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Abstract

As a key aspect of nonverbal communication, facial expression plays an important role in
social interaction between individuals. To improve the human-computer interaction, it urges
a computer to arm with the ability to recognise, understand, and generate human facial ex-
pressions. To achieve this, it entails the development of a computational model to learn
representations of facial expressions. However, to derive such model is a difficult task as
most facial expressions are complex, and hard to be categorised. Previous efforts in tackling
this issue focused on learning discrete single-label representations. However, these learned
single-label representations of facial expressions are only capable of solving simply recogni-
tion tasks. More importantly, as these learned single-label representations are discrete, they
contradict with the continuous nature of facial expressions. Hence, a computational model
that is able to learn complex continuous representations of facial expressions is in demand.

To fill this research gap, the objective of this thesis is to learn complex and continuous
affective representations of facial expressions. It targets on representations that are able to
reflect the complexity of facial expressions in helping computers to comprehend and gener-
ate human-like facial expressions. To achieve this goal, three different researches, ranging
from the usage of label relaxation technique in improving the discriminative performance
of a neural network on a expression classification task, the proposal of a transfer learning
paradigm to output multi-label predictions, to the proposal of the encapsulated variational
auto-encoders (EVAE) to generate continuous expressions, are demonstrated in this thesis.

In our first approach, we aim to improve the performance of a neural network on an ex-
pression classification task via training the neural network with relaxed labels. The relied
label relaxation technique transforms the original one hot encoded labels to real-numbered
ones. As a running example, a joy-like expression, which is originally one-hot encoded as
[0, 0, 1], can now be relaxed to a continuous one, e.g., [0.1, 0.1, 0.8]. This allows the pro-
duction of relaxed labels for supervised training of a neural network. Through the empirical
result on FER2013 dataset, we show that compare to original one-hot labels, training a neu-
ral network with relaxed labels is able to improve its discriminative performance on a facial
expression classification task.



x

However, the foregoing label relaxation technique only ensures the production of single-
label representation of facial expression. In real world, a single expression can often be
interpreted into multiple affects. E.g., it is not uncommon that a facial expression can be in-
terpreted into joyfulness and surprise at the same time. Hence, it demands a model to output
multiple labels to categorise a single facial expression. But to collect high quality multi-
label annotations for supervised learning is labor intensive. For this reason, in this research,
we propose a transfer learning based model to output multi-label annotations for a facial
expression. The relied model is our proposed uncertainty flow framework. The proposed
uncertainty flow framework consists of four components: two bayesian neural networks, the
weakly informative priors, the transferred posterior weight distribution, and threemulti-label
prediction indexes. Arming with this framework, a complex facial expression that is only
allowed to predict as [0, 0, 1] (the joyfulness expression) before, can now be predicted as
[0, 1, 1] (the joyfulness and surprise expressions).

In our final research, the objective is to generate facial expressions along certain con-
tinuous axes. To achieve this, we propose a novel form of variational auto-encoder, i.e.,
encapsulated variational auto-encoders (EVAE). Within our proposed EVAE, we identify
two continuous factors that exert the direct influence over the final generated expressions.
Training this EVAE on two expression datasets, we show that EVAE is capable of generating
facial expressions along these continuous factors.

This thesis – with its woven three proposed approaches – demonstrate the feasibility of
learning complex continuous affective representations of facial expressions. It firmly be-
lieved that advancing this research path further will benefit computers in better recognising,
comprehending and generating human facial expressions to improve the quality of human-
computer interactions.
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Chapter 1

General Introduction

1.1 Affective Computing
The term: Affective computing was first coined by Rosalind Picard – the pioneer and fore-
most scholar in affective computing – refers computing that relates to, arises from, or delib-
erately influences emotion or other affective phenomena [1].

1.1.1 Aspects of Human Affection
Emotion, affection, sentire, and sentiment are used interchangeably to refer both our inter-
nal dynamics of emotional responses. The explanation of human emotion and the rise of
emotional state and experience remains unfettered. Despite of the ferocious dispute, most
theorists agree to view human emotion into two following aspects: the physical and cog-
nitive ones [2]. The physical aspect of emotion pays overwhelming attention on the overt,
explicit expression of a sentiment, such as voice inflection, our focused facial expression
and postures. A more internal, implicit aspect of emotion is the cognitive aspect of emotion,
which focus on the cognitive mechanism of an emotion.

Undoubtedly, from the computational perspective, the former aspect, i.e., the physical
aspect of emotion is much convenient to access, quantify, and simulate, whereas the com-
putation on the later cognitive aspect is a much challenging task [1]. I.e., even if a computer
could perceive all the stimuli, how would it reach the interpretation as ”love” and ”dislike”.
Furthermore as a successful cognitive emotion model is likely to depend on individual’s ex-
perience, it is nonetheless unlikely that every cognitive factor that influences emotion will
be identified, collected, and recognised for a time-elapsed emotion response.
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In Fig.1.1, it demonstrates the full spectrum of possible research areas in affective
computing. The figure is original produced by MIT media lab, we thank Roseline
Picard and her colleagues for their kind permission for redistribution.

Fig. 1.1 Components of Affective Computing

Hence, modern affective computing researches (including this one) are pertaining to the
uniformed focus on analysis of the physical aspect of the emotion, leaving the exploitation
of cognitive aspect to successors.

1.1.2 Researches in Affective Computing
Focusing on the physical aspect of emotion, as depicted in Fig.1.1, the full spectrum of
affective computing researches ranges from the design of affective aware sensor hardware
(the marble coloured block in Fig.1.1), the computational analysis of human affects ( the blue
coloured blocks in Fig.1.1), to downstream applications (the purple and read coloured blocks
in Fig.1.1). Coarsely speaking, the foregoing noted subareas of affective computing can be
relating to the three-step process of expressing human sentiments as perception (sensing);
modelling (analysis); and expression (application).
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In Fig.1.2, it demonstrates three coarsely defined three subcomponents in a full-
fledged affective computing system.

Fig. 1.2 Working pipeline of an affective computing system

In affective computing, perception of an affect can be posited as a data acquisition or
signal detection task in computer science. Emotion signal is carried by a broad range of
multimodal cues, ranging from speech, image, gesture, vocal intonation, and et ac. This
leads to diversified types of signals, including bio-potential signals, e.g., EEG and fMRI
signals, , nonverbal vocalisation, bodily expression, speech and facial expression.

Posterior to the data acquisition stage, the collected signals are fed to the core analysing
system to recognise the embedded affective patterns and features, then utilising these fea-
tures in building effective applications for affective communication, recognition and so forth.
This simplified working pipeline, as shown in the following thumbnail Fig.1.2, depicts the a
standard procedure of building an affective computing system and three included subcom-
ponents.

1.2 Automatic Facial Analysis
Among the prior noted diversified affective signals, facial expressions 1 has the pivotal status.
Facial expressions – as one of foremost forms of nonverbal communication – conveys major-
ity of affective information. Compare to other forms of affective signals, facial expressions
are much easier to collect and obtain given their image or video based characteristic. Other
forms of affective signals, such as voice intonation, demand intricate apparatus and devices

1In this thesis, the terms: facial expressions, facial emotions and facial affects are used interchangeably.
Moreover, from this section onwards, the terms: affects, emotions, and sentiments are all referred to the sentic
modulations of the facial expressions.
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In Fig.1.3, it renders the basic anatomical information of facial muscles. We adopt
this hand-drawing rendering of the facial muscles from [7], the redistribution of
this figure is only educational, non-profit purposes.

Fig. 1.3 Anatomy of facial muscle in human

to receive, and the release of large scale of such datasets, which are much less commonly
seen in comparison to the ones of facial expressions.

To this end, we narrow our research focus on affective computing to the analysis on facial
expression.

1.2.1 Early Facial Expression Analysis in Behaviour Psychology
The earliest documented analyses on facial expressions can be dated backed to late nineteenth
century, Charles Darwin and Guillaume Duchenne demonstrated the uniqueness of human
facial expression over other mammals [3], and the physiological relation of facial muscles
and their corresponded facial expression through mild electric simulation [4]. Following the
heir of the later approach, Ekman and Friesen [5] postulated six prototypic emotions, e.g.,
anger, disgust, happiness, sadness. and surprise. Their hypothesis was rationalised by the
discrete emotion theory claiming that there is a merely small number of core emotions, and
these emotions are largely innate. Continuing on their exploitation of basic emotions, and
basing on the anatomical information of facial muscles that are laid in Fig.1.3, Ekman and
his colleagues drafted a taxonomy system to analyse human facial movements. This system
is commonly referred as Facial action unit system (FACS) [6].

The basic unit in FACS is action unit (AU), which is independent of any sorts of interpre-
tations. Upholding the belief from Behaviourism [8] – it stipulates the fact that the percep-
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In Fig.1.4, sample correspondences between AUs and facial expressions are their
induced facial expressions.

Fig. 1.4 Correspondence between AUs and facial emotions

tions are the product of the combination of simple un-reducible components – it permits the
simple arithmetic operations on AUs to define some of commonly seen facial expressions,
some sample correspondences can be found in Fig.1.4.

1.2.2 Theoretical Framework of Automatic Facial Expression Analysis
The development of FACS also breeds the first stream of attempts in automating the analysis
of human facial expressions in computer, accompanying with the release of large scale AU
coded facial expression dataset, such as CK and CK+ [9] [10]. However, as FACS is a
mere index of facial expressions, not conveying any bio-mechanical information about the
degree of muscle activation, and as all AU codes need to be manually coded, which opens
to the induced bias in coding, modern trends in automatic analysis of facial expression are
gradually moving away from the adoption of AU computation to direct analysis on facial
expressions in forms of static images or sequence of image frames (video).

Based on the modification of the framework from [11] (cf. Fig.2 in [11]), we offer
our version of conceptual framework of facial expression analysis system: a two-stage pro-
cess:representation, and application. Despite of the appeared superficial similarities, our
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proposed framework differs from the previous ones from [11] [12] on the following two
issues.

• Scope of Application

The primary one lies on the scope of the proposed theoretical framework. Two pre-
ceding frameworks restrict their usage of extracted features or representation onto a
classification or regression task; whereas in our proposed theoretical framework, the
applications are not limited to discriminative but also to the generative tasks, such as
expression synthesis and multi-modal fusion. This extension largely widens the scope
of our framework to cover the full spectrum of automatic facial analysis.

• Scope of Representation Learning

In both prior noted frameworks, the stage of representation learning is treated as a
follow-up stage, which is placed right after registration or face acquisition step. This
degrades the role of representation learning as amere feature extraction process. Being
agonist to this foregoing view, we propose the role of representation learning is ought
to be more generic. I.e., the face registration and feature pooling stages should be seen
as two sub-steps within the representation learning stage.

From the proposed theoretical framework of automatic facial expression analysis, it is
lucid to reckon the pivotal status of learned representations from facial expressions. A good
representation holds the key to ensure the content performance of an automatic facial analysis
system on later tasks or downstream applications. As a result, it brings up the main topic
of this thesis: learning representations of human facial expressions.

1.3 Affective Representations of Facial Expressions

1.3.1 Taxonomy of Affective Representations
Current existing taxonomies on learnable facial expression representations entails the spec-
ification of learned affective representations into spatial and spatial-temporal categories.
Where the former only consider the static frame, as the later representations also include
the temporal (time) signal. In this thesis, we mainly focus on the spatial representations,
leaving the exploitation of spatial-temporal ones to upcoming researches.

Within the category of spatial representation, the rubric of finer specification remains
contentious. Here, we adopt the genus that suggested in [11] to catalog the representations
into three divisions:low-level and mid-to-high level, and hierarchical representations. In
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short, low level information is encoded with low level histograms, Gabor representations,
and other simple cell like edge and texture feature extractors. Higher level representations
are more semantic interpretable, whereas the hierarchical representations cascade a series of
low-to-high levels of representations together.

Low-Level Representations

We unfold the description of several commonly used lower level representations in the fol-
lowing segments. These representations include local binary pattern (LBP) and local phase
quantisation (LPQ), histogram of gradient (HOG), Gabor feature, scale invariant feature
transformation (SIFT) feature representations. A demonstration of HoG representation is
shown in Fig.1.5.

Local binary pattern (LBP) descriptor [13] captures the local pixel intensity change, i.e.,
the computed LBP values for each pixel in one designated image can merely reflect the inten-
sity change in proximity range of the neighbourhood pixels. The convenience of applying
LBP descriptor to acquire the LBP value for each pixel can enlarge the pixel differences,
which may infers as the important features for discriminative tasks. A close relative to this
representation is the local phase quantisation (LPQ) [14], which is used mostly in detecting
the blur insensitive texture information. The demonstration of LBP and LPQ representations
are shown in Fig.1.5 (b) and Fig.1.5(c).

The HoG (histogram of gradient) method [15] aims at detecting the abrupt intensity
change on the surface of input images, which can be viewed as a good feature descriptor
for finding edges and corners. To compute HOG feature vectors/maps, we firstly apply L2
normalisation on global images, e.g., either computing the square root or the log of each
colour channel. Then we compute first order image gradients to capture the contour and
silhouette from the images. A demonstration of HoG representation is shown in Fig.1.5(d).

Similar to ’simple cell’ in the primary cortex, the Gabor-like filters [16] are designed to
extract texture and edge features, are linear filters. 2-D Gabor filter is a Gaussian Kernel
Function modulated by a sinusoidal plane wave. The computational process is identical to
the convolution, except the pre-assigned weight in mash, which is designed for sliding over
the image. A demonstration of Gabor feature representation is shown in Fig.1.5 (e).

SIFT, the shorthand term for scale invariant feature transform. SIFT features [17] allow
for objects in multiple images of the same location, taken from different positions within
the environment, to be recognised, and provide a set of features of an object that are not
affected by many of the complications experienced in other methods, such as object scaling
and rotation. A demonstration of SIFT representation is shown in Fig.1.5 (f).
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In Fig.1.5, it demonstrates several widely used representations in automatic facial
expressions. (a) facial points (b) LBP histograms (c) LPQ histograms (d) HoG
feature; (e) Gabor feature (f) BoW (g)NMF; (h) sparse coding. This is an abridged
rendering of Fig.2 in work of [11] with their kind permission to redistribute.

Fig. 1.5 Low- to High-level representations of facial expressions.
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Mid-High Level Representations

All prior discussed representations are low-level, their features excel in detecting edges and
textures. Summarised in [11], past widely usage of these representations in affective recog-
nition tasks had been proved a series of success. However, there is a common flaw that
suffers from almost all types of low-level representations. That is the lack of semantic, af-
fective aware interpretable meaning for these low-level representations. The ideal affective
representation should be at least semantically interpretable in certain degree, thence, a type
of data-driven mid or high-level representation of facial expressions is demanded.

Conventionally, both none negative matrix factorisation (NMF) [18] and sparse coding
[19] methods encode the representations are semantic interpretable. In specific, NMF ap-
proaches decompose a matrix into two non-negative matrices that can be assigned with var-
ied semantic interpretations. The rendering of this technique is shown in Fig.1.5(g). Differ
to the NMF methods, the usage of sparse coding in learning mid-high-level representation
assumes any image based facial expressions can be transformed into a dense dictionary as-
sociated with a group of sparse coefficients (with lots of zero coefficients). The transformed
dictionary can be corresponded to different AUs, shown in Fig.1.5(h).

Hierarchical Representations

Indeed, it is ideal to encode facial expressions in low- to high-level manners altogether in
single computational model. The foremost and widely applied learning paradigm for hi-
erarchical representations is deep neural networks. Armed with layered architecture and
the under-complete hidden layer structure, i.e., the dimensionality of hidden vector is much
smaller than the input, it ensures the learning of a cascade of representations that ranges from
simple cell like low-level representations to semantic interpretable high-level ones [20] [21].
One indisputable merit of using deep neural network paradigm is its assumed freedom from
important but labour-intensive feature engineering. Moreover, in comparison to the prior
methods, the representations learning process can be fully automatic in the end-to-end form.
The technical review of the NN learning paradigm will be detailed in the following Chapter
2.

1.3.2 Issues
Both low- and high-level representations have their innate weaknesses thwarting advancing
their usage in automatic facial analysis. For low representations, despite of their robustness
to illumination and mild head-pose variations, its induced difficulty in perceiving these rep-
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resentations in the semantic interpretable manner. High-level representation ameliorate this
issue but are general susceptible to generic image processing issues.

Hierarchical representations – merges the merits of both low- and high-level represen-
tations – seem to present us the panacea to cure all the issues. However, we argue that,
even arming with the learned hierarchical representations, to proclaim that the usage of deep
neural networks is the copestone of learning affective representations of facial expressions
remains myopic.

The noted short-sightedness of treating deep neural networks as the definitive answer to
our quest for ultimate affective representations can be elaborated into two pressing issues.

• Lack of attention towards dimensional representation of emotion

Amuch severe issue comes with the overwhelmed focus on discrete emotions whereas
dimensional representations are largely ignored. Contrast with the basic emotion ac-
count, dimensional models of emotion suggest that a common and interconnected sys-
tem is responsible for all affective states and experience [22]. This envisioned sys-
tem should allow the mapping of all affective states onto a dimensional plane. The
most prominent two-dimensional theoretical model is the circumplex model [23]. The
circumplex model upholds the emotions including facial expressions should be dis-
tributed in a two-dimensional circular space containing arousal and valence dimen-
sions. In spite of the unsettled argument on whether human facial expressions should
be understood in discrete or dimensional manner, from the computational perspective,
the adoption of circumplex model in representing facial expression enjoys several mer-
its such as compostability; versatility. Hence, it is imperative to consider the affective
representations that based on dimensional, continuous circumplex model of emotions.

• Reliance on ambiguous annotations

The primary issue relates with the nature of labelled training datasets. Undoubtedly,
a good affective representation that are encoded from a deep neural network can serve
as the useful input to a supervised predictor. The quality of these representations
ties closely with the fed training dataset. However, given the nature of facial expres-
sions – the interpretations of them vary across different contexts and individuals –
their annotations are less likely to reach the consensus. Different to other recognition
datasets such as object or colour discrimination datasets, the occurrence of ambigu-
ous annotations is much common in facial expression datasets. A running example is
demonstrated below in Fig.1.6, showing that ubiquitous nature of ambiguity in facial
expressions. These ambiguous annotations of facial expressions jeopardise the foun-
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In Fig.1.6, it demonstrates the pressing issue of ambiguity in single-labelled training
dataset. This threats the validity and reliability of majority of expression dataset.
The running example is on the most widely used FER2013 expression dataset [24].
The upper annotations are the original ones, whereas the lower ones are the reworks
from [25]. It is obvious that most of annotations from two groups of coders are
failed to reach the agreement.

Fig. 1.6 Demonstration of the ambiguity issue in FER2013 expression dataset.

dation of the supervised learning paradigm, which is used in majority of prior noted
representation learning approaches.

1.4 Priors for Representation Learning in Automatic Fa-
cial Analysis

Glancing over the foregoing text, we gradually narrow our research focus from the gen-
eral affective computing to the learning of affective representations of facial expressions.
Through a brief review on past attempts and highlighted pros and cons of these learnable
representations, we render out our criteria for a good representation of facial expression in
the following point-wise format.

• Complex
The concept of complexity refers the richness of the informative features of an en-
coded representation preserves. Mentioned in the foregoing section, the learning of
hierarchical organisation of representations ranging from low- to high-level is a fine
realisation of the concept of complexity. Undoubtedly, the most influential learning
paradigm for learning hierarchical representations is deep neural networks. For this



12 General Introduction

account, in our search for complex representations of facial expressions, we frequently
resort on deep neural networks.

• Affective Aware (Semantic Interpretable)
The second featured characteristic for being a good representation to model facial ex-
pressions is the concept of affective awareness. This targeted feature ensures semantic
interpretation of the learned representations in certain degree. On facial expressions,
the semantic features are mostly related with the anatomical structure of a face. This
posits the enquiry of learning affective aware representation as the request to learn
anatomical, deformable features relating to facial expressions. Note here, a high-
level representation does not necessarily imply our aimed affective awareness feature,
thence the employment of a deep neural network may not be sufficient in learning such
representations.

• Dimensional
The third, perhaps foremost, but most challenging criterium to satisfy is the realisa-
tion of a continuous representations 2. This reflects the desire to use the dimensional
circumplex model to represent the facial affects. The challenging aspect of realising
this property lies on its difficulty from the algorithmic perspective. Precisely, to learn
our targeted continuous or dimensional representations, it demands the training of a
computational model to be totally independent of any sorts of annotations, which lead
towards the learning of discrete affective representations. Moreover, besides the de-
manding requirement of the learning manner, a continuous representation should be
bifurcated into two continuous factors that are independent with each other. These
factors are ought to correspond to the arousal and valence dimensions in the concep-
tualised model.

1.5 Structure of This Thesis
In this thesis, we present three different approaches in attempting to learn complex contin-
uous affective representations of facial expressions. The remaining thesis is unfolded as it
follows. Prior to the delineation of our three researches, we firstly render out a concise tech-
nical review on some selected directed graphical models, e.g., neural networks, Bayesian
neural networks, and variational auto-encoder (VAE), in Chapter 2.

2From this onwards, we use terms continuous and dimensional interchangeably.
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To break the ice, inChapter 3, we present our first approach: the usage of label relaxation
approach to improve the classification performance of a neural network. In this research,
we rely on a simple transformation technique that allows the discrete label distribution to
be transformed into a partial continuous one in training a neural network to solve a facial
expression classification task.

However, the prior approach only ensures predicting single label in categorisation of a
facial expression. But in real world, many facial expressions may be interpreted in multiple
ways, e.g., happy and surprise at the same time. Hence, it is critical to output multi-label
predictions towards the same facial expression. To achieve this goal, we resort on a novel
zero-shot transfer learning paradigm, e.g., uncertainty flow framework, in Chapter 4, to gen-
erate multi-label predictions on FER2013 dataset.

Unfortunately, these above-mentioned approaches merely ensure the discrete predictions
on facial expressions, irrespective of single-label or multi-label predictions. Hence, inChap-
ter 5, we rely on the unsupervised learning paradigm to shun away from any sorts of emo-
tional annotations. The objective of this research is to generate facial expressions along
continuous scales. For this reason, we propose a novel form of variational auto-encoder, i.e.,
encapsulated variational auto-encoders (EVAE), to generate continuous expressions. The
crux of this EVAE lies on the finding of two continuous factors that have direct impact on
the expression generation process. Based on the identified continuous factors, we are able
to train a EVAE to generate facial expressions along certain continuous axes.

On the path to learn complex, continuous and affective aware representation of facial
expressions, we present three novel approaches. It is the very first time that a principled
framework of learning such representations from diversified learning paradigms, e.g., su-
pervised learning, zero-shot transfer learning, and unsupervised learning, can be rendered
out. We wish this thesis – in spite of its nascent standing – will steer away from current
research orientation on learning discrete representations to the learning of complex and con-
tinuous representations of facial expressions in affective computing.



Chapter 2

A Principled Review on Selected DGMs
in Representation Learning

From the preceding chapter, the essence and history of affective representation learning are
briefly unfolded. To allow further chapters, e.g., our proposed approaches, to be digested
more thoroughly, we devote this chapter to prepare the readers with a technical and princi-
pled review on representation learning from the probabilistic learning perspective. As the
main focus of this review is to serve as a knowledge bed for seeding our later approaches,
we are gravitated toward an exclusive review that rules out the models, concepts, learning
algorithms that are less relevant to our approaches. Moreover, as a theoretical remark, we are
agnostic to the convention dichotomy of supervised and unsupervised learning. The reason
for that lies on the observations on human studies that revealed the trivial differences between
aforementioned ones. And in real world, we are less prone to explicitly verify whether one
learning process is in supervised or unsupervised manner.

For rendering out a principled preparation, we default the probabilistic graphical model
as our fundamental umbrella framework. Probabilistic model – merges the classic proba-
bilistic theory with the graph theory – breeds wealthy computational models that fuels the
both theoretical and application advancements in machine learning and statistics. For full-
range discussion on the progressive development of probabilistic models and its impact on
machine learning, it is advisable to consult the following two books: [26] [27]. Further-
more, in order to keep this chapter concise, we attach a brief review in Appendix A on some
commonly used laws and definitions in statistics and probability.

In large, there are two types of graphical models, e.g., directed or non-directed ones. The
directed one reflects the causal relations between each edge and node, whereas the undirected
ones only render the correlations among variables not causality. In this principled review,
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In Fig.2.1, it renders out a sample DGM that contains multi-fold interpretations.

Fig. 2.1 A sample DGM with latent variables.

we omit the undirected ones, such as conditional random field model, and focus purely on
the directed networks, denoting as directed graphical model (DGM) 1.

One of central advantages that can be harvested from employing DGM in modelling is
its induced conditional independence (CI). Consider three variables example, where 𝑋, 𝑌 , 𝑍
are three random variables, a DGM naturally assume the statement that 𝑋 and 𝑌 are con-
ditionally independent given 𝑍, i.e., 𝑋 ⟂ 𝑌 |𝑍, if and only if the joint distribution of
𝑝(𝑋, 𝑌 , 𝑍) can be factorised into the following form:

𝑃 (𝑋, 𝑌 , 𝑍) = 𝑃 (𝑍) ⋅ 𝑃 (𝑋, 𝑌 |𝑍) = 𝑃 (𝑍) ⋅ 𝑃 (𝑋|𝑍) ⋅ 𝑃 (𝑌 |𝑍). (2.1)

Aside from its induced conditional independence, the usage of DGM is also convenient
in rendering the model structure. A running example is jotted down below in Figure 2.1.

In Figure 2.1, it shows that data points 𝑥𝑖 are conditionally dependent given a random/latent
variable 𝑧𝑛, and conditionally independent given parameters 𝜃. More specifically, if we have
𝐷 - dimensional data {𝑥𝑛} ∈ ℜ(𝑁∗𝐷). The latent variables 𝑧𝑛 for each data point 𝑥𝑛 (local
variables). In line with the PGM tradition, we are usually shading the nodes for observable
variables; whereas the unshaded ones reflect as the hidden(non observable variable), and the
direction arrows ⟶ represents the conditional independency in DGM (or more specifically
the Bayesian network structure). The exemplar modelled joint distribution:

1Commonly, this type of model is also denoted as bayes nets or bayes network (BN), and all three terms are
used in this thesis interchangeably.
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If we use the mixture and hierarchical model:

𝑝(𝑥, 𝑧, 𝜃) = 𝑝(𝜃)
𝑁

∏
𝑛=1

𝑝(𝑧𝑛|𝜃)𝑝(𝑥𝑛|𝑧𝑛, 𝜃). (2.2)

If generative model is modelled, we use 𝜃 to model the latent variable 𝑧𝑛:

𝑧𝑛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑧𝑛|0, 𝐼) (2.3)
𝑥𝑛|𝑧𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑥𝑛|𝑝 = 𝑁𝑁(𝑧𝑛; 𝜃)). (2.4)

The usage of a DGM can be standardised as a sequence of process that incorporates
defining a model, estimating the model parameters and making the inferences based on ob-
servation, to finally revise the model via unfitted observations. From above-mentioned com-
ponents, it is unequivocally to state that the model specification is the most important step
to consider as it determines the choice of its suitable learning algorithm and the learnable
representations. Again, as the full scope of DGM ranges from latent linear model, ker-
nel methods, Gaussian processes to more advanced state space model, it is unnecessary to
go over every single model. Instead, the focuses are mainly on three main DGMs:Neural
networks, Bayesian neural networks, and Variational Auto-Encoder that are involved
heavily with our approaches unfolded in later chapters.

2.1 Neural networks
Since the coinage of contrastive divergence from Geoffrey Hinton [28] that they proved it
is possible to learn deep neural nets via greedy layer-wise unsupervised pre-training, the
renewed interests on neural nets (NN) have spawned all over the machine learning areas and
applications.

There are several interpretations to understand the neural network and its variants, rang-
ing from the biological to the constrained optimisation perspectives. Despite the original
making of a neural network is far from the consideration of a DGM, we are able to fit the
content of neural nets under the umbrella of DGM.

2.1.1 NN: under the Representers’ theorem
Representers’ theorem and logistic modelling

Prior to render out the DGM interpretation of a NN, we foremost begin the discussion with
a classical Representers’ theorem interpretation of a NN. To solve problems via parametric
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modelling in machine learning, the Representers’ theorem is the fundamental theorem we
rely on. Basically, the Representers’ theorem states as the approach to express the model
parameters as {𝜃, 𝑤}, and the features as 𝑥. Representer’s Theorem entails the following
statement: if there exists a model parameter 𝜃, it can be decomposed into 𝜃 = ∑𝑚

𝑖=1 𝑎𝑖𝑥𝑖.
I.e., there always exists some real-value weight 𝑎𝑖 that can be tuned in expressing the relation
between inputs and outputs. Equipped with this notation, if we stick to {𝜃} as our model
parameters, and {𝑥} as our observations, we can transform 𝜃𝑇 𝑥 as following Eq.2.5:

𝜃𝑇 𝑥 = (
𝑚

∑
𝑖=1

𝑎𝑖 ⋅ 𝑥𝑖)𝑇 𝑥𝑖 (2.5)

Armed with this expression, we can use it to express our to-be-tested hypothesis. Com-
monly, a hypothesis is expressed as ℎ𝜃(𝑥), entails that in our hypothesis, the variables are {𝑥}
and parameters as {𝜃}. In linear model, as we are assuming our dataset is linear separable,
we can parameterise the model in linear fashion (Eq.2.6).

ℎ𝜃(𝑥) = 𝜃𝑇 𝑥. (2.6)

Denoting the hypothesis as 𝑧, where ℎ𝜃(𝑥) = 𝜃𝑇 𝑥𝑖𝑦 = 𝑧, and the loss function as 𝜑, we
can transform the foregoing linear model into a logistic non-linear model with the following
non-linear mapping, i.e., 𝜑𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑧) = log(1 + exp−𝑧). The resultant model is the logistic
model.

NN: a series of logistic models

Under prior derived logistic models from the Representers’ theorem, a feedforward neural
network (FNN), aka, multi-layer perceptron (MLP) is merely a series of logistic regression
models stacking up together. To smooth the delineation in the further section, we introduce
some commonly used concepts in NN community along with a sample multi-layer FNN
below as Fig.2.2.

• node/neuron

The smallest unit in a NN, on the high level, it can be perceived as a single unit to store
each instance.

• input layer

The leftmost layer (𝑥1...𝑥4) indicates the input layer. Regarding different types of input
signal, it represent different bit of information in each unit (node). In image processing,
each node in the input layer represents the binary data on each pixel of a single image.
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In Fig.2.2, it demonstrates a simple two layer FNN orMLP. From the leftmost input
layer to rightmost output layer, the middle one is the hidden layer.

Fig. 2.2 A sample FNN: one hidden layer only example

• hidden layer

The middle layer that is rendered in Fig.2.2. Mathematically, it delineates a deter-
ministic function of the input. The nodes in the hidden layer commonly refer as the
hidden units. The employment of hidden layer is crucial in a NN as it allows a NN
to learn low-dimensional latent representations of observed input, since the mapping
from leftmost to rightmost layers are commonly viewed from high-to-low in terms of
dimensionality. Hence, it is a tradition to treat these 𝑧𝑛 as the learned latent represen-
tations.

• output layer

The rightmost layer in Fig.2.2, reflects the output layer. The number of incorporated
nodes is determined by the nature of the to-be-solved task. If a NN is deployed to
solve a classification task, the number of nodes should be matched exactly with the
prediction classes, whereas in a regression task, only a single output node is sufficed.

• Activation/transfer function

Each directed pointing arrow in Fig.2.2, represents the mapping or connection from
one layer to the next. A important feature of a NN is that in each directed arrow, a
non-linear activation function is applied to the recipient node. Hence, a NN can be
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seen as a stack of non-linear functions, thence given enough hidden nodes, a NN is ca-
pable of modelling any suitably smooth function to serve as a universal approximator.
The choice of non-linear activation function is open to the practitioners, the common
options are ReLU, Tanh, and sigmoid functions, denoting as 𝑔() function.

• Weights and biases

In a nutshell, weights and biases are the learnable parameters of a NN that come with
their initialisation values (can be assigned or randomly initialised). The training of a
NN is equivalent with recursive tuning its weights and biases. In NN community, it is
custom to denote 𝑊 as the big weight matrix that contains all the learnable weights
in each layer. Here, to be more premise, we use different notations to denote input-
to-hidden layer weight vector 𝑤 and hidden-to-output weight vector 𝑣 respectively. In
theoretical derivation, the biases are likely to be omitted for the brevity.

• shallow or deep architecture

Depending on the number of employed layers, a NN can be seen as shallow, i.e., only
one single hidden layer, or deep, i.e., has multiple (over 2) hidden layers. As the
learning performance improves exponentially with the deeper architecture of a NN, it
is now a custom to use a deep over shallow NN.

Convolutional Neural Networks

While a FNNorMLP is suitable for 1 dimensional signal, e.g., the raw sine or cosinewavelets
of speech or text signal, the analysis on 2 dimensional signal like image works better on a
variant of FNN: convolutional neural networks (CNN).

CNN has similar layer-wise architecture with a prior noted NN or MLP but with two
below-listed modifications.

• Convolution layer

Differ to the defaulted affine operations in a vanilla NN, a CNN assumes the hidden
units have local receptive fields (similar to the simple cell in the primary visual cor-
tex in vivo), e.g., a black lined bounding box depicted in Fig.2.3, and the weights
(connections) are tied or shared across the image to reduce the number of parameters.
The convolution layer allows sliding a low dimensional kernel 𝐾 on a two dimen-
sional image 𝐼 in generating the feature maps as following: 𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑘) =
Σ𝑚Σ𝑛𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛), assuming image 𝐼 and the applied kernel 𝐾 have defined
row and column as 𝑖, 𝑗 and 𝑚, 𝑛 respectively. The produced feature maps preserve
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In Fig.2.3, it shows the foremost CNN model: LeNet-5 [29]. Reprint with the
permission.

Fig. 2.3 A sample CNN: LeNet-5 model

most of informative features in the original image input. In the lower level convolu-
tion layer (cf. the leftmost convolution in Fig.2.3), the extracted features are largely
similar to low level ones, e.g., the Gabor features and LBP ones. When it proceeds
to the higher level convolution (cf. the second convolution in Fig.2.3), the encoded
features contains more interpretable semantic features.

• subsampling (pooling) layer

As shown in Fig.2.3, a pooling layer is commonly inserted in between two consecu-
tive convolutions. The role of pooling layers is two-fold. The primary one is to reduce
the number of parameters to speed up the computation, whereas the other role is to
introduce the translation invariance on the extracted feature maps. The induced in-
variance permits the encoded features to robust to small translation of the input, such
as mild distortion with its accompanied sacrifice on losing the fine-grained details of
the extracted features.

2.1.2 NN: as a DGM
DGM interpretation of a NN

The standard interpretation of a NN and CNN in the foregoing description is none proba-
bilistic. To render a DGM interpretation of a NN, we chiefly transform the above-rendered
rolled demonstration of a NN in Fig.2.2 to its compatible graphical model rendering in the
following Fig.2.5. Inline with foregoing notations, both 𝑋 and 𝑌 are observable variables,
indicating input and output variables, whereas the 𝑧 represents the latent variables, which
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In Fig.2.5, it shows the graphical model rendering of a Feedforward NN with ob-
servable input and output variables.

Fig. 2.4 NN under the DGM interpretation

are parameterised as trainable model parameters 𝜃. Following the foregoing notations on the
inner weights and activation functions, the DGM description of a NN in solving a regression
task can be derived as following Eq.2.7:

𝑝(𝑦|𝑥, 𝜃) = 𝒩 (𝑦|𝑤𝑇 𝑧(𝑥), 𝜎2) (2.7)
𝑧(𝑥) = 𝑔(𝑉 (𝑥)), (2.8)

here we can view the foregoing non-probabilistic view of a NN as the core, the DGM
interpretation can be seen as coating a NN with different parameterised output distribution.
If a given task is binary or multi-class discriminative task, the preceding DGM derivation of
a shallow NN can be changed accordingly into Eq.2.9:

𝑝(𝑦|𝑥, 𝜃) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦|𝑤𝑇 𝑧(𝑥), 𝜎2) (2.9)
𝑝(𝑦|𝑥, 𝜃) = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑦|𝑤𝑇 𝑧(𝑥), 𝜎2). (2.10)

(2.11)
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DGM interpretation of a CNN

Similar with the DGM interpretation of a NN, the DGM interpretation of a CNN can be
viewed as a two-step process of treating the inner convolution and pooling operations as the
core, then placing a suitable output distribution to wrap the foregoing distribution. However,
to delineate the DGM account of a CNN, it demands some extra terminologies and works.

The needed terminology is the prior probability distribution. This term will be reiterated
in later discussion of Bayesian neural network. In short, the prior probability distribution is
a probability distribution over the parameters of a model that encodes our beliefs about what
models are reasonable in prior to expose to any data instances.

Depending on the how concentrated the probability density (low or high variance), a
prior can be either weak or strong. A CNN can be seen as imposing infinitely strong prior on
the model parameters and these parameters are valued as zero. The convolution operation
can be comprehended as enforcing one hidden node must be identical to the weights of ints
neighbour but shifted in image, all weights must be zero except for in the small spatially
contiguous receptive field assigned to that hidden node.

Learning Algorithm: back-propagation algorithm

For neural network community, there is no need for the extra introduction in stating the
historic importance and current status of the back-propagation algorithm in training a NN.
At its essence, back-propagation is just a clever application of the chain rule. The goal of
back-propagation is to layer-wise compute the partial derivatives of the certain defined cost
function 𝐽 with respect to its associated weights and biases 𝜔[𝑙], 𝑏[𝑙], in 𝑙th layer, i.e., 𝜕𝐽

𝜕𝜔[𝑙] .
Once we have these partial derivatives, we update the weights and biases in this layer via

gradient descent algorithm, Eq.2.12:

𝜔[𝑙] = 𝜔[𝑙] − 𝛼 𝜕𝐽
𝜕𝜔[𝑙] , (2.12)

the 𝛼 is the defined step size. The partial derivatives give us the direction of greatest
ascent, thence, we take a small step in the opposite direction – the direction of the greatest
descent, i.e., the direction which will take us to the local minima of the cost function. Due
to the conciseness of this review, for more detailed review on back-propagation algorithm,
please refer to the work of [30].
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2.2 Bayesian neural network

2.2.1 The Caveat of Overfitting in NN
Besides the obvious computational hurdles, e.g., the issue of local minimum and the heavy
burden of automatic differentiation for a large-scale network, an, the issue of over-fitting is
also worthwhile to discuss here. In a nutshell, over-fitting describes as a phenomenon that
a model learns the training data too well that thwarts its generalisability to unseen data. In
most downstream applications, where the training of a model is mostly accomplished in the
off-line manner, which the testing data is overwhelmingly outweigh the training data, then
over-fitting is likely to jeopardise the performance of a model.

One way of viewing the overfitting problem from neural network community is the trade-
off between the bias and variance of a NN from the complexity of a NN. This leads to a
choice of a NN that varies with the amount of training data available – the more data, the
more complex model can be chosen. This posits a practical issue in applying NN as it is
almost impossible to reveal the complexity of upcoming data to tune the corresponding NN
with the matched complexity.

From a Bayesian perspective, adjusting the complexity of the model on the amount of
training data yield very little ratification. Under the framework of DGM, a Bayesian model
defines a model, selects a prior, collects data, computes the posterior, and then makes pre-
diction. There is no need in Bayesian modelling to change the model likelihood or prior
depending on the quantity of data. I.e., if the model and prior is acceptable in terms of its
performance for a hundred data instances, they should be correct for a thousand observations
as well. Hence, under a Bayesian perspective, it is vain to implement the techniques such as
cross validation to prevent the over-fitting issue of the parameters.

2.2.2 The Description on BNN
In light of preceding discussion, it is natural to view a NN under a Bayesian model. The
resultant model is our aimed Bayesian neural network (BNN). Previously, BNN is merely
treated as one type of learning that takes on a NN, i.e., the Bayesian learning of the NN [31]
[32]. With the previous efforts from [33] [34] [35], a trend grows on treating this method as
an important extension to conventional NN. This coins the terminology of Bayesian neural
network (BNN).

In a nutshell, a BNN can be seen as a NN with a prior distribution on its weights [35],
shown in Fig.2.5. The superficial similarity between NN and BNN belies their diversified
learning process. In NN, the weights and biases are learned from the minimisation a measure
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In Fig.2.5, it renders the thumbnail of a BNN. It is of critical important to note
that in NN, the layer-wise weights are deterministic, but in BNN, the weights are
stochastic probability, having no fixed values.

Fig. 2.5 Demo of a BNN

of ’error’ on the training instances. However, in BNN, the learning objective is drastically
different from this. Inline with most of DGMs, the learning objective of a BNN is to find
the predictive distribution for the target values in the unseen ’testing’ case, given the input
in this case. This targeted predictive distribution can be rendered as Eq.2.13:

𝑝(𝑦(𝑛+1)|𝑥(𝑛+1), (𝑥(1), 𝑦(1)), ..., (𝑥(𝑛), 𝑦(𝑛))) = ∫ 𝑝(𝑦(𝑛+1)|𝑥(𝑛+1), 𝜃)𝑝(𝜃|(𝑥(𝑛), 𝑦(𝑛))𝑑𝜃. (2.13)

From this, to obtain an accurate measure of posterior density for the model parameters,
i.e., 𝑝(𝜃|𝑥, 𝑦), is the key to yield a good predictive density 2. Both model likelihood and the
prior density are served for the derivation of our targeted posterior for parameters. For the
model likelihood, we can use the defined ones directly from Eq.2.9 for either a regression
or binary classification problem. Then the residual part is the choice of prior density for the
parameters.

2Here, we assume i.i.d. data instance.
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2.2.3 Prior Choices
In discussion of the prior choice in BNN, unfortunately, there is no general guidance for
picking a prior for this type of DGMs. Despite of the lack of general principle in selecting
the prior, we can resort on some heuristic mean basing on the property of different types of
prior density. In the following text, we render out the taxonomy of prior distributions as a
reference to highlight some of commonly used ones.

Despite of being named as the misnomer, the informative prior denotes as the normal
conjugate or non-conjugate prior, which has strong not not minimal influence on the poste-
rior, but some objective Bayesian’s may instead prefer priors which do not strongly influence
the posterior distribution. There are a couple of classical uninformative priors, e.g., super
flat priors, uniform prior.

Informative Prior

• Binomial & Bernoulli Prior

• Dirichlet Prior

• Logistic Normal prior

• Gamma conjugate prior

• Conjugate priors for exponential families

Uninformative Prior

• Jeffrey prior

• Reference prior

2.2.4 Posterior Inference
Equipping with the defined model likelihood and the chosen prior density for the parameters,
we are positioned to derive the parameter posterior. Notwithstanding, the posterior distri-
bution for the parameters of a BNN is typical very complex and intractable. For years, there
are numerous tryouts in dealing with this intractable posterior inference. These attempts can
be summarised into three categories: (1) direct inference; (2) approximation or sampling
(MCMC) based inference; (3) variational inference [36].
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2.3 Variational Auto-Encoder
The foregoing two DGMs, e.g.,the neural network and bayesian neural network, shine their
usages mostly in the discriminative modelling of the tasks, i.e., in solving either a regression
or classification problem. Their performance of defaulted parameter fitting approaches, i.e.,
back-propagation algorithm in either frequentist view or maximum likelihood estimation
in bayesian perspective are largely determined by the quality and quantity of the labelled
observations. Their encoded representations is nonetheless dataset dependent and narrow
focused, as the true wealth of representation learning is still buried beneath the supervised
learning. In other words, without the full exploitation of unsupervised learning, we are
distant away from mining the true affective aware representation in affective computing.

As a good portion of unsupervised learning methods, the generative modelling is a ma-
ture probabilistic approach that insists a view of ’analysis-via-synthesis’, i.e., the understand
of the world is through recreating the world per se. This enforces generative networks to
learn good representations of the observations, and harnessing them in the procedure of data
regeneration. The scope of generative networks is spanning from early linear and non-linear
principle component analysis to now widely used generative adversarial networks and varia-
tional auto-encoder. We attach a fine-grained taxonomy of mainstream generative networks
below in Fig 2.6.

As one celebrated generative model, variational auto-encoder (VAE) allows explicit and
fast approximate marginal inference of the dataset 𝑥. Since its birth, the interpretation of
VAE has been diversified into several streams ranging from the frequentist view, i.e., the
coding theory and neural network perspective to a bayesian perspective, i.e., the discussion
over global v.s. local variational parameters. Hence the following sections are unfolded into
two segments in delineation of both frequentist and bayesian views on VAE.

2.3.1 VAE: Coding Theory Interpretation
From the perspective of coding theory, a variational auto-encoder (VAE) can be seen as
perceived as a sandwich-like auto-encoder structure, where the outer layers ”bread” are the
encoder and decoder respectively. Rendered in Fig. 2.7, the crucial ”sandwich meat” in
VAE is the hidden representations that are encoded from the encoder. These hidden (latent)
representations are normally low-dimensional and crucial in representing certain salient fea-
tures of the inputted data instances. The decoder utilises these features to reconstruct the
input signal.

Not only reservedwith the prior-mentioned neat structure of a conventional auto-encoder,
the beauty of a VAE lies its usage of two neural networks to substitute the encoder and
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In Fig.2.6, it offers a coarse taxonomy of several mainstream generative models.
This figure is original produced in the work of [37]. We appreciate the generosity
of the author in permitting us to redistribute this figure here.

Fig. 2.6 Taxonomy of Deep Generative Models
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In Fig.??, it outlines a VAE under the coding theory: a pair of encoder and decoder
.

Fig. 2.7 Encoder Theory interpretation of a VAE
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decoder respectively. This degrades the parameter estimation of a VAE to the learning of two
easy-to-train neural networks. As a running example, we assume the input data instance is an
image with 28𝑥28 dimensions, this serves as the input to learn the hidden representations of
this image, e.g., a two-dimensional representation. The corresponding decoder utilises this
encoded hidden representation to regenerate a new image that looks similar to the original
image.

2.3.2 VAE: DGM Interpretation
Different to the foregoing simplified explanation of a VAE under the coding theory, we are
gravitated towards a more principled probabilistic compatible explanation. Importantly, a
VAE can be viewed one form of DGMs with specification on the probability model of data
and latent variable. As a DGM, a VAE also consisted of the classic trilogy: a prior, a defined
model likelihood and a to-be-inferred posterior. Similar to other DGMs, the computation of
the t0-be-inferred posterior is intractable, i.e., the computational time of the evidence 𝑝(𝑥)
in deriving the posterior grows exponentially. Hence, to compute this intractable posterior,
a plethora of past attempts have been devoted to accomplish this goal, ranging from early
exact inference, Monte-Carlo sampling, to later developed variational inference.

Variational inference – as one form of inference networks for parameterising approximat-
ing distributions – relies on the variational family to approximate the foregoing intractable
posterior. Early researches on variational inference implied the usage of local latent vari-
ables, as Eq.2.14:

𝑞(𝑧; 𝜆) =
𝑁

∏
𝑛=1

𝑞(𝑧𝑛; 𝜆𝑛), (2.14)

here 𝑧𝑛 are the latent variables and 𝜆 are the factorised latent variational factor assuming
mean-field approximating distribution. However, the size of 𝜆 grows with the size of data,
this posits a computational issue for fitting large-scale dataset into the memory, and lowers
down the entire inference speed. To ameliorate this issue, the coinage of probabilistic en-
coder allows the employment of a neural network to take 𝑥 as input and which outputs its
local parameters 𝜆, shown in Eq.2.15:

𝑞(𝑧|𝑥, 𝜃) =
𝑛=1

∏
𝑁

𝑞(𝑧𝑛; 𝜆𝑛 = 𝑁𝑁(𝑥𝑛; 𝜃)), (2.15)

where NN represents a neural network or MLP. This technique gain its fame to be termed
as: amortised inference. Literally, through adapting a neural network in defining a set of
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global parameters, we are able to fix the number of to-be-estimated parameters (including
both model and variational parameters) given a fixed structure of a neural network. This
neural network wrapped variational approximation of the intractable posterior is the DGM
interpretation of the encoder.

In terms of the probabilistic decoder, under the framework of DGM, it can be seen as a
specification on model likelihoods. I.e., it is a distribution 𝑝(𝑥|𝑧) over each value (discrete or
continuous) 𝑥 given an encoded latent code (representation) 𝑧. The process of 𝑥 generation is
dependent upon the value of 𝑧 and the mapping between 𝑧 and 𝑥 3. Rather than assuming the
simplified linear mapping between 𝑥 and 𝑧, which makes several classic latent linear models,
such as principle component analysis, independent component analysis, factor analysis, and
et ac. It is common to apply a NN or MLP to parameterise the probabilistic decoder for
its allowed compositionality and assumed non-linearity that beats most of linear model in
representation learning and feature extraction. As a result, for the real valued and binary
data, we can parameterise the decoder in the following two ways respectively in Eq.2.16

𝑝(𝑥|𝑧) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥|[𝜇, 𝜎2] = 𝑁𝑁(𝑧; 𝜃)) (2.16)
𝑝(𝑥|𝑧) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑥|𝑝 = 𝑁𝑁(𝑧; 𝜃). (2.17)

To end the discussion over the DGM interpretation of a VAE, we lay out the following
technical summary corresponds to each component that depicted in Fig.2.8.

• Prior: 𝑝(𝑧) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑧|0, 𝐼)

• Decoder (model likelihood): 𝑝(𝑥|𝑧) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥|[𝜇, 𝜎2]) = 𝑁𝑁(𝑧; 𝜃))

• Encoder (approximating posterior): 𝑞(𝑧|𝑥; 𝜙) ≈ 𝑝(𝑧|𝑥; 𝜃) = ∏𝑁
𝑛=1 𝑞(𝑧𝑛; 𝜆𝑛)

2.3.3 Learning VAE
Objective Function

Armed with the following coding theory and DGM interpretations of VAE, it is natural to
discuss in the succeeding text over its implied objective function.

The derivation of the targeted objective function starts with the defined KL divergence
(the detail of KL divergence can be consulted in Appendix A) between the employed varia-
tional encoder (approximation) 𝑞(𝑧|𝑥) and the true posterior 𝑝(𝑧|𝑥) in Eq. 2.18

3For its generative property, it is sometimes named as generative network.
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In Fig.2.8, it demonstrates the DGM interpretation of a VAE. The dotted arrows
represented the variational encoder with variational parameter 𝜙, whereas the solid
arrows represent the decoder with model parameter 𝜃 [38].

Fig. 2.8 Probabilistic interpretation of a VAE

𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧|𝑥)) = ℰ𝑞[log 𝑞(𝑧|𝑥)] − ℰ𝑞[log 𝑝(𝑥, 𝑧)] + log 𝑝(𝑥), (2.18)

assuming the marginal density log 𝑝(𝑥) is fixed, therefore, we can optimise the residual
parts. With the repeated usage of Bayesian’ rule, we are able to derive the following form
as Eq.2.19:

ℰ𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] − 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)). (2.19)

Here this derived analytic form is denoted as evidence lower bound (ELBO) of the original
KL associated objective. It is important to note that the optimisation objective for ELBO is
maximisation instead of original minimisation objective (in terms of KL divergence).

It is interesting to note that from Eq.2.19, the objective function can be understood as
two components. The first component, e.g., ℰ𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] is the expected reconstructed
loss that measures the differences between the original data instance 𝑥 and the reconstructed
input, where comes from the samples of the decoder�̃� ∼ 𝑝(𝑥|𝑧). Whereas the second com-
ponent acts as a regulariser to encourage the approximate the posterior, i.e., the variational
encoder, to be close to the assumed prior 𝑝𝜃(𝑧).

In terms of parameter estimation, as both global variational parameters and model pa-
rameters from the corresponding encoder and decoder are determined via the parameters of
parameterised neural network(s), both parameters are optimised in the same time.
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In Fig.2.9, it delineates the role of re-parameterisation in letting stochastic node in
deep NN to be run the back-propagation rule. Copyright of this nicely plotted demo
remains for Dr.Kingma in his tutorial talk at NIPS2015 workshop on Variational
Learning.

Fig. 2.9 Explanation on reparameterisation trick

Reparameterisation Trick

Following the foregoing text, the beauty of a VAE can be seen as its attempts to replace
local variational parameters with the painstaking global parameters, where the production
of these local variational parameters can be wrapped by the neural network. However, as
there is technical barrier needs to be jumped off: it is impossible to run gradient based
optimisation method, e.g., back propagation algorithm on a model that contains stochas-
tic units rather than the deterministic units. Referring to the left delineation in Fig.??, given
the observable variable 𝑥 and a random (stochastic) variable 𝑧, the deterministic mapping
(the nonlinear function) of two variables, i.e., 𝑓(𝑥, 𝑧), the gradient w.r.t the parameter 𝜙 is
∇𝜙ℰ𝑧∼𝑞(𝑧|𝑥)[𝑓 (𝑥, 𝑧)].

Historically, the computation of this gradient is notoriously hard and tends to be high
in variance due to the value of 𝑧 is dependent upon an unknown density 𝑞(𝑧|𝑥). Repa-
rameterisation trick comes to the game to express the unknown density 𝑞(𝑧|𝑥) with certain
conditions. In specific, for a Gaussian prior, we can express the distribution 𝑞(𝑧|𝑥) in two
step procedure. Firstly, it starts with the sampling of a noise variable 𝜖 from a simple dis-
tribution 𝑝(𝜖) to be a standard Normal, i.e., 𝜖 ∼ 𝑝(0, 𝐼). Secondly, we apply a deterministic
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transformation 𝑔𝜙(𝜖, 𝑥) that aims to map the random noise 𝜖 onto our targeted distribution
𝑞(𝑧|𝑥), assuming 𝑞(𝑧|𝑥) is another Gaussian distribution, this deterministic mapping can
be rewritten as 𝑧 = 𝑔𝜙(𝜖) = 𝜇 + 𝜖 ⋅ 𝜎. 4 Now, we can get much lower variance sam-
ples of 𝑧 in running the back propagation algorithm. That is to say, instead of computing
the hopeless ∇𝜙ℰ𝑧∼𝑞(𝑧|𝑥)[𝑓 (𝑥, 𝑧)], we now pull the expectation term out in computing of
ℰ𝜖∼𝑝(𝜖)[∇𝜙𝑓(𝑥, 𝑔(𝜖, 𝑥)], where 𝑝(𝜖) ∼ 𝒩 (0, 𝐼).

In terms of the generalisation of this trick, this manner of reparameterisation is applica-
ble to ’local-scale family’ of distributions, e.g., Normal distribution, student T distribution,
Laplace distribution, and et ac. Furthermore, in the forthcoming chapter in rendering our
modification of a VAE, we will discuss a similar but more general training algorithm: auto-
matic differentiation variational inference (ADVI) in Appendix C.

4The linear transformation of a Gaussian distribution is guaranteed to be another Gaussian distribution.



Chapter 3

Learning Single-Label Relaxed
Representations via Label Relaxation

3.1 Introduction
This research focuses on the learning of single relaxed affective representations via label
relaxation technique. We try to use the relaxed labels to improve the performance of
a neural network in classifying the pictorial facial expressions into discrete emotional
states.

To improve the classification performance of a neural network under the supervised learn-
ing paradigm, common approaches range from the usage of a regulariser [39] to the more
convoluted architecture design of a neural network. Little attention is paid towards improv-
ing the credibility of assigned one-hot encoded label information as most one-hot encoded
annotations are ambiguous [24]. I.e., in comparison to the object classification task, the pro-
vided label information is low in creditability, and is susceptible to be controversial under
the human eye. Therefore, to improve the classification performance of a neural network
on pictorial facial expression dataset, we target on transform the one-hot encoded label to a
real-numbered label expression.

To achieve this goal, we rely on a label relaxation trick that is original proposed by
[40] [41] to relax the one-hot encoded emotional annotations to the real-numbered format.
Compare with their original usage of categorial reparameterisation in training a stochastic
network, we use the one-hot encoded labels as input rather than the logarithmic value of
class probability to train a non-stochastic network in solving a classification task.

Xie et al [42] developed their label transformation method, i.e., DisturbLabel, which is
independent from our work. In their DisturbLabel approach, they add noise to the loss layer
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serves an additional model regulariser to intensionally predict the incorrect labels. Different
from ours, the entire label perturbation process in [42] is accomplished through random
walking over the entire label sets to generate labels randomly. In contrast with theirs, the
usage of label relaxation technique does not aim to generate random labels, but rather to relax
the original one-hot encoded labels to real-number forms that share the semantic similarity
with the original labels.

In detail, we first relax the original one-hot encoded labels into real-number forms. This
allows the construction of a relaxed training dataset, i.e., concatenating these relaxed labels
with facial expression images. Then, we fed the original and relaxed training datasets to
train two neural networks with identical layer-wise configurations. After training, we fixed
the learned weights of two neural networks for testing. On the testing phase, we use a novel
set of facial expression images to test the performance of two neural networks based on the
evaluation of their predicted discrete labels. The empirical experiment shows that the usage
of relaxed label in neural network training can improve the performance of a neural network
on single-label facial expression classification task.

3.2 Methodology

3.2.1 Motivation of Adoption of Label Relaxation
The motivation of this research is to elevate the classification performance of a computa-
tional model on facial expressions. Conventionally, when training a model to tackle with a
classification problem, the usage of one-hot encoding to transform a categorical label to its
numerical form becomes standardised prior to the model training. However, as illustrated
in 3.1, in the context of pictorial emotional classification, the relied categorical labels are
largely vague and susceptible to be ambiguous. Utilising these labels in training a computa-
tional model to solve a facial expression classification taskmay lead to the lowered prediction
accuracy.

Therefore, to improve the prediction accuracy, it is not appropriate to lend total credi-
bility to the ’correct’ annotation, e.g., 1 in one-hot encoding, without considering the ’false’
annotations in one hot encoding of a categorical label, e.g., 0 in one-hot encoding. That is
to say, a method of transforming the original one-hot encoded labels to a new numeric form
of labels is needed. The resorted method is the label relaxation technique. This technique is
rooted in Gumbel-Softmax trick that is initially proposed for categorical reparameterisation
[40] [41]. Their proposed Gumbel-Softmax trick allows the conversion of a discrete variable
to a partial continuous one. However, different from their usage of probabilistic variables
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in defining the transformation process, here we use the one-hot encoded labels directly to
achieve the transformation. Based on the label relaxation technique, the original one-hot
encoded ’hard’ labels can now be converted to real-numbered form of ’soft’ labels. We then
concatenate these ’soft’ labels with the facial expression images to constitute a novel train-
ing dataset. We feed this novel training dataset to train a computational model, e.g., a neural
network, to solve a classification task. The working pipeline of the neural network training
that is based on relaxed labels can be visualised below in Fig. 3.1.



38 Learning Single-Label Relaxed Representations via Label Relaxation

In
Fi
g.
3.
1,

it
de

m
on

str
ate

st
he

wo
rk
in
g
pi
pe

lin
e
of

tra
in
in
g
an

d
tes

tin
g
ph

as
es

fo
r

tw
on

eu
ra
ln

etw
or
ks

wi
th

an
dw

ith
ou

tt
he

re
lax

ed
lab

els
.T

he
up

pe
rp

an
el

in
di
ca
tes

th
e
tra

in
in
g
ca
se
,w

he
re
as

th
e
lo
we

rp
an

el
de

m
on

str
ate

st
he

tes
tin

g
ph

as
e.

In
th
e

tra
in
in
g
ph

as
e,

tw
o
ne

ur
al

ne
tw

or
ks

ar
e
fe
d
wi

th
or
ig
in
al

on
e-
ho

te
nc

od
ed

or
re
-

lax
ed

lab
els

fo
rs

up
er
vi
se
d
tra

in
in
g;

wh
er
ea
si

n
th
et

es
tin

g
ph

as
e,

we
co

m
pa

re
th
e

pr
ed

ict
io
n
ac
cu

ra
cy

of
tw

o
ne

ur
al

ne
tw

or
ks

,e
.g
.,

𝑁
𝑁

1
an

d
𝑁

𝑁
2
on

th
e
tes

tin
g

da
tas

et.
It

is
im

po
rta

nt
to

no
te

he
re
,a

so
ur

tes
tin

g
da

tas
et

on
ly

in
vo

lv
es

co
rre

ct
sin

gl
e-
lab

ell
ed

an
no

tat
io
ns

fo
re

va
lu
ati

on
,w

ea
dd

an
ex

tra
𝑆𝑜

𝑓𝑡
𝑚𝑎

𝑥
lay

er
on

to
p

of
th
el

as
th

id
de

n
lay

er
in

𝑁
𝑁

2
fo
rp

ro
du

cin
g
on

e-
ho

tl
ab

els
fo
re

va
lu
ati

on
.

Fi
g.

3.
1
W
or
ki
ng

pi
pe

lin
eo

fn
eu

ra
ln

etw
or
k
tra

in
in
g
ba

se
d
on

re
lax

ed
lab

els



3.2 Methodology 39

3.2.2 From Gumbel Variable to Gumbel-Softmax Trick
Gumbel Variable

The parameterisation we choose here is the Gumbel variable for its potential in controlling
whether or not the label distribution is discrete or continuous. Gumbel distribution is previ-
ously used in modelling the distribution of the extreme value [43]. Formally, we can define
a Gumbel variable that belongs to a standard Gumbel distribution as 𝐺 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(𝜇, 𝛽),
whereas the distribution location and variance parameters are termed as 𝜇 and 𝛽, respec-
tively. The reason for picking the Gumbel variable lies on its close connection to uniform
distribution. E.g., if 𝑈 is the uniform distributed, i.e., 𝑈 ∼ 𝑈𝑛𝑖𝑓[0, 1], the transition be-
tween 𝐺 and 𝑈 can be parameterised as Eq.3.1:

𝐺(𝑈) = − log[− log(𝑈)]. (3.1)

Gumbel-Softmax Trick

The parameterisation of the Gumbel variable unfolds its convenience in sampling discrete
distribution via the Gumbel max trick [44], which insists the sampling process for any cate-
gorical distributions can be delineated as firstly define a Gumbel variable, then adding it to a
normalising constant, and output the summation. Formally, if we allow our designated label
information 𝑦 to be a discrete categorical variable, which can take 𝐾 different values/labels
to form one-hot representation in a standard binomial or multinomial discriminative task,
e.g.,𝑦 ∈ {1...𝐾} & 𝑦 ∈ ℜ𝐾 . The class probability that associated with this categorical
variable 𝑦 is defined as 𝜋𝑘.

The entire label sampling process can be parameterised as Eq.3.2:

𝑦 ∼ 𝐶𝑎𝑡(𝜋𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝛼𝑘 + log(𝜋𝑘)). (3.2)

Where the Gumbel variable is defined as 𝛼𝑘 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) ∼ − log(− log 𝑢𝑘), whereas
𝑢𝑘 confirms to the uniform distribution, e.g., 𝑢𝑘 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1).

The problem of Gumbel max sampling process lies on the 𝑎𝑟𝑔𝑚𝑎𝑥 function, which only
permits the ’hard’ sampling distribution, i.e., categorical. For tackling with this issue, Jang
et al in [40] came up a simple trick, i.e., Gumbel-Softmax trick that uses a simple smoothing
function, i.e., 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 with a tuning hyper parameter 𝜏 to derive continuous approximation
to the previous argmax function. This allows the generation of sample, e.g., 𝑦𝜏

𝑘, follows
𝑦𝜏

𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑘 + log(𝜋𝑘)) = 𝑒𝑥𝑝((log𝜋𝑘+𝛼𝑘)/𝜏)
∑𝑘

𝑗=1 𝑒𝑥𝑝((𝑙𝑜𝑔𝜋𝑗+𝛼𝑗 )/𝜏))
.
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3.2.3 Label Relaxation Technique
Similar to Jang et al proposed Gumbel-Softmax trick in [40], we also use a softmax function
with a tuning hyper-parameter 𝜏 to approximate the argmax function in Eq.3.2. The crucial
difference is that in our label relaxation technique, we do not resort on the probability class
that associated with the categorical variable, instead, we use the one-hot encoded labels, e.g.,
𝑦𝑖 directly without taking its log value. The relaxed label 𝑦𝜏

𝑖 follows the generation process
in Eq.3.3:

𝑦𝜏
𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖 + 𝛼𝑖) = 𝑒𝑥𝑝((𝑦𝑖 + 𝛼𝑖)/𝜏)

∑𝑖
𝑗=1 𝑒𝑥𝑝((𝑦𝑗 + 𝛼𝑗)/𝜏))

(3.3)

For the clear demonstration of our presented label relaxation technique, we present the
Algorithm 1 below to delineate the process of crafting our envisioned ’soft’ labels, e.g., 𝑦𝜏

𝑘.

Algorithm 1 Label relaxation technique
Require: The original one-hot encoded label 𝑦𝑖; the number of sample 𝑁
Require: Set the value of hyper-parameter 𝜏

for 𝑦𝑖 ∈ 𝑌 do
sample 𝑁 uniform variables, i.e., 𝑈 𝑁

𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1]
generate 𝑁 gumble variables 𝛼𝑁

𝑖 , i.e., 𝛼𝑖 = − log[log(𝑈 𝑁
𝑖 )]

𝑦𝜏𝑁
𝑖 ⟵ exp((𝑦𝑖+𝛼𝑖)/𝜏)

∑𝑖
𝑗=1 exp((𝑦𝑗+𝛼𝑗 )/𝜏)

𝑦𝜏
𝑖 ← 𝑦𝜏𝑁

𝑖
𝑁

end for
Return 𝑦𝜏

𝑖

Where 𝜏 > 0 acts as the temperature parameter to control the degree of relaxation, e.g.,
when 𝜏 ⟶ 0, 𝑦𝜏

𝑖 becomes one-hot encoded; when 𝜏 ⟶ +∞, 𝑦𝜏
𝑖 is no longer one-hot

encoded. For example, with the 𝜏 fixed at 4, a sample one-hot encoded label in a ten class
categorisation task can be expressed as (0; 0; 0; 1; 0; 0; 0; 0; 0; 0), the crafted soft label
is the vector of (0.0971; 0.0973; 0.0970; 0.1246; 0.0973; 0.0973; 0.0972; 0.0973; 0.0972;
0.0973). Numerically, the resultant soft labels enforce the model to prevent lending the total
creditability towards the ’correct’ labels in computing the loss, but consider other ’false’
labels as well. This forced hard label relaxation may provide a cure to resolve the issue of
vague labels in imbalanced dataset. Armed with the previously defined Gumbel-Concrete
relaxed label, we can now implement this technique in training a supervised neural network
by substituting the original one hot encoded labels with the relaxed labels. The rest part is
trained conventionally with the gradient based supervised training algorithm.
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3.3 Empirical Experiment
FER2013 is a well researched public available dataset for pictorial sentiment discrimination.
It is comprised of total 35887 facial expression images. Prior to our implementation, all
images in FER2013 had gone through the standard preprocessing steps, e.g., fixating the
faces at center, standardise the image size to 48 by 48 pixels in resolution, and all faces are
properly registered. We then normalised the pixel values of input images, and strictly follow
the ratio of 8:1:1 for dividing the dataset into training, validation, and testing subsets for
this experiment. All FER2013 images are labelled as one of seven emotion categories, e.g.,
angry, disgust, fear, happy, sad, surprise, and neutral. The sample size for each emotion
category is drastically different, ranging from the smallest (disgust: 547) to largest (happy:
8989).

In implementation of our proposed hard label relaxation, we adopt the VGG-16[45] like
stacked convolutional neural network architecture for its promising performance in classifi-
cation tasks in general. As the small size of training dataset in FER2013 merely permits to
train a small to medium size of convolutional neural network, we further tailored the large
VGG-16 like model down to a tight eight layer structure. As our major focus is to compare
the vanilla supervised trainings with our proposed label relaxation, it is essential to adopt
the exact layer wise model architecture for both training methods. Moreover, as rendered
in the foregoing section, the degree of 𝜏 has direct impact on the ’discreteness’ of the label
distribution that can further influence the performance of soft label training, therefore, we
specify the degree of the temperature, e.g.,𝜏 into 1.0, 1.5, 2.0, 2.5, producing four variants
of training types for model comparison. The layer wise configuration we employed in this
experiment is shown in Table 3.1.

The results that render in Table3.2 and Fig.3.2, unequivocally elucidate that our proposed
hard label relaxation outperformed the vanilla supervised training in this imbalanced picto-
rial sentimental classification task with no sacrifice on running time. Moreover, by compari-
son among four different variants specified by different values of 𝜏, i.e., 𝜏 = 1.0, 1.5, 2.0, 2.5,
the largest performance gain was spotted at the intermediate level of 𝜏, which refers as the
middle ground between the complete discrete and complete continuous distribution of the
label information. The detailed analysis on finding the optimal 𝜏 is reserved for future re-
searches.
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Table 3.1 Model Configurations.

Layer
Index

Computation Activation
Types

Number of Trainable
Parameters

1 Convolution with Filter Size
(7x7)

PreLU 37664

2 Average Pooling with Filter
Size (5x5)

N/A 0

3 Convolution with Filter Size
(5x5)

PreLU 31264

4 Average Pooling with Filter
Size (3x3)

N/A 0

5 Convolution with Filter Size
(5x5)

PreLU 13854

6 Average Pooling with Filter
Size (3x3)

N/A 0

7 Fully Connected with 1028
neuron

Linear 1185284

8 Fully Connected with 7
neuron

Linear 7203

Table 3.2 Model-Wise Discriminative Performance in FER2013 dataset

Model Test Accuracy (%) Run Time Per Epoch(s)
Vanilla CNN 62.28 291
G-C(𝜏 = 1.0) 63.33 293
G-C(𝜏 = 1.5) 64.16 294
G-C(𝜏 = 2.0) 62.59 294
G-C(𝜏 = 2.5) 62.55 298
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In Fig. 3.3, we render out the loss and accuracy plots of our proposed approach.
The plain neural network serves as the benchmark for the comparative purpose. As
the batch size fixed at 100 samples, each epoch in this experiment is roughly equal
with 280 iterations.

Fig. 3.2 Training in FER2013 dataset
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3.4 Conclusion and Discussion
To lower the dependency on the vague and discrete labels that are commonly used in pic-
torial sentiment classification tasks, we propose a Gumbel-Concrete tuned label relaxation
method that aims to learn partial and pseudo continuous affective representations in the su-
pervised learning context. Our approach is parameter parsimonious, i.e., via tuning a single
hyper-parameter 𝜏, it allows the total control over the degree of discreteness in tuning the
label distribution. Moreover, our training technique is fully compatible with all existing
supervised learning architectures, and requires minimal to none architecture revisions. In
FER2013 dataset, which is composed of vague labels, we observe clear performance im-
provement that brought by the implementation of our label relaxation technique with no
sacrifices on the training speed.

However, this proposed label relaxation technique suffers from the following weakness:
the heuristical determined 𝜏, how to theoretical derive an optimal 𝜏 for each implementation
remain as a challenge to be solved in future studies.



Chapter 4

Learning Multi-label Discrete
Representations via Transfer Learning

4.1 Introduction
In the foregoing attempt, we suggest the usage of label relaxation technique to relax the
original label distribution from one-hot expressions to real-numbered forms. However, in
the proposed approach, i.e., the outputted labels are still one-hot encoded. In this research,
we extend the single-label classification to the multi-label one. Our objective here is to use
transfer learning to solve a multi-label facial expression classification task.

The researches on multi-label learning have been divided into two streams: problem
transformation and algorithm adaptation, respectively [46]. The former approach allows a
multi-label learning problem to degrade to a single-label one. Two widely applied problem
transformation algorithms are binary relevance [47] and hierarchical of multi-label classifier,
AKA., ML-ARAM [48]. The latter approach directly tackles the multi-label learning via
the reconstructed loss function. Within this scope, the representative models are ranging
from k-nearest neighbour related ML-KNN [49], to label relevance based multi-label neural
networks [50].

Despite of the bulk of researches on multi-label learning in general, their applications
on affective computing are rarely documented. To fulfill this research gap, Mower et al [51]
[52] proposed a feature-agglomerate extraction method to encompass all appeared distinc-
tive emotions in single prediction. Their approach coincides with the foregoing ML-ARAM
model in ensuring the structured multi-label predictions. However, their claimed confidence
rating – the computed Euclidean distance between input space and feature hyperplane – is
mere an metric to index the importance of a feature. Another study that aimed in apply-
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ing multi-label learning in affective classification relied on a novel regularisation to further
penalise the max margin loss [53]. In spite of their claimed effectiveness in extracting multi-
label affective features, the success of their proposed Group LASSO regulariser depended
heavily on their manual and recursive feature extraction process.

The difficulty that is posited in front of almost every multi-label learning algorithm is
the scarcity of high quality multi-label annotated training dataset, i.e., it is laborious and
expensive to collect the multi-label training dataset[54]. Hence, in combating with this noted
issue, unlike conventional multi-label learning approaches, in this research we resort on one
extreme form of transfer learning [55]: zero-shot transfer learning to allow the knowledge
that is distilled from a source model, i.e., a single-labelled affective recognition task, to
a target model on a more complex task such as a multi-label affective discriminative task
without any forms of multi-label training.

To achieve our goal, we propose a learning framework, e.g.,Uncertainty Flow frame-
work with four components: two Bayesian neural networks, the usage of weakly informative
priors, the transferred posterior weight distribution, and three final prediction indexes to
output multi-label prediction on certain facial expression.

The remaining chapter is organised as following: we chiefly introduce the proposed Un-
certainty Flow framework in sketch along with the detailed description of four core com-
ponents. To demonstrate the effectiveness of our proposed Uncertainty Flow framework,
we then present the empirical results from a large-scale comparative experiment. This large-
scale experiment contains three levels of comparisons, i.e., the comparison among models,
the comparison among different priors, and the comparison among three uncertainty indexes.
The observed pronounced discriminability in solving a multi-label expression classification
task empirically validates the effectiveness of the proposed Uncertainty Flow framework.

4.2 Uncertainty Flow Framework
Sketched in Fig.4.1, the proposed Uncertainty Flow framework is consisted of four compo-
nents, i.e., two Bayesian neural networks, the weakly informative priors, the transferred pos-
terior weight distribution, and three prediction indexes. The work pipeline of Uncertainty
Flow initiates at standard supervised training of a source Bayesian neural network(BNN)
with a weakly informative prior, e.g., uniform or Cauchy prior, follows the computation
of the weight posterior in preparation of model uncertainty in the source BNN, then this
distilled model uncertainty is transferred to a target BNN, which is specialised in outputting
multi-label predictions. Finally, three prediction indexes are introduced to output multi-label
prediction on certain facial expression.
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The graphic model explanation of our proposed Uncertainty Flow framework
shows four essential elements. I.e., the dual Bayesian neural networks in I, e.g.,
a source and a target BNN(separate by different colours in this figure); the weakly
informative prior in II; the transferred posterior weight distribution in III; and three
proposed uncertainty indexes in perfecting the final multi-label categorisation in IV

Fig. 4.1 Uncertainty Flow Framework
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4.2.1 Two Bayesian Neural Networks
The core part of proposed Uncertainty Flow is the usage of two Bayesian neural networks
(aka., BNNs) to serve a source and target task respectively. A Bayesian neural network can
be seen as a neural network with a pre-defined prior distribution on its weights [35]. Under
the classification set-up, where we have sets of input and output variables, e.g., {𝑥, 𝑦}, the
two BNNs for source and target task respectively should be specified into following:

• The source BNN

𝜃𝑠 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) (4.1)

𝑁𝑁(𝑥; 𝜃𝑠) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ∘ (𝑡𝑎𝑛ℎ ∘
𝑛

∑
𝑖=1

(𝑥 ⋅ 𝜃𝑠)) (4.2)

𝑦𝑠𝑖𝑛𝑔𝑙𝑒 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑦𝑠𝑖𝑛𝑔𝑙𝑒|𝑁𝑁(𝑥; 𝜃𝑠), 𝑝). (4.3)

• The target BNN

𝑁𝑁(𝑥; 𝜃𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ∘ (𝑡𝑎𝑛ℎ ∘
𝑛

∑
𝑖=1

(𝑥 ⋅ 𝜃𝑡)) (4.4)

𝑦𝑚𝑢𝑙𝑡𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑦𝑚𝑢𝑙𝑡𝑖|𝑁𝑁(𝑥; 𝜃𝑡), 𝜎2). (4.5)

Where 𝜃𝑠 and 𝜃𝑡 indicate the weights in the source and target BNNs respectively, and
𝑦𝑠𝑖𝑛𝑔𝑙𝑒 and 𝑦𝑚𝑢𝑙𝑡𝑖 indicate different output predictions (single-label or multi-label predictions)
from the source and target BNNs. For simplicity, only 𝑡𝑎𝑛ℎ non-linearity is considered as
the activation function used in both source and target BNNs, and 𝑝 in the source BNN is set
to number of class in training dataset. We assume 𝜎2 is a known variance.

Notice here, we tailer the target BNN in concord with multi-label prediction task de-
mand. I.e., to allow a Bayesian neural network to produce multiple outputs, the prediction
distribution is no longer categorical, but rather in the source BNN is replaced with a real-
value function, e.g., sigmoid function, in the target BNN. Also, as no form of training taken
place in the target BNN, there is no defined prior distribution associated with 𝜃𝑡.

4.2.2 Weakly Informative Priors
The prior, which determines the first and second order statistics of model parameters, is de
facto the driving force in bayesian learning. Hence, the proper specification of a model ties
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closely with the choice of an applicable prior for a given task. Unfortunately, the majority
works on Bayesian learning pay overwhelmed attention towards the prior that are informa-
tive and conjugate for their analytical convenience, the family of uninformative and weakly
informative priors had been largely ignored.

Argued in [56] [57], differ to the conventional used informative prior, the usage of weakly
informative prior, i.e., a semi-flat prior, yielded superior predicative performance in single-
label discrimination. Therefore, it is rational to extend this finding in multi-label learning.
The formal definitions of informative and weakly informative priors are rendered below, and
their corresponding probabilistic density curves are plotted in Fig.4.2.

• Informative Prior

– Normal Prior

𝜃𝑁 ∼ 𝑁(𝜇, 𝜎2)

𝑝(𝜃𝑁 ) = 1
√2𝜋𝜎2

𝑒𝑥𝑝(− 1
2𝜎2 (𝜃 − 𝜇)2)

• Weakly Informative Prior

– Uniform Prior

𝜃𝑈 ∼ 𝑈(𝛼, 𝛽)

𝑝(𝜃𝑈 ) = 1
𝛽 − 𝛼

– Cauchy Prior

𝜃𝐶 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝛼, 𝛽)

𝑝(𝜃𝐶 ) = 1
𝜋𝛽(1 + (𝑥−𝛼

𝛽 )2)

4.2.3 Transferred Posterior Weight Distribution
Armed with the previous defined source BNN and different kinds of prior, e.g., informa-
tive or weakly informative, the next step is to infer the posterior distribution for 𝜃𝑠, i.e.,
𝑝(𝜃𝑠|𝑥, 𝑦𝑠𝑖𝑛𝑔𝑙𝑒). Here, we rely on the commonly used variational inference to infer this statis-
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This graph demonstrates the probabilistic density curve of each prior used in this re-
search, i.e., Normal, Uniform and Cauchy priors. Here, the further specification of
input-to-hidden, hidden-to-hidden priors are defined as the hierarchical shrinkage
in variance of the corresponding priors.

Fig. 4.2 The Probabilistic Density Curves of Normal, Uniform, and Cauchy Priors

tic via minimising the KL-divergence [58][59]1 between approximated variational distribu-
tion, i.e., 𝑞(𝜃𝑠) and true posterior, i.e., 𝑝(𝜃𝑠|𝑥, 𝑦𝑠𝑖𝑛𝑔𝑙𝑒).

To construct the variational distribution to approximate the intractable true posterior, we
resort on mean-field Normal distribution, which is parameterised by the mean and standard
deviation, e.g., 𝑞𝜙(𝜃𝑠) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2).

As we cannot compute the KL-divergence directly, the common approach is to resort on
optimising an alternative objective, i.e., maximising the ELBO (evidence lower bound) ℒ
as

ℒ = ℰ𝑞𝜙[log(𝑝(𝑦𝑠𝑖𝑛𝑔𝑙𝑒|𝑥, 𝜃𝑠)𝑝(𝜃𝑠)) − log 𝑞𝜙(𝜃𝑠)]. (4.6)

We then optimise this ELBO (ℒ ) by ADVI (automatic differentiation variational infer-
ence) algorithm in [60] to yield the optimal 𝑞∗(𝜃𝑠) to approximate the posterior 𝑝(𝜃𝑠|𝑥, 𝑦𝑠𝑖𝑛𝑔𝑙𝑒),
i.e., 𝑞∗(𝜃𝑠) ≈ 𝑝(𝜃𝑠|𝑥, 𝑦𝑠𝑖𝑛𝑔𝑙𝑒).

This approximated posterior weight distribution is then served as the knowledge to trans-
fer from the source BNN to the target BNN, i.e, 𝑝(𝜃𝑡|𝑥, 𝑦𝑚𝑢𝑙𝑡𝑖) ⟵ 𝑞∗(𝜃𝑠). This step of

1

𝐾𝐿(𝑞||𝑝) = ∑
𝜃

𝑞(𝜃𝑠) log 𝑞(𝜃𝑠)
𝑝(𝜃𝑠|𝑥, 𝑦𝑠𝑖𝑛𝑔𝑙𝑒)
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knowledge transfer allows the target BNN to obtain posterior weight distribution without
going through the standard supervised training procedure.

4.2.4 Prediction Related Uncertainty Indexes
Armed with the transferred posterior weight distribution, i.e., 𝑝(𝜃𝑡|𝑥, 𝑦𝑚𝑢𝑙𝑡𝑖) and the defined
target BNN from Eq. 4.4 to Eq. 4.5, we are now positioned to render out the posterior
predictive distribution, e.g., 𝑝(𝑥𝑛𝑒𝑤|𝑥, 𝜃𝑡) for any incoming input (in our case, the new facial
expression image, denoting as 𝑥𝑛𝑒𝑤). The making of posterior predictive distribution can be
approximated by the usage of Monte Carlo estimation as:

𝑝(𝑥𝑛𝑒𝑤|𝑥) ≈ 1
𝑀

𝑀

∑
𝑖=1

𝑝(𝑦|𝑥, 𝜃𝑡) (4.7)

𝜃𝑡 ∼ 𝑝(𝜃𝑡|𝑥, 𝑦𝑚𝑢𝑙𝑡𝑖). (4.8)

In actual experiment, we set the number of Monte Carlo estimation to 𝑀 = 500 for quick
sampling.

Obtained this posterior predictive distribution, we render out the following three multi-
label prediction indexes. The first index is the mean of the previous yielded predictive dis-
tribution, e.g., denoting as soft-max index (𝑢𝑡

1):

𝑢𝑡
1 = 𝔼𝑝(𝑥𝑛𝑒𝑤|𝑥) ≈ 1

𝑀

𝑀

∑
𝑖=1

𝑝(𝑦|𝑥, 𝜃𝑡). (4.9)

Importantly, as our final goal is to output multiple discrete labels (2 labels) for certain
facial expressions, posterior to the computation on soft-max 𝑢𝑡

1 index of each new input on
number of class entry. I.e., if there are 7 classes associated with the new input, we com-
pute the soft-max index on each of 7 classes. This type of probabilistic index tells us the
most probable outputs given the input, which is similar to the softmax probability that used
producing single-label prediction in non-Bayesian neural networks [61] [62]. For the multi-
label prediction, we then refer two classes with the highest index and the second highest
index to 1 and other classes as 0.

From Bayesian learning perspective, the above-mentioned soft-max index reflects the
belief of applying predictive mean in indexing the prediction uncertainty. Numerically, this
type of uncertainty index captures the mere classification type in a multi-label classification
task, is equivalent with the class type probability in non-Bayesian neural networks. However,
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as the predictive mean does not capture the full picture of parameter posterior distribution,
we draw our attention towards the predictive variance instead.

We argue that the yielded predictive variance reflects the degree of uncertainty that is
associated with each prediction. As a result, based on the approximated weight posterior,
i.e., 𝑝(𝜃|𝑥), a better prediction index is expressed below in Eq.4.10:

𝑢𝑡
2 = 𝑉 𝑎𝑟[𝑝(𝑥𝑛𝑒𝑤|𝑥)] ≈ 𝑉 𝑎𝑟[

1
𝑀

𝑀

∑
𝑖=1

𝑝(𝑦|𝑥, 𝜃𝑡)] (4.10)

We denote this measure of prediction uncertainty index as pure (𝑢𝑡
2) index for multi-label

prediction. Different from the previous soft-max index, in Pure index, each prediction score
reflects the variance of the prediction, which should be negatively correlate with our certainty
in prediction. I.e., the larger the variance, less certain the prediction. Hence, we refer two
classes with the least index and the second least index to 1 for multi-label prediction
and other classes as 0.

One step further, the two foregoing indexes can be combined altogether, which allows
the prediction index to reflect both class type probabilistic prediction (soft-max prediction
index) and the certainty associated index (pure prediction index). We denote this prediction
index as uncertainty plus (𝑢𝑡

3). This prediction index is computed as follows:

𝑢𝑡
3 =

1
𝑀 ∑𝑀

𝑖=1 𝑝(𝑦|𝑥, 𝜃𝑡)
𝑉 𝑎𝑟[ 1

𝑀 ∑𝑀
𝑖=1 𝑝(𝑦|𝑥, 𝜃𝑡)]

(4.11)

In production of this index, each class type probabilistic prediction is proportionately
adjusted to its associated certainty. I.e., the less certain class type predictions should be
down weighted in comparison to the more certain prediction. For the final multi-label
prediction, we refer the highest and second highest classes in uncertainty plus index as
the correct labels, e.g., as 1, whereas the rest classes are all converted to 0.

For illustrative purposes, how each of three above mentioned uncertainty indexes, e.g.,
soft-max uncertainty, pure uncertainty, and uncertainty plus, influences on a simple
binary classifier, is demonstrated in Fig.4.3.

4.3 Empirical Experiment
Relying on the transferred model uncertainty, the proposed Uncertainty Flow framework
allows a learner to output multi-label predictions under single-label training curriculum.
Empirical validation of our proposed framework contains two enquiries that need to be ad-
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In this figure, three different means of crafting uncertainty boundary for obtaining
classification prediction on a simple binary classification problem, i.e., two classes
are separated by blue and red, is delineated.

Fig. 4.3 Comparison of Three Prediction Related Uncertainty Indexes on a Binary Classifier

dressed. I.e., one is to investigate that whether or not our proposed Uncertainty Flow is
superior to conventional multi-label learning algorithms in facilitating the zero-shot multi-
label learning; whereas the other is to see which uncertainty index leads to the most sig-
nificant performance elevation. Also, in order to investigate the role of suggested weakly
informative priors, we additional specify our Uncertainty Flow into three types of priors.
Hence, in total, there are three-level comparisons in our experiment, i.e.,model comparison;
prior comparison; and uncertainty comparison.

4.3.1 Dataset
Training Dataset

We selected the first 1500 images from FER2013 [63] as our training dataset. The reason
for intentional lowered size of training dataset is to enforce the similar model complexity
between a source BNN and a target BNN. FER2013 is a well researched public dataset,
which is comprised of facial expression images for pictorial sentiment discrimination. Prior
to our implementation, all images in this truncated version of FER2013 had gone through
the standard preprocessing process, e.g., fixate the faces at centre, standardise the image size
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Name # of Instances # of Labels Cardinality[46]Source
Training 1500 7 1.0 [63]
Testing 200 7 1.89 This Research

Table 4.1 Descriptive Statistics of training and testing dataset

to 48 by 48 pixels in resolution, and all faces are properly registered. We then normalised
the pixel values of input images. The original FER2013 images are labelled as one of seven
emotion categories, e.g., angry, disgust, fear, happy, sad, surprise, and neutral.

Testing Dataset

To allow the evaluation of outputted multi-label predictions, it is imperative to rely on some
existing benchmark annotations. Unfortunately, there is no current reliable multi-label an-
notations for FER2013 facial expressions. For this, we conducted a small-scale, i.e., 200
images, experiment on manual annotating the multi-label version of FER2013. We invite
five annotators to annotate two discrete labels associated with each of 200 facial expression
images.

After annotation process, we take the majority voting on the two mostly annotated labels
for each expression. In terms of inter-rater reliability, the computed medium Fleiss-Kappa
coefficient index [64], e.g., 0.25, 2 suggests reliable annotations among different annotators.
The descriptive statistics of this annotated multi-label testing dataset is summarised in Table
4.1.

4.3.2 Models
To conduct an experiment that contains above-mentioned three-level comparisons, i.e.,model
comparison, prior comparison, uncertainty comparison, it demands explicit specification
of all models in current experiment. In model comparison, four widely used multi-label
learning algorithms, ranging from adaption algorithms, e.g., Multi-Label K-means Nearest
Neighbour (MLkNN), Multi-label Neurofuzzy Classifier(ML-ARAM), to problem transfor-
mation algorithms, e.g., Binary Relevance (BR) and Label Powerset (LP), are included. In
addition, two multi-label compatible neural networks. i.e., a multi-label feedforward Neu-
ral network (ML-FNN) and a multi-label convolutional neural network (ML-CNN), are also
included in model comparison comparison.

In prior comparison and uncertainty comparison, depending on the prior type, i.e., in-
formative or weakly informative, and different prediction related uncertainty indexes, e.g.,

2between −1 to 1, higher is more reliable
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soft-max uncertainty, pure uncertainty, uncertainty plus, the Uncertainty Flow gener-
ates 9 variants, denoting as BNN-normal-soft; BNN-normal-pure; BNN-normal-plus; BNN-
uniform-soft; BNN-uniform-pure; BNN-uniform-plus; BNN-cauchy-soft; BNN-cauchy-pure;
BNN-cauchy-plus. To further elevate the discriminative performance in multi-label predic-
tion, we additional frame a convolutional neural network under Bayesian learning, producing
Bayesian convolutional neural network within the proposed Uncertainty Flow framework,
with its associated 9 variants, i.e., BCNN-normal-soft; BCNN-normal-pure; BCNN-normal-
plus; BCNN-uniform-soft; BCNN-uniform-pure; BCNN-uniform-plus; BCNN-cauchy-soft;
BCNN-cauchy-pure; BCNN-cauchy-plus. The configurations of above-mentioned models
are summarised as the following itemised format.

1. ML-kNN

The number of k mixture components was set up to 4, and the default smoothing pa-
rameter was tuned at 0.

2. ML-ARAM

The vigilance was set to 0.9 to reflect the high dataset dependence, the threshold was
set to 0.02 in line with the original algorithm implementation[48].

3. Binary Relevance

Base classifier: SVC(support vector classifier)

4. Label Powerset

Base classifier: Naive Gaussian classifier

5. ML-FNN Layer-wise Architecture:

Dense(128) ->Dropout(p= 0.2) ->Dense(128) ->Dropout (p= 0.2) ->Dense(Output)
3

Epoch:50(1500 iterations)

6. ML-CNN Layer-Wise Architecture:

Convolution(3*3) -> Convolution(3*3)- > Max Pooling(2*2) -> Dropout(p= 0.2) ->
Dense(128) -> Dense(Output)

Epochs: 50(1500 iterations)
3This notation indicates the information pathway from a dense connected layer with 128 units, to the final

dense connected layer via intermediate dense connected and dropout layers
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7. BNN Layer-Wise Architecture: Same as ML-FNN

Priors: Normal/Uniform/Cauchy

Inference Method: Variational Mean Field

Number of Posterior Sampling: 500

8. BCNN Layer-Wise Architecture: Same as ML-CNN

Priors: Normal/Uniform/Cauchy

Inference Method: Variational Mean Field

Number of Posterior Sampling:500

4.3.3 Evaluation Metrics
Different than the uniformed metric that used in single-label classification, i.e., classifica-
tion accuracy, diversified evaluation metrics have been proposed. In line with the rouge
classification from [46], we adhere the dichotomy classification of the evaluation metrics as
bipartition and ranking based. For illustrative purposes, assuming a multi-label evaluation
dataset is consist of input, i.e., 𝑥𝑖, and the set of true labels, i.e., 𝑌𝑖, where 𝑖 = 1...𝑚 and
𝑌𝑖 ⊆ 𝐿, 𝐿 is the set of all correct labels. Under this notation, the set of predicated labels
are denoted as 𝑍𝑖, where 𝑖 = 1...𝑚, while the rank predicted by learning method for a label
𝜆 is denoted as 𝑟𝑖(𝜆). The most relevant label, receives the highest rank (1), while the least
relevant one, receives the lowest rank (q).

Bipartition based

Delegated from the single-label metric, bipartition based metrics are proposed to capture the
differences between actual and predicted sets of labels over all evaluation dataset. These
differences can be computed in various means via either averaged over all samples or all
label sets.

1. Hamming loss

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 − 𝐿𝑜𝑠𝑠 = 1
𝑚

𝑚𝑖

∑
𝑖=1

|𝑌𝑖△𝑍𝑖|
𝑀

Where △ represents the symmetric difference of two sets, i.e., predicted and true label
sets. Contrast with other over-strict measures of multi-label classification accuracy, i.e.,
low tolerance on partial label misclassification, e.g., 1

𝑚 ∑𝑚
𝑖1 𝐼|𝑌𝑖 = 𝑍𝑖|, the hamming
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loss, which sums up to 1, offers a mild criteria for wider range of measurement applica-
tion.

2. Micro-Averaged F-Score & Average Precision

Inherited from classic binary evaluation in information retrieval tasks, F-score and av-
erage precision, which both reflect their corresponded combinations of averaging over
precision and recall, are two readily applicable metrics in multi-label learning. Among
various averaging operations, e.g., macro, weighted, and micro, the preferred operation
is micro-average as it offers each sample-class pair an equal contribution to the over-
all metric. Consider a binary evaluation measure 𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛 that is computed via the
number of true positives𝑡𝑝, true negatives𝑡𝑛, false positives𝑓𝑝, false negatives𝑓𝑛,the 𝑛𝑡ℎ
threshold for precision and recall are 𝑃𝑛 and 𝑅𝑛, the interested micro-averaged F-score
and average precision score(AP) are derived as following:

𝑃𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

𝑅𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑(𝐹𝛽) = (1 + 𝛽2 𝑃𝑛 × 𝑅𝑛
𝛽2𝑃𝑛 + 𝑅𝑛

)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃 𝑟𝑒𝑖𝑠𝑖𝑜𝑛(𝐴𝑃 ) = ∑𝑛
(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

Ranking Based

1. Converge

To measure the needed distance to cover all true label sets, i.e., 𝑌𝑖 in the predicted label
sets, we resort on the converge error metric. It can be defined as following:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐸𝑟𝑟𝑜𝑟 = 1
𝑚

𝑚

∑
𝑖=1

𝑚𝑎𝑥𝜆∈𝑌𝑖𝑟𝑖(𝜆) − 1

2. Ranking Loss

The ranking loss targets at the incorrect ordering of the predicted label sets. Presume
̄𝑌𝑖 is expressed as the complementary set of 𝑌𝑖, its computation can be defined as fol-
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lowing:

𝑅 − 𝐿𝑜𝑠𝑠 = 1
𝑚

𝑚

∑
𝑖=1

1
|𝑌𝑖|| ̄𝑌𝑖|

{(𝜆𝑎, 𝜆𝑏) ∶ 𝑟𝑖(𝜆𝑎) > 𝑟𝑖(𝜆𝑏), (𝜆𝑎, 𝜆𝑏) ∈ 𝑌𝑖 × ̄𝑌𝑖}

4.3.4 Results & Discussion
The overall result of our conducted large-scale comparative experiment is chiefly presented
in Table 4.2. For illustrative purposes, we grouped the results to highlight the comparison
among different models. As we used various of evaluation metrics to assess the performance
of corresponding models, it is difficulty to obtain a clear judgement that is based on single
metric. I.e., when we pitted our approach, i.e., Uncertainty Flow against the MLkNN ap-
proach in conventional multi-label models, our approach, including all nine variations, is in-
ferior to theMLkNN approach on the metric ofHamming-Loss. However, when we accessed
the model according to its performance on Average Precision, our approach largely outper-
formed theMLkNN approach. Moreover, as we incorporated nine variations inUncertainty
Flow, the in-depth analyses of the prior types and uncertainty indexes are demanded. We
then divided our discussion of the overall result into three parts, e.g., the results on model
comparison, the results on prior comparison, and the results on uncertainty comparison.
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Note here, for illustrative purposes, we used Hamming-ACC, Converge-ACC and
Ranking-ACC instead of original loss based metrics. Rather than the averaging
over the models in each category, e.g., Conventional-ML, we picked the most
representative model in each category for different metric.

Fig. 4.4 Model Wise Comparison on Multi-learning Metrics

Model Comparison

Ruling out the factors of prior types and prediction related uncertainty indexes, the empirical
comparison betweenUncertainty Flow framework and the alternatives demonstrated mixed
results, illustrated in Fig.4.4.

Previous findings from [46] and [54] stated that it is practical difficult to observe a single
model or algorithm, which is competitive enough to beat others in every multi-label evalua-
tion metric. Hence, it is imperative to investigate each loss metric independently. Focusing
on Hamming-Loss 4, interestingly, the conventional multi-label learning models are particu-
lar good in minimising this type of loss. However, indicated in Converge-Loss and Ranking-
Loss, both Uncertainty Flow and multi-label compatible neural networks, e.g., ML-FNN
and ML-CNN are superior than the conventional multi-label learning alternatives.

Under two precision related metrics, e.g., F-score and average precision, with the help
from a weakly informative prior, e.g., uniform or Cauchy prior, and an advanced prediction
related uncertainty indexes, e.g., pure uncertainty, or uncertainty plus, both BNN and
BCNN, exhibited clear performance advantage over their alternatives, e.g., ML-FNN, ML-
CNN and conventional multi-label models. Especially on the metric of average Precision,

4Hamming-ACC = 1- Hamming loss
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Note here, the notation w-in-hidden-1means posterior weights in first hidden layer
in our implemented BNN or BCNN.

Fig. 4.5 Different priors on posterior weights under the uncertainty flow framework

the nontrivial performance enhancement, i.e., over 20% accuracy increase, demonstrated the
superior discriminability that tags to our proposed Uncertainty Flow. Moreover, compar-
ing the performance between BNN and BCNN, the convolutional architecture, e.g., BCNN,
should be credited for overall performance improvement.

Prior Comparison

To verify the most applicable prior in our proposedUncertainty Flow, the prior comparison
among three candidate priors is worthy to be fully investigated. Shown in Fig.4.5 (b), despite
some similarities in shapes, it is clear that each prior has its unique effect in shaping the
corresponded posterior distribution of the weights. In specific, the effect of uniform prior
on posterior weight is seen as the restriction on the approximated posterior weights, i.e.,
the posterior weights have to be higher than a fixed value, e.g., 1 in our implementation.
This restriction effect may lower the discriminability of the uniform prior imposed model,
shown in Fig.4.6. Interestingly, the posterior distribution of weights from imposed normal
and Cauchy priors respectively rendered nearly identical distribution shape, shown in Fig.4.5
(a) and (c). The minute difference between these two is the enlarged variance for Cauchy
prior induced posterior distribution of weights. Despite seemingly trivial, this difference in
variance lead to the discrepancy in discriminative performance, shown in Fig.4.6. Overall,
based on final induced discriminability, a Cauchy prior is considered as the most applicable
prior in our proposed Uncertainty Flow.

The performance enhancement that can be reflected by above-mentioned ’clustered’ ef-
fect in weight posterior was observed in examination of the discriminability of three imple-
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Note here, we rule out the impacts of uncertainty indexes via averaging the per-
formance of models with same implemented prior. Average precision is chosen as
other metrics failed to render clear discriminability comparison .

Fig. 4.6 Prior induced discriminability differences in the uncertainty flow framework

mented prior. Plotted in Fig.4.6, focusing on the average precision evaluation metric, re-
gardless of the variations in Bayesian neural networks, i.e., BNN or BCNN, the employment
of Cauchy prior - as one kind of weakly informative prior - leaded competitive multi-label af-
fective classification. However, as another implemented weakly informative prior, uniform
prior was inferior to the used informative prior, e.g., normal prior. This observed attenuation
in discriminability from uniform prior may due to the its above-mentioned spike-and-slab
effect on weight posterior that requires extra training epochs to stabilise the pre-to-posterior
inference.

Uncertainty Comparison

Undoubtedly, the most pronounced performance improvement is pertaining to the inclusion
of advanced prediction related uncertainty indexes, e.g., pure uncertainty and uncertainty
plus. To recall the foregoing definition of prediction related uncertainty indexes, the soft-
max uncertainty is a mere indication of multi-class prediction type, which is equivalent
with the predictions in non-Bayesian alternatives. The pure uncertainty, i.e., on the con-
trary - depends heavily on weight posterior - can be produced exclusively in our proposed
Uncertainty Flow framework. Reflected in Fig.4.7, when the feedforward architecture was
adopted, soft-max uncertainty is inferior to pure uncertainty in producing multi-label pre-
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Note here, the effects of priors were marginalised via prior-wise averaging.

Fig. 4.7 Discriminative Performance Across Different Prediction Related Uncertainty In-
dexes

diction. Interestingly, when the convolutional architecture was chosen, it uncovered a dif-
ferent story, i.e., the discriminability from pure uncertainty became inferior to soft-max
uncertainty.

Not surprisingly, the combination of soft-max uncertainty and pure uncertainty, i.e.,
the craft of uncertainty plus, allows a set of multi-label predictions to be tuned based on its
uncertainty value. Shown in Fig.4.7, it is clear that the crafted predictions that are benefited
from Uncertainty plus are superior to other two uncertainty indexes. I.e., its introduced
improvement in average precision is over 20% compare to other two indexes. Combining the
most applicable weakly informative prior and the advanced uncertainty indexe together, the
two most efficient variants in feedforward and convolutional architectures are BNN-cauchy-
plus and BCNN-cauchy-plus, respectively. We leave sensitivity analysis of our proposed
advanced uncertainty indexes to future research.

4.4 Conclusion & Discussion
To move forward on our pursuit of learning continuous affective representation, in this re-
search, we aim to lower the reliance on overwhelming single-label annotations in pictorial
affective analysis. We wish a target system(computational model) can output multiple labels
on single evoked source. However, the scarcity of large-scale high-quality pictorial posits a



64 Learning Multi-label Discrete Representations via Transfer Learning

challenge for direct deploying some of conventional multi-label learning algorithm here. As
a results, we propose a novel zero-shot inductive transfer learning framework: Uncertainty
Flow to tackle the prior noted issue.

Under this pioneer framework, we argue that the model uncertainty can be distilled from
a source single-label recognition task. The distilled knowledge is then fed to a to-be-learned
multi-label affective recognition task. For predictions, three types of uncertainty indexes,
i.e., soft-max uncertainty, pure uncertainty, and uncertainty plus, are further proposed.
For empirical validation, the authors conducted a large-scale comparative experiment on
the manual annotated multi-label FER2013 dataset across three levels of comparisons, i.e.,
model comparison, prior comparison, and uncertainty comparison. The observed perfor-
mance superiority in Uncertainty Flow unequivocally renders the feasibility of applying
this framework in zero-shot multi label affective learning.

However, even under the permitted computational resources, to run a full Bayesian pos-
terior remains as a daunting task. How to speed up the posterior inference remains as an
open research question. Asides from the issue of prolonged training speed, the proposed
Uncertainty Flow framework suffers the same problem as our initial attempt, i.e., Label
Relaxation. Irrespective of their to-be-solved different learning problems, the learned rep-
resentations from two prior attempts are still relied heavily on the quality of included discrete
labels. I.e., this sets up a limit for these encoded pictorial affective representations, which
their expressiveness is largely restricted with the label. Therefore, these learned affective
representations can not be treated as authentic continuous representations that allows dimen-
sional representation of human facial expression. Moving forward on our journal of complex
continuous affective representation learning, we introduce our final tryout: the proposal of
encapsulated variational auto-encoder in learning continuous, affective aware represen-
tation of facial expressions.



Chapter 5

Generating Continuous Representations
via EVAE

5.1 Introduction
Previous label relaxation technique (cf. Chapter 3) and uncertainty flow framework (cf.
Chapter 4) allow us to learn relaxed single label and multi-label representations of facial
expressions. However, these learned representations quickly reached their bottlenecks to re-
flect the richness of sentiments [69]. I.e., emotions and sentiments in wild are not restricted
in certain fixed taxonomy, e.g., the basic six emotions[70]. In contrast, human facial expres-
sions should be represented as granularity at continuous scales. A recent neurological finding
suggests human emotion may represent in distributed dimensional manner [71]. Hence, in
this research, our objective is to generate facial expressions along continuous scales.

To achieve our goal, we rely on the generative model to generate expressions continu-
ously. Among the widely used generative models, we choose the variational auto-encoder
(VAE) [38]. Unfortunately, the mere usage of a VAE in generating continuous expressions
is suboptimal due to the following issue: The generated expressions do not exhibit clear ex-
pression transition patterns that can be corresponded to certain psychological conceptualised
continuous axes, such as arousal and valence axes in [23].

To this end, we propose a novel form of variational auto-encoder: encapsulated varia-
tional auto-encoders (EVAE) that is tailored specifically for generating continuous facial
expressions. To validate our approach, two empirical experiments on Frey faces and FERG-
DB datasets were introduced to access the generative performance.
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Fig. 5.1 Graphical models of (i) a conventional variational auto-encoder and (ii) our derived
encapsulated variational auto-encoder. Solid arrows denote probabilistic decoders, whereas
dash arrows represent variational encoders.

5.2 Encapsulated Variational Auto-Encoders

5.2.1 Comparison between VAE and EVAE
Different to a conventional VAE (cf. Fig.5.1(i)), in our proposed EVAE (cf. Fig.5.1(ii)), the
employment of two latent variables – under the coding theory – implies a structured novel
encoder-decoder architecture. I.e., two separate probabilistic encoders, e.g., 𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)) and
𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖)) and two decoders, e.g., 𝑝𝜃𝑏(�̃�|𝑧𝑏) and 𝑝𝜃𝑠(�̃�|𝑧𝑠) compiles up to the coinage of
two VAEs, i.e., denoting as 𝑉 𝐴𝐸𝑏 and 𝑉 𝐴𝐸𝑠. It is crucial to note here that in our pro-
posed EVAE, we encourage differentiated network architectures for two component
VAEs. This encouragement permits the learning of two different sets of parameters,
e.g., {𝜃𝑏; 𝜙𝑏} and {𝜃𝑠, 𝜙𝑠} for 𝑉 𝐴𝐸𝑏 and 𝑉 𝐴𝐸𝑠, respectively.

The representation encoding and data generative process can be described as following:
two latent representations (values of 𝑧𝑏 and 𝑧𝑠) are firstly encoded from the probabilistic
encoders, then these latent representations are fed to the probabilistic decoders to generate
two new data instances.

Importantly, as grouping two latent variables together, e.g., (𝑧𝑏, 𝑧𝑠), it allows us to denote
the joint decoder and encoder in our proposed EVAE, i.e., 𝑞𝜙𝑏,𝜙𝑠((𝑧𝑏, 𝑧𝑠)|𝑥(𝑖)); 𝑝𝜃𝑏,𝜃𝑠(�̃�|(𝑧𝑏, 𝑧𝑠)).
However, it is essential to note here that we do not assume the conditional indepen-
dency of two latent variables. I.e., the simplified assumption of factorised joint encoder,
e.g.,𝑞𝜙𝑏,𝜙𝑠((𝑧𝑏, 𝑧𝑠)|𝑥(𝑖)) = 𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)) ⋅ 𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖)) or factorised joint decoders does not hold
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in this research. Instead, we introduce a hyper-parameter 𝛼 to induce the relation of two la-
tent variables in deriving its corresponded specific analytic expressions of the joint encoder
and decoder.

5.2.2 Parameterisations on Encoders & Decoders
Prior to derive the analytic form of our targeted joint encoder and decoder in EVAE, we
chiefly introduce the parameterisations that are used in the component encoders, e.g.,𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖))
and 𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖)) and decoders, e.g., 𝑝𝜃𝑏(�̃�|𝑧𝑏) and 𝑝𝜃𝑠(�̃�|𝑧𝑠).

In this case, we parameterise the base encoder, e.g., 𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)) under a simplified mul-
tivariate Gaussian distribution as: log 𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)) = log𝒩 (𝑧𝑏; 𝜇𝑏, 𝜎2), where the optimised
variational parameters are 𝜙𝑏, which can be used to produce the mean (𝜇𝑏) and s.d. (𝜎2) of
the approximating distribution.

Differ to the simplified parameterisation that is used in base encoder, we let a more com-
plex full rank Gaussian distribution to parameterise the scaffolding encoder as follows. I.e.,
log 𝑞𝜙𝑠(𝑧𝑠|𝑥𝑖) = log𝒩 (𝑧𝑠; 𝜇𝑠, 𝐿).

Where the parameterised variational parameter 𝜙𝑠 is the concatenation of the mean vec-
tor and the decomposed covariance matrix, i.e., {𝜇𝑠, 𝐿}. Here, we use the numerical stable
Cholesky decomposition to decompose the correlation matrix, e.g., Σ, into two lower trian-
gular matrices, i.e., Σ = 𝐿𝐿𝑇 , to speed up the variational inference.

Armedwith encoded latent representations (𝑧𝑏 and𝑧𝑠), we let two decoders, i.e., 𝑝𝜃𝑏(�̃�|𝑧𝑏)
and 𝑝𝜃𝑠(�̃�|𝑧𝑠), to take the similar forms of multivariate Gaussian that are used in forming the
preceding encoders. I.e., log 𝑝𝜃𝑏(�̃�|𝑧𝑏) = log𝒩 (𝑥; 𝜇𝑏, 𝜎2) and log 𝑝𝜃𝑠(�̃�|𝑧𝑠) = log𝒩 (𝑥; 𝜇𝑠, 𝐿).

5.2.3 Hyper-parameter tuned latent representations
Armed with previous described parameterisations over two component encoders and de-
coders, it is positioned to derive the analytic expressions of our joint encoder and decoder.
An optimal analytic expression of joint encoder or decoder should satisfy two following re-
quirements. (1) The derived expression should be flexible enough to imply full factorised,
full equality and the mixed relations between two component encoder or decoder. (2) The
derived expression needs to be full differentiable to enable fast and accurate approximate
marginal inference of the variable 𝑥.

To this end, we consider the analytic expression of our joint encoder that allows smooth
interpolation of two component encoders in the following form in Eq.5.1:

𝑞((𝑧𝑏, 𝑧𝑠)|𝑥(𝑖); 𝜙𝑏, 𝜙𝑠, 𝛼) ∝ 𝑞𝜙𝑏(𝑧𝑏|𝑥𝑖) ⋅ 𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖))𝛼 ⋅ exp{ℛ𝑒(𝑧𝑙
𝑏, 𝑧𝑙

𝑠)}. (5.1)
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Note here, we insert a hyper-parameter 𝛼 to exert direct control over the output of the
discrepancy function, e.g., ℛ𝑒(𝑧𝑙

𝑏, 𝑧𝑙
𝑠). The added exp transformation of the discrepancy

function is to ease the later derivation of the learning objective. The introduced discrepancy
function, e.g., ℛ𝑒(𝑧𝑏, 𝑧𝑠) can be further expressed as following Eq. 5.2:

ℛ𝑒(𝑧𝑏, 𝑧𝑠) = 1
𝐿

𝐿

∑
𝑙=1

exp{−||𝑧𝑙
𝑏 − 𝑧𝑙

𝑠||2}. (5.2)

As the samples are more easy to work with, we further Monte-Carlo sample these en-
coded representations from two encoders, i.e., 𝑧𝑙

𝑏 ∼ 𝑞(𝑧𝑏|𝑥) and 𝑧𝑙
𝑠 ∼ 𝑞(𝑧𝑠|𝑥), where 𝑙 stands

for the number of samples. In practise, a single sample suffices.
Similar to the prior noted factorisation in the encoder case, the analytic expression of the

joint decoder, e.g., 𝑝𝜃𝑏,𝜃𝑠(�̃�|(𝑧𝑏, 𝑧𝑠)) obtain a similar form in the following Eq 5.3,

𝑝𝜃𝑏,𝜃𝑠(𝑥|(𝑧𝑏, 𝑧𝑠); 𝛼) ∝ 𝑝𝜃𝑏( ̃𝑥𝑠|𝑧𝑏) ⋅ 𝑝𝜃𝑠( ̃𝑥𝑠|𝑧𝑠)𝛼 ⋅ exp{ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠)}. (5.3)

Notice here, we also incorporate the same hyper-parameter 𝛼 to scale the differences of
two reconstructed data instances, where the discrepancy function for the joint decoder, e.g.,
ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠) can be defined as5.4:

ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠) = 1
𝐿

𝐿

∑
𝑙=1

exp{−|| ̃𝑥𝑏 − ̃𝑥𝑠||2}. (5.4)

Here, ̃𝑥𝑏, ̃𝑥𝑠 represent the reconstructed data instances from 𝑉 𝐴𝐸𝑏 and 𝑉 𝐴𝐸𝑠, respec-
tively, i.e., ̃𝑥𝑏 ∼ 𝑝𝜃𝑏(�̃�|𝑧𝑏) and ̃𝑥𝑠 ∼ 𝑝𝜃𝑠(�̃�|𝑧𝑠).

5.2.4 Learning objective
The model is complete by defining a simple factorised joint prior on two latent variables in
the following form Eq. 5.5:

𝑝𝜃𝑏,𝜃𝑠(𝑧𝑏, 𝑧𝑠) = 𝑝𝜃𝑏(𝑧𝑏) ⋅ 𝑝𝜃𝑠(𝑧𝑠). (5.5)

Armed with defined analytic expressions of joint encoder (cf. Eq.5.1) and joint decoder
(cf. Eq.5.3), and the joint prior (cf. Eq.5.5), we can finally derive the objective function of
our proposed EVAE.

Recall that the analytic formation of the learning objective of original VAE in [38] as
Eq.5.6),
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ℒ𝑉 𝐴𝐸(𝜃, 𝜙, 𝑥(𝑖)) = −𝔻𝐾𝐿{𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧)} + 1
𝐿

𝐿

∑
𝑙=1

𝑝𝜃(𝑥(𝑖)|𝑧). (5.6)

Where the first term denotes the regularisation penalty from the variational encoder, and
the second term expresses the decoder induced reconstruction loss between the generation
and the original input. Following the similar derivation, the learning objective for the EVAE
can then be derived in Eq.5.7),

ℒ𝐸𝑉 𝐴𝐸 = 𝔼𝑞((𝑧𝑏,𝑧𝑠)|𝑥(𝑖))[ − 𝔻𝐾𝐿{𝑞((𝑧𝑏, 𝑧𝑠)|𝑥(𝑖))||𝑝(𝑧𝑏, 𝑧𝑠)} + log 𝑝𝜃𝑏,𝜃𝑠(�̃�|(𝑧𝑏, 𝑧𝑠))]. (5.7)

From the previous analytical derivation, the learning objective of EVAE can be seen
as comprised of two components: the first one corresponds to the regularisation penalty
of the derived joint encoder of our EVAE, whereas the residual term relates to the overall
reconstruction errors from our derived joint decoder.

Substituting the defined joint encoder, joint decoder and the joint prior in Eq. 5.1 Eq.
5.3 and Eq. 5.5 into Eq. 5.7, we can further derive the learning objective into the following
form:

ℒ𝐸𝑉 𝐴𝐸(𝜃𝑏, 𝜃𝑠, 𝜙𝑏, 𝜙𝑠, 𝑥(𝑖))

= 𝔼𝑞((𝑧𝑏,𝑧𝑠)|𝑥(𝑖))[−{ log(𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)))+log(𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖)))+ℛ𝑒(𝑧𝑙
𝑏, 𝑧𝑙

𝑠)−log 𝑝𝜃𝑏(𝑧𝑏)−log 𝑝𝜃𝑠(𝑧𝑠)}

+ log 𝑝𝜃𝑏(�̃�|𝑧𝑏) + log 𝑝𝜃𝑠(�̃�|𝑧𝑠) + ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠)]
= 𝔼𝑞((𝑧𝑏,𝑧𝑠)|𝑥(𝑖))[ − {log(𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖))) − log(𝑝𝜃𝑏(𝑧𝑏))} + log 𝑝𝜃𝑏(�̃�|𝑧𝑏) − {log(𝑞𝜙𝑠(𝑧𝑏|𝑥(𝑖)))

− log(𝑝𝜃𝑠(𝑧𝑠))} + log 𝑝𝜃𝑠(�̃�|𝑧𝑠) + [𝛼]{ℛ𝑒(𝑧𝑙
𝑏, 𝑧𝑙

𝑠) − ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠)}]
= 𝔼𝑞((𝑧𝑏,𝑧𝑠)|𝑥(𝑖))[−𝔻𝐾𝐿{𝑞𝜙𝑏(𝑧𝑏|𝑥(𝑖)||𝑝(𝑧𝑏))}+log 𝑝𝜃𝑏(�̃�|𝑧𝑏)−𝔻𝐾𝐿{𝑞𝜙𝑠(𝑧𝑠|𝑥(𝑖)||𝑝(𝑧𝑠))}+log 𝑝𝜃𝑠(�̃�|𝑧𝑠)

+ [𝛼]{ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠) − ℛ𝑒(𝑧𝑙
𝑏, 𝑧𝑙

𝑠)}]
= ℒ𝑉 𝐴𝐸𝑏(𝜃𝑏, 𝜙𝑏, 𝑥(𝑖)) + ℒ𝑉 𝐴𝐸𝑠(𝜃𝑠, 𝜙𝑠, 𝑥(𝑖)) + [𝛼]{ℛ𝑑( ̃𝑥𝑏, ̃𝑥𝑠) − ℛ𝑒(𝑧𝑙

𝑏, 𝑧𝑙
𝑠)}. (5.8)

To rewrite the learning objective this way is to group two discrepancy functions together.
Interestingly, the remaining terms, e.g., ℒ𝑣𝑎𝑒𝑏(𝜃𝑏, 𝜙𝑏, 𝑥(𝑖)) and ℒ𝑣𝑎𝑒𝑠(𝜃𝑠, 𝜙𝑠, 𝑥(𝑖)), match with
the learning objectives of two conventional VAEs. Note here, to stress the importance of 𝛼 in
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the derived learning objective, we extract this 𝛼 out from the original discrepancy functions
of joint encoder in Eq. 5.1 and decoder in Eq. 5.3.

5.2.5 Learning algorithm
To learn our proposed EVAE, we resort on the reparameterisation trick in [38] to develop
the optimisation algorithm. This approach directly employs the Monte Carlo sampling to
attain the samples of latent variables. A more general learning algorithm that is developed
for learning EVAE without the specific defined decoder (model likelihood), i.e., only prob-
abilistic model can stick with its unspecified form, is documented in the Appendix B for
interested readers.

As two sets of latent variables in EVAE are assumed to be continuous and differentiable
in the real coordinate. And two sets of variational parameters are approximated in mean-
field and full rank Gaussians, i.e., 𝑧𝑏 ∼ 𝑧𝑏|𝑥 and 𝑧𝑠 ∼ 𝑧𝑠|𝑥. Two valid re-parameterisations
that apply to 𝑧𝑏 and 𝑧𝑠 can be specified as 𝑧𝑏 = 𝜇𝑏 + 𝜎 ⋅ 𝜖𝑏 and 𝑧𝑠 = 𝜇𝑠 + 𝐿 ⋅ 𝜖𝑠, where
𝜖𝑏 and 𝜖𝑠 are two independent noise variables that both follow the normal distribution. The
reconstruction errors in ℒ𝑉 𝐴𝐸(𝜃𝑏, 𝜙𝑏, 𝑥(𝑖)) and ℒ𝑉 𝐴𝐸(𝜃𝑠, 𝜙𝑠, 𝑥(𝑖)) can be further expressed
as 1

𝐿 ∑𝐿
𝑙=1 𝑝𝜃(�̃�|𝜇𝑏 + 𝜎 ⋅ 𝜖𝑏) and 1

𝐿 ∑𝐿
𝑙=1 𝑝𝜃(�̃�|𝜇𝑠 + 𝐿 ⋅ 𝜖𝑠).

In terms of KL divergence in ℒ𝑉 𝐴𝐸(𝜃𝑏, 𝜙𝑏, 𝑥(𝑖)) and ℒ𝑉 𝐴𝐸(𝜃𝑠, 𝜙𝑠, 𝑥(𝑖)) , under Gaussian
approximation, their KL terms can be integrated analytically as 1

2 ∑𝐾
𝑘=1(1 + log(𝜎(𝑖)

𝑘 )2 −
(𝜇𝑏

(𝑖)
𝑘 )2−(𝜎(𝑖)

𝑘 )2) and 1
2 ∑𝐾

𝑘=1(1+log(𝐿(𝑖)
𝑘 )2−(𝜇𝑠

(𝑖)
𝑘 )2−(𝐿(𝑖)

𝑘 )2) [38]. The overall maximisation
objective, 𝒥 , is therefore derived in (5.9),

𝒥(𝜃𝑏,𝜃𝑠,𝜙𝑏,𝜙𝑠) =

1
2

𝐾

∑
𝑘=1

(1 + log(𝜎(𝑖)
𝑘 )2 − (𝜇𝑏

(𝑖)
𝑘 )2 − (𝜎(𝑖)

𝑘 )2) + 1
2

𝐾

∑
𝑘=1

(1 + log(𝐿(𝑖)
𝑘 )2 − (𝜇𝑠

(𝑖)
𝑘 )2 − (𝐿(𝑖)

𝑘 )2)

+ 1
𝐿

𝐿

∑
𝑙=1

𝑝𝜃(�̃�|𝜇𝑏+𝜎⋅𝜖𝑏)+ 1
𝐿

𝐿

∑
𝑙=1

𝑝𝜃(�̃�|𝜇𝑠+𝐿⋅𝜖𝑠)+𝛼{ℛ𝑑(�̃�|𝑧𝑏, �̃�|𝑧𝑠)−ℛ𝑒(𝑧𝑠|𝑥(𝑖), 𝑧𝑏|𝑥(𝑖))},

(5.9)

where 𝜖𝑏 ∼ ℕ(0, 1) and 𝜖𝑠 ∼ ℕ(0, 1). As two sets of variational parameters stay in one
learning objective, we rely on the alternating optimisation to derive the set of (𝜃𝑏, 𝜙𝑏) and
(𝜃𝑏, 𝜙𝑏) iteratively. The overall learning algorithm is summarised below as Algorithm 2.
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Algorithm 2 The learning algorithm of EVAE
Require: Dataset 𝑋 ∶ 𝑥(𝑖); Encoder: 𝑞(𝑧𝑏, 𝑧𝑠|𝑥(𝑖); 𝜙𝑠, 𝜙𝑏); Decoder: 𝑝(�̃�|𝑧𝑏, 𝑧𝑠; 𝜃𝑏, 𝜃𝑏)

Initialise the parameters of 𝜃𝑏; 𝜃𝑠; 𝜙𝑏; 𝜙𝑠
Set the value of hyper-parameter [𝛼]
repeat

while fix 𝜃𝑠, 𝜙𝑠 do
random sampling from 𝜖𝑏, where 𝜖𝑏 ∼ ℕ(0, 1)
Approximate ∇𝜃𝑏,𝜙𝑏(𝒥 ) via the differentiating the learning objective in E.q.5.9

w.r.t 𝜃𝑏, 𝜙𝑏
Update the 𝜃𝑏, 𝜙𝑏 via the off shelf gradient ascent algorithm, e.g., Adam, using

∇𝜃𝑏,𝜙𝑏(𝒥 )
end while
while fix 𝜃𝑏, 𝜙𝑏 do

random sampling from 𝜖𝑠, where 𝜖𝑠 ∼ ℕ(0, 1)
Approximate ∇𝜃𝑠,𝜙𝑠(𝒥 ) via the differentiating the learning objective in E.q.5.9

w.r.t 𝜃𝑠, 𝜙𝑠
Update the 𝜃𝑠, 𝜙𝑠 via the off shelf gradient ascent algorithm, e.g., Adam, using

∇𝜃𝑠,𝜙𝑠(𝒥 )
end while

until the elbo(objective) is converged to certain level
Return the optimal 𝜃𝑏; 𝜃𝑠; 𝜙𝑏; 𝜙𝑠

5.3 Continuous Expression Generation in EVAE
Relying on a trained EVAE, we are now positioned to render out the generation process. To
generate facial expressions, we need to firstly sample the input to encode low dimensional
latent representations. Then we feed these latent representations to the joint decoder of a
trained EVAE to generate expression images. To generate expressions along certain contin-
uous axes, it demands the investigation of two continuous factors that are able to impact on
the generation process.

The first factor is the input we use in encoding the latent representations. Assuming the
prior distribution of latent variable as Normal distribution, we can feed any continuous values
to the inverse CDF of a Normal distribution to encode the latent representations. We denote
this factor as 𝑋𝑠𝑎𝑚𝑝𝑙𝑒. The linear interpolation on this factor allows encoding of different
latent representations on a continuous scale. Here, we hypothesise that a continuous scale
on this 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 factor should work similar to either arousal or valence axis under the
psychological conceptualised Arousal - Valence plane.

The second continuous factor is the added hyper-parameter 𝛼. Differentiated 𝛼 leads to
diversified learning objectives in 5.8, which further correspond to different sets of learned op-
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timal parameters in joint decoder, e.g., {𝜃𝑏, 𝜃𝑠}. Hence, we hypothesise that a continuous
scale on this continuous factor 𝛼 should allows the generation of continuous expressions
along either arousal or valence axis under the psychological conceptualised Arousal -
Valence plane in [23].

5.4 Empirical Validation
We ran empirical experiments on two public available facial expression datasets, e.g., Frey
faces and FERG-DBdatasets. The objective is to empirical validatewhether the proposed
EVAE with a tuneable hyper-parameter [𝛼] is capable of generating continuous facial
expressions along two hypothesised continuous scales on factors of 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 and 𝛼 that
can be roughly corresponded to the arousal and valence axes in conceptualised Arousal-
Valence plane in [23].

Differ to easy assessment of discrete affective representations in classification tasks, to
provide an objective metric to assess the performance of an unsupervised-trained is a chal-
lenging task. To this end, both quantitative and qualitative evaluations have to be taken into
the consideration. The quantitative evaluation is served to measure how well our proposed
EVAE is trained, whereas the qualitative one is reserved for assessing the performance(visual
quality) of generated expressions. In terms of specific metrics, for the quantitative measure-
ment, we default the commonly used optimised lower bound(elbo), i.e., ℒ [72], as our target
index. For the comparative purpose, we include the original VAE as the benchmark in re-
porting the relevant statistics in the quantitative evaluation. For the qualitative validation,
the perceptual quality via visual heuristics is our prior criteria in assessing the quality of
generated expressions. All programs in these empirical experiments are written in python
with libraries of tensorflow [73], pymc3 [74], and keras [75].

5.4.1 Experimental Set-ups
The Frey faces dataset contains a series of grey scaled 1956 images of Brendan Frey’s face
taken from sequential frames of a video with dimension of 20 x 28. Each image went through
basic preprocessing step includes the input normalisation.This dataset is ideal to implement
our derived EVAE in learning the data-driven A-V dimensional affect due to its assumed
homogeneity in facial features, i.e., all emotional expression were rendered out from the
single person. In terms of training and testing datasets, we employed the last 100 images for
testing, whereas the remaining (1856) ones were used in the training session.
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Facial Expression Research Group Database (FERG-DB) [76] is an annotated facial ex-
pression dataset, which utilised MAYA 3D modelling software to create the expressions in
animated characters. Differ to previous dataset, e.g., Frey face dataset, this dataset is cre-
ated specifically for automatous facial analysis. The entire dataset contains 55767 annotated
facial expression images of six created characters. The modelled facial expressions range
from low valance expressions, e.g., anger, disgust, sadness and fear, to high valence ones
such as surprise, joy. To fit with our objective, we intentionally discard the original discrete
annotations that associate with expressions. Each expression image in FERG-DB dataset
were grey-scaled and normalised.

The EVAE from section 5.2 is used in this experiment. For two encoders, the two differ-
ent feedforward neural networks with isotropic Gaussian priors, e.g., 𝑝𝜃𝑏(𝑥|𝑧𝑏) = 𝒩 (𝑧𝑏; 0, 𝐼)
and 𝑝𝜃𝑠(𝑥|𝑧𝑠) = 𝒩 (𝑧𝑠; 0, 𝐼), were employed to warp the variational parameters of base and
scaffolding encoders in EVAE in forming two inference networks. For the decoders, two
complementary feedforward neural networks were used to serve as recognition networks.

The network configurations on the derived inference networks are summarised in Table
5.1. Note that, reckoning on other feasible configurations for the encoders and decoders, e.g.,
the number of hidden units and the type of layer wise activation, the relative performance of
the model were observed as insensitive to these choices. For the cost function, we strictly
follow the derived learning objective in Eq.5.8. To account for the reconstruction loss in
the cost function, we were opted to favour the mean square error as the primary choice as it
induced stability in the practical implementation.

Compare to the previous implementation on Frey faces dataset, to learn A-V dimensional
representations on FERG-DB facial expressions is a difficult task as some non-essential facial
features for expression perception are also included, e.g., the female or muscular of the faces,
the different hair styles. Hence, as for the employed inference and recognition networks, a
different set of configurations was applied here, shown in the lower panel of Table 1. In
terms of the loss function and the choice of gradient ascent algorithm, we continue to use
the mean square loss and Adam, respectively. Different to previous fixed learning epochs,
we adopt the early stopping technique here to prevent the overfitting via setting the patience
to −2 1.

Both model and variational parameters are updated via the derived Algorithm 2. As
the choice of gradient ascent algorithm has minor influence on the final performance, we
defaulted the usage of adam[77] here. The results can be unfolded into following segments.

1This corresponds to the termination of the training after two non-improving epochs of training. Therefore,
the number of batches included in training was largely varied across training sessions here.



74 Generating Continuous Representations via EVAE

5.4.2 The optimised lower bound
The quantitative evaluation of a generative model commonly resort on either the estimated
marginal likelihood of given training points [72] or the optimised lower bound(elbo) for the
learned latent space. We adopt the later metric to report the relevant statistics. However, as
depicted in previous section 5.2, different to the fixed elbo in conventional VAE, the learning
of EVAE is bounded via a continuous scale on [𝛼]. This scale dependent lower bound on
two datasets are visualised in Fig.5.2 and Fig 5.3, respectively. As a result, in terms of the
optimised lower bound, the direct comparison of our generative model, i.e., EVAE, to the
conventional VAE yields limited ratifications.

In this figure, it is clear that value of 𝛼, e.g., from negative (-50) to positive (50),
has direct impact on the optimised learning elbo. As the value of 𝛼 move towards
the positive end, the optimised learning elbo is attenuated accordingly.

Fig. 5.2 The 𝛼 bounded learning of EVAE on Frey faces dataset

5.4.3 Continuous generated expressions
Compare to the previous quantitative assessment, we are gravitated towards the qualitative
evaluation to access the quality of generated expressions. In specific, we aim to evaluate
the validity of our hypothesised continuous scales on 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 and 𝛼 in generating facial
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In this figure, it is clear that on FERG-DB dataset, the hyper-parameter 𝛼 is able to
exert the direct control over the optimised learning elbo of EVAE.

Fig. 5.3 The 𝛼 bounded learning of EVAE on FERG-DB dataset

expressionswith continuous transition patterns that behave similar to the arousal and valance
axes in conceptualised Arousal-Valence plane.

The empirical results on both datasets in Fig. 5.4 and Fig. 5.5 show that via tuning the
value on 𝑋𝑠𝑎𝑚𝑝𝑙𝑒, we observe a clear generation pattern that ties closely with the valence axis
in Arousal-Valence plane that was defined in [23]. I.e., from both generated facial expres-
sions from Frey faces and animated FERG-DB datasets, there is a clear polarity shift from the
generation of less negative facial expressions, e.g., sad and frustration looking expressions,
to positive ones, e.g., happy and excitement looking expressions.

The empirical results on generated facial expressions also demonstrate that through tun-
ing the continuous factor on 𝛼, we also observe a clear generation pattern with elevation on
ranges of expressions. I.e., tuning the value of 𝛼 from one end to the other, the generated
expressions are diversified along this direction. This degree of diversification matches with
the definition of arousal dimension in original Arousal-Valence plane. In detail, in Fig. 5.6
and Fig. 5.7, we choose 5 most representative values on this continuous scale respectively
for two datasets, e.g., 50, 25, 0, -25, -50 for Frey faces dataset and 25, 10, 0, -10, -25 for
FERG-DB dataset. With each 𝛼 value, its associated generated expressions was visualised.
We also adhere the plot of elbo loss for each 𝛼 (above or below). It is clear that the variation
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(valence)

In this figure, based on the learned valence axis, the linear interpolation of it allows
the generation of facial expressions that smoothly transformed from negative (low
in valence dimension) to positive affect (high in valence dimension). Note here,
the learned valence representations were rescaled to [−1, 1] scale from the original
[0, 1] scale for later convenience in plotting.

Fig. 5.4 Facial expression generation along with the valence dimension on Frey Faces dataset

on this ratio linearly correlates with the varied affect in terms of their differentiated magni-
tude on the arousal axis. I.e., the negative ratio leads to more dramatic facial expressions,
and wider range of regenerated affect (high arousal) in comparison to its positive alternative.
This variation is also reflected on the differentiated loss plots. Notice here, the axes that ren-
dered in Fig. 5.6 and Fig. 5.7 are ranged from positive to negative, this is done in purpose
to coincide with the theoretical Arousal -Valence plane. Interestingly, as we fixed the 𝛼 to
0, the reproduced affect exhibited the neutral face like expressions.



5.4 Empirical Validation 77

(valence)

In this figure, through tuning the value on the modelled valence dimension, e.g.,
the sampled input. EVAE is capable of generating expressions from one polarity
to the other.

Fig. 5.5 Facial expression generation along with the modelled valence dimension on FERG-
DB dataset
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Dataset Model Architecture & Training Configurations
Frey-Face Input: 28 x 20 x 1

Base Encoder: Conv 32x3x3 (stride 2)
Pooling(stride 2)
Conv 64x3x3 (stride 2) FC 200
ReLU activation
Scaffolding Encoder: Conv 32x3x3 (stride 2)
Pooling(stride 2).
Conv 32x3x3 (stride 2) FC 200. Gaussian
ReLU activation
Decoders: Deconv 32x3x3 (stride 2)
Deconv 64x3x3 (stride 2)
ReLU activation
batch Size: 100
num of batch: 150
early stopping: No
optimiser:Adam [77]

FERG-DB Input: 48 x 48 x 1
Base Encoder: Conv 32x3x3 (stride 2)
Pooling(stride 2)
Conv 64x2x2 (stride 2) FC 128
ReLU activation
Scaffolding Encoder: Conv 32x2x2 (stride 2)
Pooling(stride 2).
Conv 32x2x2 (stride 2) FC 140. Gaussian
Tahn activation
Decoders: Deconv 32x2x2 (stride 2)
Deconv 64x2x2 (stride 2)
Tahn activation
Batch Size: 128
num of batch: varied
early stopping: Yes
optimiser: Adam [77]

Table 5.1 Model architectures and training details on Frey-Face and FERG-DB datasets.
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5.5 Conclusion and Further Works
In this research, we propose a novel form of variational auto-encoder: encapsulated vari-
ational auto-encoders (EVAE) to generate expressions along two continuous axes. As two
continuous factors, e.g., 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 and 𝛼, exert the direct control on final expression gener-
ation process. We hypothesised two continuous axes on these factors can behave similar
to the conceptualised arousal and valence axes in psychological defined Arousal and Va-
lence plane. Through empirical experiments on two expression datasets, these hypothesised
continuous axes do lead to patterns of expression generation that convey similar semantic
meaning with the conceptualised arousal and valence axes.

Unfortunately, there are a few limitations in this research. The primary one is the poor
perceptual quality of reproduced facial expressions. The secondary one is on the ad hoc
judgement of the similarity between our hypothesised continuous scales and the theoreti-
cal defined arousal and valence axes. The tertiary one deals with the lack of an objective
evaluation metric to access the performance of our generated expressions.



Chapter 6

Discussion and Conclusion

6.1 Summary of This Thesis
Representation learning – the cornerstone behind all downstream Artificial Intelligence ap-
plications – has gained enormous attention in both research and industry areas. Affective
representation learning targets on learning representations in representing, generating, and
comprehending of human affects. Unfortunately, with decades of researches, the consensus
on the optimal affective representation has not been reached.

One school of researches that is inline with the influential basic emotion view [70] sug-
gest the possibility of learning discrete representations in solving affect recognition tasks.
These features are easy to attain, favourable in solving discriminative tasks in affective com-
puting, and convenient to implement even under the large-scale industry demand. However,
learning these representations merely permit outputting discrete annotations to categorise
affective signal.

Contrast with the prior noted school in promoting the usage of simplified discrete repre-
sentations, a different school of researches aims to learn complex continuous representation
of human affect to reflect the richness of human affect. To support this school, we devote
this thesis to render out three approaches in learning complex, dimensional affective repre-
sentations of human facial expressions.

In Chapter 3, we lay out our first approach: the usage of label relaxation technique to
improve the performance of a neural network on an expression classification task. Relied
on the label relaxation technique, we transform the original one-hot encoded labels to real-
numbered ones, which the degree of relaxation is tuned via a single hyper-parameter. Train-
ing a neural network with these relaxed labels can elevate its classification performance on
a expression classification task.
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As previous approach only permits single label on a facial expression, we then propose
a zero-shot transfer learning framework: the uncertainty flow framework in Chapter 4 to
allow a single label trained model to output multi-label predictions on certain expression.
Benchmarking on a multi-label annotated expression dataset, we demonstrate the empirical
superiority of our proposed uncertainty flow framework in outputtingmulti-label predictions.

Moving forward, in our final attempt, we rely on the generative model to generate con-
tinuous facial expressions in Chapter 5. Defaulting the explored generative model as the
variational auto-encoder (VAE), we offer our modification over a conventional VAE: the en-
capsulated variational auto-encoders (EVAE). In our proposed EVAE,we are able to discover
two continuous factors that exert direct impact on the overall generation process. Running
our proposed EVAE on two facial expression dataset, we are able to generate continuous
facial expressions in accordance with two prior-defined continuous dimensions.

These three approaches shed light on the feasibility of learning complex, continuous, and
affective aware representations of human facial expressions. Despite of its nascent status, our
attempts provide a glimpse of future in continuous, dimensional affective computing, which
allows the intelligent agent to comprehend and unleash affects that once is unique to human
being.

6.2 Shortages of Our Approaches
”All models are wrong, but some are useful [78].” The demonstrated success of our pro-
posed three attempts in learning complex, dimensional affective representations does not
belie their inherited weaknesses. In the following segments, we outline the weaknesses of
our approaches from the micro and macro perspectives respectively.

6.2.1 The Micro View
Starting with our primary approach: the relied relaxation technique to transform the discrete
label distribution to a partial continuous one allowing the production of pseudo continuous
labels that is compatible with the supervised learning paradigm. In spite of its induced im-
provements on facial recognition tasks, their encoded representations are pseudo continuous
and heavily relied on the discrete, single-labelled annotations. More importantly, under the
current theoretical buildups, there is no guarantee that the relaxed label distribution is se-
mantic valid. E.g., it might not be appropriate to relax annotation that is pertaining to the
definitive facial expression annotation, such as neutral emotion to a bipolar shape continuous
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distribution. Hence, a security check needs to design to ensure the relax label distributions
to be semantic reliable.

In terms of our second approach, i.e.,our proposed uncertainty flow framework in learn-
ing zero-shot transferred multi-label representations, a long-lasting concern in discussing
the validity of multi-label learning paradigm pertains to its diversified evaluation metrics.
Likewise in our second proposed approach, i.e., uncertainty flow framework of zero-shot
transfer learning, we employed five different performance metrics in the empirical experi-
ment to access the performance of our model. However, inline with the works from [54], it is
hopeless hard for a multi-label model to outweigh other alternatives on every single metric.
This posits an evaluation issue, i.e., on which circumstance can we claim the excellency of
a certain multi-label recognition model.

Even under our proposed encapsulated variational auto-encoders (EVAE) in Chapter 5,
the generated continuous facial representations are nonetheless suffered from two following
issues: the lowered visual quality of these generated expressions, and the lack of theoretical
analysis on effectiveness of our proposed EVAE. More importantly, the current semantic
interpretation of yielded continuous factors are nonetheless in an ad hoc manner, a more
theoretical linkage between these factors and dimensions in psychological conceptualised
Arousal -Valence plane needs to be probed.

6.2.2 The Macro View
Winding back to Chapter 1, we stated our intended ignorance on temporal signal in learn-
ing the representation of facial expressions. This allows our thesis to pay the uniformed
attention towards the spatial representations per se. Notwithstanding, in reality, an overt ex-
pression of a facial expression is usually accompanied with verbal information, such as vocal
inflection or bodily postures. Hence, a more comprehensive account of affective represen-
tation of facial expressions should take the coherence of spatial and temporal signal into
the consideration. More precisely, instead of the analyses on the static facial expressions, it
is more advisable to extend our proposed approaches on the sequence of images or on the
video directly. The extension of current theoretical model on the analysis on video demands
multi-modal fusion of different types of signals other than the mere static image signal.

Additionally, as an essential component of cognitive aspect of emotion, the attention,
especially visual attention is intertwined with the perception of a facial expression. Inter-
estingly, numerous attention models that have been coined in solving the natural language
problem.For this account, to incorporate the visual attention, i.e., the attention model into
our current theoretical buildups may further improve the quality of learned affective repre-
sentations.
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6.3 Splendid Tomorrow
For decades of researches on affective computing, affective computing evolves from a pe-
ripheral realm to a central part of artificial intelligence researches. Numerous downstream
applications have been developed [79] and applied to real world problems. Nowadays, re-
searches on affective computing attract the inter-disciplined attention ranging from the do-
main of computer science, behaviour science to neuroscience.

More importantly, in line with our attempts in learning complex, continuous, and af-
fective aware representations, there is a growing research interest in continuous affective
computing driven by various advances and demands, e.g., real-time representation and anal-
ysis of naturalistic and continuous human affective behaviour. This leads to the pooling of
inter-disciplined talents and research skills dedicating into this pioneer domain of affective
computing. Despite of its infancy, international cooperations and fiscal efforts that aim to
nurture this state-of-the-art subdomain are commonly noted, e.g., the project of European
Union FP-7, the SEMAINE project, and et ac.

The featured continuous dimensional representations are able to improve current affec-
tive recognition applications in a large extent. I.e., being able to represent affects in human-
like dimensional plane, it allows the more genuine affect generation that can smooth the
interaction between human and computers. These dimensional affect representations can
also benefit the longitudinal application that demands the storage of ’affect’ in an efficient
and consistent manner.

For the concluding remark of this thesis, we firmly believe the splendid future on learning
complex and continuous affective representations of facial expressions. The challenge of
learning such representation is formidable, and with tremendous risk, but it stands to move
affective computing in a radically different direction: toward embracing part of the spark
that makes us human.
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Appendix A

Notations and Rules in Probability and
Inferential Statistics

A.1 Overal Workflow
Following Box’s philosophy of statistical and machine learning, the work-flow of statistical
learning can be viewed in Fig A.1 [78]. The iterative process of applying data to make
inferences based on the model, then to criticise the model to make better inferences.

A.2 Model Statistics
• Mean & Expectation

For one random variable 𝑧 and its sample distribution is 𝑄, its mean is equivalent to
𝔼𝑧∼𝑄 = 𝜇(𝑧). It is commonly referred as first-order statistics.

• Variance

The measure of the spread of ones’ distribution, i.e., 𝑣𝑎𝑟[𝑋] = 𝔼[(𝑋 − 𝑢)2]. It is
commonly termed as second-order statistics.

• Covariance

Inmulti-variant distribution, it is used tomeasure the relation among variables, i.e., the
magnitude of one variable change on the other. E.g., 𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝔼[(𝑋 − 𝔼[𝕏])(𝑌 −
𝔼[𝕐 ])].

• Prior Distribution
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In Fig.A.1, it renders Box’s workflow of learning a probabilistic model [78].

Fig. A.1 The standard workflow of learning a probabilistic model

The pre-defined belief about the distribution of certain variables before seeing the
observation/applying the datapoint to fit the model, e.g., 𝑝(𝑧) for {𝑧}.

• Conditional Likelihood

A probability distribution that describes the how one variable depends on the other
one. E.g., in latent variable model, 𝑝(𝑥|𝑧) means how any data 𝑥 depend on the latent
variables 𝑧 (another interpretation is the probabilistic decoder).

• Joint Distribution

A probability distribution of modelling two variables together. E.g., 𝑝(𝑥, 𝑧) for mod-
eling the visible variable 𝑥 and hidden variable 𝑧.

• Posterior Distribution:

Applying Bayesian’ Rule to fitting the pre-defined prior distribution to the conditional
likelihood. E.g., 𝑝(𝑦|𝑥) ∝ 𝑝(𝑥|𝑦)𝑝(𝑦).

A.3 Useful Rules
Chain Rule

𝑝(𝑋1∶𝐷) = 𝑝(𝑋1)𝑝(𝑋2|𝑋1)𝑝(𝑋3|𝑋2, 𝑋1)...𝑝(𝑋𝐷|𝑋(1∶𝐷−1) (A.1)

Bayesian’ Rule
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𝑝(𝑋 = 𝑥|𝑌 = 𝑦) = 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)
𝑝(𝑌 = 𝑦) = 𝑝(𝑋 = 𝑥)𝑝(𝑌 = 𝑦|𝑋 = 𝑥)

∫𝑥 𝑝(𝑋 = 𝑥′)𝑝(𝑌 = 𝑦|𝑋 = 𝑥′)
(A.2)

Linear Transformations of The Distribution of Random Variables
1. Suppose 𝑓() is a linear function, i.e., 𝑦 = 𝑓(𝑥) = 𝐴𝑥 + 𝑏 and 𝑥 ∼ 𝑝(), then

𝔼[𝕪] = 𝔸𝕦 + 𝕓; 𝑐𝑜𝑣[𝑦] = 𝑐𝑜𝑣[𝐴𝑥 + 𝑏] = 𝐴Σ𝐴𝑇 , where Σ = 𝑐𝑜𝑣[𝑥]. 2. Suppose 𝑥 ∼ 𝑝(𝑥)
and 𝑠 ∼ 𝑝(𝑠), 𝑥 = 𝐴𝑠, where A is the mixing matrix, and 𝐴 ∈ ℜ𝑛, we let 𝑊 = 𝐴−1 to be
the un-mixing matrix. 𝑝(𝑥) = ∏𝑛

𝐼=1 𝑝𝑠(𝑤𝑇
𝑖 𝑥) ⋅ |𝑤|.

A.4 Model Learning/Parameter Estimation

A.4.1 MLE
The first weapon we have in our parameter estimation arsenal is the maximum likelihood
principle. Intuitively, it can be understood as the action of choosing the best fitted parameters,
e.g., {𝜃}, to empower the expressiveness and forecastiability of the model. Formally, this
principle is defined as:

̂𝜃𝑀𝐿 = argmax
𝜃

𝑃 (𝐷|𝜃) ∝ argmax
𝜃

log𝑃 (𝐷|𝜃) (A.3)

Where 𝐷 represents the variable sets, i.e., in supervised setting, it can be {𝑥, 𝑦}, and in
generative model ({𝑥}). Most of time, we work on the log𝑃 (),i.e., log probability, for its
easy computation over 0-1 domain for numerical stability.

A more advanced interpretation of the MLE is to view MLE as a process of finding
the distribution that is ’closet’ to the empirical distribution ̂𝑃𝐷 from a family of estimated
distributions. Thereby, the aforementioned formula can be translated as following:

̂𝜃𝑀𝐿 = 𝑀(𝐻 ̂𝑃𝐷(𝑋) − 𝐾𝐿( ̂𝑃𝐷(𝑋)||𝑃 (𝑋|𝜃)) (A.4)

Here,M represents as M-projection, and the KL is the Kuller-Levenge divergence for mea-
suring the dissimilarity between two distributions.

A.4.2 Bayesian parameter estimation
The major drawback of MLE is its ignorance of prior information, albeit its effectiveness in
real life application. To recall that the prior is a pre-defined/assumed brief over our designed
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distribution, the inclusion of prior(s) is justified in yieldingmore accurate density estimation.
Then the foregoing MLE is transformed into maximise a posterior, AKA., MAP estimation.

̂𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑃 (𝜃)|𝐷)

= argmax
𝜃

𝑃 (𝐷|𝜃)𝑃 (𝜃)

= argmax
𝜃

log𝑃 (𝐷|𝜃) + argmax
𝜃

log𝑃 (𝜃) (A.5)

Hence, via Bayesian’s rule, we can compute the MAP to estimate the model parameters,
which depended upon the correctness of MLE estimation and in what degree our obtained
prior is valid.

A.5 Model Critics
Model criticism typically analyses the posterior predictive distribution,

𝑝(𝑥𝑛𝑒𝑤|𝑥𝑜𝑏𝑠) = ∫ 𝑝(𝑥𝑛𝑒𝑤|𝑧)𝑝(𝑧|𝑥𝑜𝑏𝑠)𝑑𝑧 (A.6)

Then we apply the posterior predictive checks (PPC) to see the deviation between true
distribution and generated distribution.



Appendix B

The General Learning Algorithm for
Encapsulated Variational Auto-Encoders

In Chapter 5, we render out a specific tailored learning algorithm for training the encapsu-
lated variational auto-encoder (EVAE) as Algorithm 2.

Differ to the preceding rendered algorithm, here, we present a general learning algorithm
that also achieve the training process but with no assumption on the parameterisation of the
decoder (model likelihood). For this reason, the yielded algorithm is much general to the
previous one, and applicable to models beyond variational auto-encoder, such as variational
Gaussian mixture model.

This general learning algorithm is based on the recent proposed inference framework:
automatic differential variational inference [60](ADVI). Under this framework, there is no
need to specify the model likelihood into the decoder form. For this reason, only the joint
encoder fromEVAE is considered here, i.e., 𝑞𝜙𝑏,𝜙𝑠((𝑧𝑠, 𝑧𝑏)|𝑥, 𝛼), here we use the transformed
hyper-parameter 𝑎𝑙𝑝ℎ𝑎 instead of the raw one 𝜆.

Given the encoder, i.e., 𝑞𝜙𝑏,𝜙𝑠(𝑧𝑠, 𝑧𝑏|𝑥, 𝛼), and a unspecified probabilistic model, i.e.,
𝑝(𝑥, 𝑧𝑏, 𝑧𝑠), the overall learning objective, i.e., elbo(evidence lower bound) is defined as
Eq.B.1:

ℒ = 𝔼𝑞(𝑧𝑏,𝑧𝑠|𝑥)[ log 𝑝(𝑥, 𝑧𝑏, 𝑧𝑠) − log 𝑞(𝑧𝑠, 𝑧𝑏|𝑥)]. (B.1)

B.0.1 Latent Variable Transformation and Elliptical Standardisation
The primary step in deriving a EVAE compatible ADVI learning algorithm is to transform
the latent variables, e.g., 𝑧𝑏, 𝑧𝑠 from the constrained space to the unconstrained space, i.e,
ℜ+ → ℜ, we apply two simple differentiable functions, e.g., 𝑇1 ∶ 𝜁 ← log(𝑧𝑏) and 𝑇2 ∶ 𝛽 ←
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log(𝑧𝑠), to automate this transformation. The learning objective is transformed 1 accordingly
to Eq.B.2:

𝔼𝑞(𝜁 ,𝛽|𝑥;𝜙𝑏,𝜙𝑠)[𝑝(𝑥, 𝑇 −1
1 (𝜁), 𝑇 −1

2 (𝛽))| det𝒥𝑇 −1
1

(𝜁)|| det𝒥𝑇 −1
2

(𝛽)| − log 𝑞(𝜁|𝑥)

− log 𝑞(𝛽|𝑥) + 𝛼 ⋅ ℛ𝑒]. (B.2)

Posterior to the latent variable transformation, the second step is to standardise the un-
known Gaussian density of previous transformed parameters, e.g., 𝜁, 𝛽 to standard Normal
distribution, where 𝜇 = 0; 𝜎2 = 1. For this account, we apply the elliptical standardi-
sation inline with original usage of ADVI in [60]. Elliptical standardisation entails that
the usage of transformation 𝑆𝜙𝑏,𝑆𝜙𝑠

to absorb the variational parameters, e.g., 𝜙𝑏 and 𝜙𝑠 to
convert the unknown Gaussian approximation to a standard Gaussian, e.g., 𝜂𝑏 and 𝜂𝑠. I.e.,
𝜂𝑏 = 𝑆𝜙𝑏(𝜁) = 𝑑𝑖𝑎𝑔(exp(𝜔))−1(𝜁 − 𝜇𝑏) and 𝜂𝑠 = 𝑆𝜙𝑠(𝛽) = 𝐿−1(𝛽 − 𝜇𝑠). Note here, this
standardisation is equivalent to the reparameterisation trick we employed before.

B.0.2 Gradients w.r.t. Learning Objective
After the transformation of latent variables from the constrained to unconstrained real space
and the elliptical standardisation on parameters, the learning elbo is then derived as Eq.B.3:

ℒ =
𝔼𝒩𝜂𝑏(0,𝐼);𝒩𝜂𝑠(0,𝐼){ log 𝑝(𝑥, 𝑇 −1

1 [𝑆−1
1 (𝜂𝑏)], 𝑇 −1

2 [𝑆−1
2 (𝜂𝑠)]| det𝒥𝑇 −1

1
[𝑆−1

1 (𝜂𝑠)]|| det𝒥𝑇 −1
2

[𝑆−1
2 (𝜂𝑠)]|

− log 𝑞([𝑆−1
2 (𝜂𝑏|𝑥)]) − log 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)]) + 𝛼 ⋅ ||𝑞([𝑆−1
2 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)])||2},
(B.3)

where to-be-optimised parameters are 𝜂𝑏 ∶ {𝜇𝑏, 𝜔} and 𝜂𝑠 ∶ {𝜇𝑠, 𝐿}.
As two sets of optimisation parameters exist in one differential equation, we resort on an

alternating process to derive the gradients of each, which is different to the original imple-
mentation of ADVI. Respecting to the first parameter 𝜇𝑏, its gradient ∇, 𝜇𝑏 can be derived
as Eq.B.4:

1According to the theory of variable change, the density of transformed latent variable is the density of
original variable adjusted by the determinant of the Jacobian of the inverse transformation [80].
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∇𝜇𝑏(ℒ) =
𝔼𝒩 (𝜂𝑏;0,𝐼){∇𝑧𝑏 log 𝑝[𝑥, 𝑧𝑏, 𝑇 −1

2 (𝑆−1
2 (𝜂𝑠))]⋅∇𝜁𝑇 −1

1 (𝜁)+∇𝜁 log | det𝒥𝑇 −1(𝜁)|−∇𝜁 log 𝑞(𝜁|𝑥)
+ ∇𝜁2 ⋅ 𝛼[𝑞([𝑆−1

1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1
2 (𝜂𝑠|𝑥)])]}. (B.4)

The detailed derivation can be delineated in the following Eq.B.5:

∇𝜇𝑏(ℒ)
= ∇𝜇𝑏𝔼𝒩 (𝜂𝑏;0,𝐼){ log 𝑝[𝑥, 𝑇 −1

1 (𝑆−1
1 (12)), 𝑇 −1

2 (𝑆−1
2 (𝜂𝑠))] + log | det𝒥𝑇 −1

1
(𝑆−1

1 (𝜂𝑏))|

+ log | det𝒥𝑇 −1
2

(𝑆−1
2 (𝜂𝑠))| − log 𝑞(𝑆−1

1 (𝜂𝑏)) − log 𝑞(𝑆−1
2 (𝜂𝑠))

+ 2 ⋅ 𝛼[𝑞([𝑆−1
1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)])]2}
= 𝔼𝒩 (𝜂𝑏;0,𝐼){∇𝜇𝑏[ log 𝑝[𝑥, 𝑇 −1

1 (𝑆−1
1 (𝜂𝑏)), 𝑇 −1

2 (𝑆−1
2 (𝜂𝑠))] + log | det𝒥𝑇 −1

1
(𝑆−1

1 (𝜂𝑏))|

+ log | det𝒥𝑇 −1
2

(𝑆−1
2 (𝜂𝑠))| − log 𝑞(𝑆−1

1 (𝜂𝑏)) − log 𝑞(𝑆−1
2 (𝜂𝑠))

+ 2 ⋅ 𝛼[𝑞([𝑆−1
1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)])]2]}
= 𝔼𝒩 (𝜂𝑏;0,𝐼){∇𝑧𝑏 log 𝑝[𝑥, 𝑇 −1

1 (𝑆−1
1 (𝜂𝑏)), 𝑇 −1

2 (𝑆−1
2 (𝜂𝑠))] ⋅ ∇𝜁𝑇 −1

1 (𝑆−1
1 (𝜂𝑏))

+ ∇𝜁 log | det𝒥𝑇 −1(𝑆−1
1 (𝜂𝑏))| − ∇𝜁 log 𝑞(𝑆−1

1 (𝜂𝑏)|𝑥)
+ 2 ⋅ 𝛼[𝑞([𝑆−1

1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1
2 (𝜂𝑠|𝑥)])]}∇𝜇𝑏𝑆−1

1 (𝜂𝑏)
= 𝔼𝒩 (𝜂𝑏;0,𝐼){∇𝑧𝑏 log 𝑝[𝑥, 𝑇 −1

1 (𝑆−1
1 (𝜂𝑏)), 𝑇 −1

2 (𝑆−1
2 (𝜂𝑠))] ⋅ ∇𝜁𝑇 −1

1 (𝜁)
+ ∇𝜁 log | det𝒥𝑇 −1(𝜁)| − ∇𝜁 log 𝑞(𝜁|𝑥)

+ 2 ⋅ 𝛼[𝑞([𝑆−1
1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)])]}. (B.5)

In a same vein, we can compute the gradients for other three variational parameters:

∇𝜇𝑠(ℒ) = 𝔼𝒩 (𝜂𝑠;0,𝐼){∇𝑧𝑠 log 𝑝[𝑥, 𝑧𝑠, 𝑇 −1
1 (𝑆−1

1 (𝜂𝑏))] ⋅ ∇𝛽𝑇 −1
2 (𝛽) + ∇𝛽 log | det𝒥𝑇 −1(𝛽)|

− ∇𝛽 log 𝑞(𝛽|𝑥) + ∇𝛽2 ⋅ 𝛼[𝑞([𝑆−1
2 (𝜂𝑠|𝑥)]) − 𝑞([𝑆−1

1 (𝜂𝑏|𝑥)])]}, (B.6)

∇𝜔(ℒ) = 𝔼𝒩 (𝜂𝑏;0,𝐼){∇𝑧𝑏 log 𝑝[𝑥, 𝑧𝑏, 𝑇 −1
2 (𝑆−1

2 (𝜂𝑠))] ⋅ ∇𝜁𝑇 −1
1 (𝜁) + ∇𝜁 log | det𝒥𝑇 −1(𝜁)|

− ∇𝜁 log 𝑞(𝜁|𝑥) + ∇𝜁2 ⋅ 𝛼[𝑞([𝑆−1
1 (𝜂𝑏|𝑥)]) − 𝑞([𝑆−1

2 (𝜂𝑠|𝑥)])]}𝜂𝑇
𝑏 (exp(𝜔), (B.7)
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∇𝐿(ℒ) = 𝔼𝒩 (𝜂𝑠;0,𝐼){∇𝑧𝑠 log 𝑝[𝑥, 𝑧𝑠, 𝑇 −1
1 (𝑆−1

1 (𝜂𝑏))] ⋅ ∇𝛽𝑇 −1
2 (𝛽) + ∇𝛽 log | det𝒥𝑇 −1(𝛽)|

− ∇𝜁 log 𝑞(𝛽|𝑥) + ∇𝛽2 ⋅ 𝛼[𝑞([𝑆−1
2 (𝜂𝑠|𝑥)]) − 𝑞([𝑆−1

1 (𝜂𝑏|𝑥)])]}𝜂𝑇
𝑠 . (B.8)

Obtaining these expectation encapsulated expressions on the gradients of parameters, we
can now use the Markov Chain Monte Carlo(MCMC) to simulate these expectation terms
[81], i.e., 𝔼𝑞(𝜂)[𝑓 (𝜂)] = ∫ 𝑓(𝜂)𝑞(𝜂)𝑑𝜂 ≈ 1

𝑆 Σ𝑆
𝑆=1𝑓(𝜂𝑠).

B.0.3 Pseudo Code for the algorithm
These approximated gradients can be readily fed to some off-the-shelf gradient ascent al-
gorithms, e.g., Adam [77] and rmsprop [82] to update parameters. Pooling all ingredients
together, the recipe of learning EVE is summarised in Algorithm 3.

Algorithm 3 the EVE compatible ADVI algorithm
Require: Dataset 𝑋 ∶ 𝑥(𝑖); Model: 𝑝(𝑥, 𝑧𝑏, 𝑧𝑠); VSE: 𝑞(𝑧𝑏, 𝑧𝑠|𝑥; 𝜙𝑠, 𝜙𝑏)

Initialise the parameter: 𝜇𝑏; 𝜇𝑠; 𝜔; 𝐿
Set the hyper-parameter 𝛼
repeat

while fix 𝜇𝑠, 𝐿 do
Draw one sample from 𝜂𝑏, where 𝜂𝑏 ∼ 𝒩 (0, 𝐼)
Approximate ∇𝜇𝑏ℒ; ∇𝜔ℒ according to Equation B.5 and B.7
Update the 𝜇𝑏; 𝜔 via a off-the-shelf gradient ascent algorithm, e.g., Adam, using

the previous approximated gradients
end while
while fix 𝜇𝑏, 𝜔 do

Draw one sample from 𝜂𝑠, where 𝜂𝑠 ∼ 𝒩 (0, 𝐼).
Approximate ∇𝜇𝑠ℒ; ∇𝐿ℒ according to Equation B.6 and B.8
Update the 𝜇𝑠; 𝐿 via a off-the-shelf gradient ascent algorithm, e.g., Adam, using

the previous approximated gradients
end while

until the elbo is converged to a certain level
Return the optimal 𝜇𝑏; 𝜇𝑠; 𝜔; 𝐿
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