1,434 research outputs found

    Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds

    Full text link
    This work presents two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems using data-driven quadratic manifolds. Classical symplectic model reduction approaches employ linear symplectic subspaces for representing the high-dimensional system states in a reduced-dimensional coordinate system. While these approximations respect the symplectic nature of Hamiltonian systems, linear basis approximations can suffer from slowly decaying Kolmogorov NN-width, especially in wave-type problems, which then requires a large basis size. We propose two different model reduction methods based on recently developed quadratic manifolds, each presenting its own advantages and limitations. The addition of quadratic terms to the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality in the problem at hand. Both approaches are effective for issuing predictions in settings well outside the range of their training data while providing more accurate solutions than the linear symplectic reduced-order models

    A nonlinear stochastic finite element method for solving elastoplastic problems with uncertainties

    Get PDF
    This article presents an efficient nonlinear stochastic finite element method to solve stochastic elastoplastic problems. Similar to deterministic elastoplastic problems, we describe history-dependent stochastic elastoplastic behavior utilizing a series of (pseudo) time steps and go further to solve the corresponding stochastic solutions. For each time step, the original stochastic elastoplastic problem is considered as a time-independent nonlinear stochastic problem with initial values given by stochastic displacements, stochastic strains, and internal variables of the previous time step. To solve the stochastic solution at each time step, the corresponding nonlinear stochastic problem is transformed into a set of linearized stochastic finite element equations by means of finite element discretization and a stochastic Newton linearization, while the stochastic solution at each time step is approximated by a sum of the products of random variables and deterministic vectors. Each couple of the random variable and the deterministic vector is also used to approximate the stochastic solution of the corresponding linearized stochastic finite element equation that can be solved via a weakly intrusive method. In this method, the deterministic vector is computed by solving deterministic linear finite element equations, and corresponding random variables are solved by a non-intrusive method. Further, the proposed method avoids the curse of dimensionality successfully since its computational effort does not increase dramatically as the stochastic dimensionality increases. Four numerical cases are used to demonstrate the good performance of the proposed method

    Spectral tensor-train decomposition

    Get PDF
    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the "cores") comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting \textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to 100100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.Comment: 33 pages, 19 figure
    • …
    corecore