding temporal boundaries in untrimmed videos with aligned subtitles. TEL presents three unique challenges compared to temporal action localization: 1) The emotions have extremely varied temporal dynamics; 2) The emotion cues are embedded in both appearances and complex plots; 3) The fine-grained temporal annotations are complicated and labor-intensive. To address the first two challenges, we propose a novel dilated context integrated network with a coarse-fine two-stream architecture. The coarse stream captures varied temporal dynamics by modeling multi-granularity temporal contexts. The fine stream achieves complex plots understanding by reasoning the dependency between the multi-granularity temporal contexts from the coarse stream and adaptively integrates them into fine-grained video segment features. To address the third challenge, we introduce a cross-modal consensus learning paradigm, which leverages the inherent semantic consensus between the aligned video and subtitle to achieve weakly-supervised learning. We contribute a new testing set with 3,000 manually-annotated temporal boundaries so that future research on the TEL problem can be quantitatively evaluated. Extensive experiments show the effectiveness of our approach on temporal emotion localization. The repository of this work is at https://github.com/YYJMJC/Temporal-Emotion-Localization-in-Videos.Comment: Accepted by ACM Multimedia 202

    表情における複雑と連続な感情表現の学習に関する研究

    Get PDF
    博士(工学)神戸大

    CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-Labeled Unconstrained Videos

    Full text link
    Weakly supervised video object localization (WSVOL) methods often rely on visual and motion cues only, making them susceptible to inaccurate localization. Recently, discriminative models have been explored using a temporal class activation mapping (CAM) method. Although their results are promising, objects are assumed to have limited movement from frame to frame, leading to degradation in performance for relatively long-term dependencies. In this paper, a novel CoLo-CAM method for WSVOL is proposed that leverages spatiotemporal information in activation maps during training without making assumptions about object position. Given a sequence of frames, explicit joint learning of localization is produced based on color cues across these maps, by assuming that an object has similar color across adjacent frames. CAM activations are constrained to respond similarly over pixels with similar colors, achieving co-localization. This joint learning creates direct communication among pixels across all image locations and over all frames, allowing for transfer, aggregation, and correction of learned localization, leading to better localization performance. This is achieved by minimizing the color term of a conditional random field (CRF) loss over a sequence of frames/CAMs. Empirical experiments on two challenging datasets with unconstrained videos, YouTube-Objects, show the merits of our method, and its robustness to long-term dependencies, leading to new state-of-the-art performance for WSVOL.Comment: 16 pages, 8 figure

    Grounding deep models of visual data

    Get PDF
    Deep models are state-of-the-art for many computer vision tasks including object classification, action recognition, and captioning. As Artificial Intelligence systems that utilize deep models are becoming ubiquitous, it is also becoming crucial to explain why they make certain decisions: Grounding model decisions. In this thesis, we study: 1) Improving Model Classification. We show that by utilizing web action images along with videos in training for action recognition, significant performance boosts of convolutional models can be achieved. Without explicit grounding, labeled web action images tend to contain discriminative action poses, which highlight discriminative portions of a video’s temporal progression. 2) Spatial Grounding. We visualize spatial evidence of deep model predictions using a discriminative top-down attention mechanism, called Excitation Backprop. We show how such visualizations are equally informative for correct and incorrect model predictions, and highlight the shift of focus when different training strategies are adopted. 3) Spatial Grounding for Improving Model Classification at Training Time. We propose a guided dropout regularizer for deep networks based on the evidence of a network prediction. This approach penalizes neurons that are most relevant for model prediction. By dropping such high-saliency neurons, the network is forced to learn alternative paths in order to maintain loss minimization. We demonstrate better generalization ability, an increased utilization of network neurons, and a higher resilience to network compression. 4) Spatial Grounding for Improving Model Classification at Test Time. We propose Guided Zoom, an approach that utilizes spatial grounding to make more informed predictions at test time. Guided Zoom compares the evidence used to make a preliminary decision with the evidence of correctly classified training examples to ensure evidenceprediction consistency, otherwise refines the prediction. We demonstrate accuracy gains for fine-grained classification. 5) Spatiotemporal Grounding. We devise a formulation that simultaneously grounds evidence in space and time, in a single pass, using top-down saliency. We visualize the spatiotemporal cues that contribute to a deep recurrent neural network’s classification/captioning output. Based on these spatiotemporal cues, we are able to localize segments within a video that correspond with a specific action, or phrase from a caption, without explicitly optimizing/training for these tasks
    corecore