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Abstract

With the ever-increasing demand for better performance, modern engineering struc-

tures continue to tend towards thin, low-weight, and highly flexible designs. As a

result, they are often required to undergo large deformations or rotations during

operation, and experience geometric nonlinearity. However, performing nonlinear

dynamic analysis of large models can pose prohibitively high computational costs

during the design and optimisation of structures. Reduced-order modelling methods

aim to ease this bottleneck, by constructing low-dimensional models which are able to

capture the salient dynamics of the full-order model in a much more efficient manner.

The aim of this thesis is to further the current state-of-the-art of nonlinear

reduced-order modelling methodologies, which are applicable to geometrically nonlin-

ear structures built using commercial finite element software. The methods proposed

herein build on existing techniques, exploiting their merits and aiming to address

their limitations. Specifically, the focus of this thesis is on so-called force-based

indirect reduction techniques, such as the Implicit Condensation and Expansion

(ICE) method, which rely on a static condensation procedure to achieve reduction for

structures characterised by slow/fast dynamics.

In this thesis, several developments of the ICE method are proposed. First it is

shown that, in order to fully account for the effect of the statically condensed modes,

the reduced dynamics must include not only higher orders of nonlinearity, compared

to the full-order model, but also some additional velocity- and acceleration-dependent

terms. The latter components capture the kinetic energy of the condensed modes,

which the standard method neglects, thus extending its applicability to a far wider

range of structures whilst maintaining accuracy to higher deflection amplitudes.

Then, a method for efficiently detecting the existence of internal resonances

between reduced and condensed modes is proposed. This may serve as a tool for

guiding the reduction basis selection process, as well as verifying the accuracy of

reduced-order models, without the need for full-order simulations.

Finally, the ICE method is extended to nonconservative structures, such that

forced response curves may be computed directly. The proposed formulation is such

that any energy gained or dissipated by the condensed modes is accounted for in the

reduced dynamics, enabling features such as parametric resonances — which would

otherwise be neglected — to be accurately captured.
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Chapter 1

Introduction

Traditionally, the dynamics of engineering structures have been modelled according

to linear vibration theory, and a number of powerful analysis methodologies and tools

have been developed based on the concept of linear normal modes. However, despite

its useful mathematical properties, linear dynamic behaviour is usually an idealised

model, which is becoming increasingly inadequate in characterising real-world struc-

tural dynamics. With the ever-increasing demand for better performance, modern

engineering structures continue to tend towards thin, low-weight and highly flexi-

ble designs. This trend, combined with the extreme loading environments in which

structures are often required to operate, can lead to large-amplitude vibrations and

give rise to geometric nonlinearity. Examples of engineering structures experiencing

geometric nonlinearity include flexible aircraft wings (Shearer and Cesnik, 2007)

and wind turbine blades (Manolas et al., 2015), skin panels of hypersonic aircraft

under extreme thermal, aerodynamic and acoustic loads (Blevins et al., 1993; Gordon

and Hollkamp, 2011), as well as nano/micro-electromechanical systems (N/MEMS)

(Lazarus et al., 2012; Zega et al., 2020) which find use in ultrasensitive mass and force

sensors (Rugar et al., 2004; Jensen et al., 2008), radio frequency telecommunication

devices (Nguyen, 2007), bit storage systems (Mahboob and Yamaguchi, 2008), and

energy harvesting devices (Challa et al., 2008).

Whilst nonlinearity is undeniably a source of additional complexity in the mod-

elling and simulation of dynamical systems, it is not necessarily an undesirable

feature that must be avoided. Instead, nonlinearity presents unique opportunities to

design structures with enhanced performance and efficiency. To this end, the concept

of a nonlinear normal mode has been introduced as an extension of its linear coun-
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2 CHAPTER 1. INTRODUCTION

terpart, and has served as a tool for studying and better understanding nonlinear

systems. In recent years, new analytical and numerical techniques have been devel-

oped based on this concept, which have enabled nonlinear effects to be incorporated

in the modelling and simulation of dynamical systems. Nevertheless, the practical

implementation of nonlinear dynamic analysis in the design of engineering structures

remains a challenge. This is because the applicability of nonlinear methods is typi-

cally limited to low-dimensional systems; at the same time, engineering structures

are often modelled using finite element (FE) software, where the structure is descre-

tised in space, resulting in very large numbers of degrees-of-freedom. As a result,

applying these nonlinear techniques to the full-order FE model is mathematically

intractable from an analytical perspective, and often prohibitively computationally

expensive, from a numerical perspective.

Reduced-order modelling methods aim to ease this bottleneck, by constructing

computationally cheap, low-dimensional models, which capture the salient dynamics

of a structure in an efficient manner. By dramatically reducing the computational

cost associated with nonlinear dynamic analysis, reduced-order models (ROMs)

enable the effective design and optimisation of engineering structures. In addition,

ROMs enable the implementation of hybrid testing frameworks, whereby part of

the structure is tested experimentally whilst the rest of it is simulated, such that

real-time computations are essential.

This thesis aims to further the current state-of-the-art of nonlinear reduced-order

modelling, focussing on methods applicable to structures modelled using commercial

FE software. The methods proposed herein build on existing techniques, aiming to

improve their accuracy, efficiency and robustness, and broaden their applicability to

a wider range of structures.



Chapter 2

Background

This chapter lays the foundations for the rest of the thesis. Section 2.1 outlines

the effects of geometric nonlinearity in structural dynamics, and introduces the

concept of nonlinear normal modes as well as associated techniques, which are

suited to the analysis of nonlinear dynamical systems. Section 2.2 introduces the

equations of motion of a general, geometrically nonlinear finite element model,

which typically forms the starting point in reduced-order modelling frameworks.

In section 2.3, the existing literature on reduction methodologies for geometrically

nonlinear structures is reviewed. Finally, the scientific contributions of this thesis

are outlined in section 2.4.

2.1 Nonlinearity in structural dynamics

2.1.1 Linear normal modes

In classical vibration theory, the concept of a linear normal mode1 (LNM) provides a

powerful tool for understanding and characterising linear dynamical systems. A fun-

damental feature of LNMs is orthogonality, which essentially allows the equations of

motion of the system to be decoupled, such that all modal responses are mutually

independent. As a result of mode orthogonality, two important properties of linear

systems arise (Rayleigh, 1896; Kerschen et al., 2009):

1. Invariance: if a specific mode is excited, the remaining unforced modes remain

quiescent for the duration of the system response

1The terms mode and linear normal mode are equivalent and used interchangeably throughout
this thesis.

3



4 CHAPTER 2. BACKGROUND

2. Superposition: the net response of a system can be expressed as a linear combi-

nation of individual modal responses.

Due to the intuitive physical interpretation of LNMs, as well as their useful

mathematical properties, several frameworks for analysing linear systems have

been developed based on this concept, with a wide range of applications in science

and engineering. Examples of such techniques include modal testing (Ewins and

Saunders, 1986), statistical energy analysis (Fahy, 1994), modal substructuring

(Craig and Bampton, 1968), finite element model updating (Mottershead and Friswell,

1993) and structural health monitoring (Doebling et al., 1996).

2.1.2 Geometric nonlinearity

Geometric nonlinearity arises when structures experience large-amplitude vibra-

tions,2 and is typically associated with thin and highly flexible structures such as

beams, plates and shells. Examples of engineering structures experiencing geometric

nonlinearity include flexible aircraft wings (Shearer and Cesnik, 2007) and wind tur-

bine blades (Manolas et al., 2015), skin panels of hypersonic aircraft under extreme

thermal, aerodynamic and acoustic loads (Blevins et al., 1993; Gordon and Hollkamp,

2011), as well as nano/micro-electromechanical systems (Lazarus et al., 2012; Zega

et al., 2020) which find use in ultrasensitive mass and force sensors (Rugar et al.,
2004; Jensen et al., 2008), radio frequency telecommunication devices (Nguyen, 2007),

bit storage systems (Mahboob and Yamaguchi, 2008), and energy harvesting devices

(Challa et al., 2008).

When nonlinearities are present in a system, an orthogonal modal basis does

not generally exist. This is because the underlying linear modes are coupled to one

another through the nonlinear terms, such that the invariance and superposition

properties are no longer applicable. Instead, nonlinear systems possess new distinct

dynamical features, most notably frequency-energy dependence, bifurcations and

instabilities, all of which are concepts that have no linear counterparts. As a result of

the modal couplings, nonlinear systems can exhibit a number of complex behaviours;

examples of such nonlinear phenomena include:

• the co-existence of multiple stable equilibria and the sudden transitions (“jumps")

between them (Nayfeh and Mook, 1995; Brennan et al., 2008);
2It should be noted that other sources of nonlinearity exist, e.g. material nonlinearity and localised

nonlinearities due to joints. These are beyond the scope of this thesis.
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• limit cycle oscillations (Patil et al., 2001; Thothadri and Moon, 2005);

• mode localisation, i.e. the spatial confinement of free periodic motions in a

region of the structure near the source of excitation (Bendiksen, 1987);

• internal resonance, whereby exchange of energy takes place between modes

whose nonlinear response frequencies are commensurate (Nayfeh and Mook,

1995; Sayed and Kamel, 2012).

Whilst nonlinear behaviour is often associated with dynamic modal interactions, a

specific type of modal coupling that is particularly prominent in structural dynamics,

is quasi-static coupling. This means that, even though the underlying linear normal

modes are coupled together, they do not necessarily act as independent degrees-of-

freedom; instead, it is assumed that the response of a mode may be approximated as

a function of the response of a different mode or set of modes. This type of coupling is

often seen in structures characterised by slow/fast dynamics, such as thin plates and

slender beams, where the high-frequency in-plane modes are approximately quasi-

statically coupled to a small set of low-frequency transverse modes; this effect is

often referred to as membrane stretching (Mignolet et al., 2013). Quasi-static coupling

forms the basis for a number of reduced-order modelling methodologies, and will be

considered extensively throughout this thesis.

2.1.3 Nonlinear normal modes

The fundamentally distinct nature of nonlinear systems renders traditional analysis

techniques suboptimal at best, and often altogether inapplicable. As a first step

towards addressing the lack of tools suited to nonlinear behaviours, the concept of

a nonlinear normal mode (NNM) was pioneered by Rosenberg (1960, 1962, 1966).

Conceptually, NNMs are analogous to the well-established LNMs from classical

vibration theory, which practising structural dynamicists use and are familiar with.

Even though they do not possess many of the appealing mathematical properties of

their linear counterparts, NNMs offer a rigorous theoretical tool for analysing and

interpreting phenomena which cannot be captured by linear theory.

The simplest definition of an NNM of a conservative (i.e. unforced and undamped)

system, stemming from the work of Rosenberg (1960), is a vibration in-unison, i.e. a

synchronous periodic oscllation, where all displacement coordinates of the system

are always in-phase or in anti-phase. As such, all physical displacements can be ex-

pressed in terms of a single reference coordinate by means of a modal function, while
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velocities can be computed by considering conservation of energy during the motion.

This concept was further explored by Pak and Rosenberg (1968), Rand (1971, 1974)

and Manevich and Mikhlin (1972), who used geometrical/analytical techniques to

establish the existence of, and derive expressions for, NNMs of conservative nonlinear

systems. Nonlinear normal modes received renewed attention and significance in the

1990s, following the seminal work of Vakakis et al. (1990, 1992, 1994, 1996, 1997) and

Shaw and Pierre (1991, 1992, 1993, 1994), who used analytical methods, and in some

cases numerical integration, to study phenomena such as bifurcations, stability and

localisation in nonlinear systems. The latter authors also introduced a new problem

formulation that utilises the theory of invariant manifolds for dynamical systems,

as opposed to Rosenberg’s original energy-based formulation. This allows for the

inclusion of physical velocities as independent variables, such that the concept of

NNMs can be extended to nonconservative systems (Shaw and Pierre, 1991, 1993).

To this end, the concept of a spectral submanifold defined as the smoothest nonlinear

continuation of the spectral subspace of the linearised system, has recently been

introduced, with the aim of proving the existence and uniqueness of such subspaces

for dissipative systems (Haller and Ponsioen, 2016; de la Llave and Kogelbauer,

2019).

Nonlinear normal modes have been successfully employed in a large number of

studies addressing the analysis of nonlinear phenomena, most of which are based

on asymptotic approaches. Some of the analytical techniques that have received

considerable attention in the context of NNM computation include the method of

averaging (Sanders et al., 2007; Gonzalez-Buelga et al., 2008), the method of multiple

scales (Nayfeh, 1981; Wagg and Neild, 2015), the harmonic balance method (Nayfeh

and Mook, 1995; Petrov and Ewins, 2003), and the method of normal forms (Jezequel

and Lamarque, 1991; Touzé et al., 2004a; Neild et al., 2015).

Recently, Rosenberg’s definition of an NNM has been extended to include any,

not necessarily synchronous, periodic motion of the conservative nonlinear system

(Kerschen et al., 2009; Peeters et al., 2009). This definition becomes particularly

attractive when considering systems in the presence of internal resonance, where

out-of-unison (Hill et al., 2015) or phase-varying (Hong et al., 2020) periodic motions

may occur. Through this more recent definition, the concept of NNMs has become

associated with numerical, rather than analytical, techniques, as it enables the

computation of NNMs using algorithms for the continuation of periodic solutions

(Kerschen et al., 2009; Hill, 2016).
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Numerical continuation is a method of computing parametrically-defined man-

ifolds. In the context of analysing smooth dynamical systems, these manifolds are

defined by a finite number of ordinary differential equations, which can describe ei-

ther discrete systems, or discrete approximations of continuous systems. The method

relies on the assumption that, as a parameter in the equations of motion varies

continuously, so does the solution. Based on this, a new solution, which corresponds

to a sufficiently small change in a system parameter, can be found in the vicinity

of a known solution, and the locus of the solution manifold is traced sequentially

as such. The initial solution required for this approach can often be obtained by

considering the modes of the underlying linear system, which, at sufficiently low

energy levels, approximate the NNMs (Peeters et al., 2009; Allen et al., 2012). As the

steady-state solutions are sought directly, numerical continuation allows for more

efficient computations compared to the direct numerical integration of the equations

of motion, particularly for weakly-damped systems, where transient settling times

can be large. In addition, it enables the computation of multiple (including unstable)

steady-state solutions which would otherwise not be found, thus providing a better

insight into the behaviour of the system.

2.2 Finite element models

The finite element method is a powerful, versatile and extremely popular technique

for modelling structures, and sees widespread use by dynamicists in the engineering

industry and academia alike (Reddy, 1993; Bathe, 2006). FE procedures involve the

discretisation of structures in space, enabling the accurate representation of complex

geometries and inclusion of nonlinear effects. The resulting semi-discretised equa-

tions of motion of the structure take the form of second-order ordinary differential

equations in terms of the N ×1 time-dependent vector of generalised coordinates

x(t), representing the displacements and/or rotations at each node, where N is the

number of DOFs of the model. For a linearly elastic structure, these are written as

Mẍ+Kx+ f (x)=F, (2.1)

where M and K are the N ×N linear mass and stiffness matrices, respectively, f(x) is

the N ×1 vector of nonlinear internal restoring forces, and F is the N ×1 vector of
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external forces acting on the structure.3 Typically, it is assumed that the nonlinear

restoring forces take the form of quadratic and cubic polynomial functions of the

generalised coordinates (Lazarus et al., 2012; Mignolet et al., 2013), i.e.

f(x)=K(2)xx+K(3)xxx, (2.2)

where K(2) and K(3) are tensors4 of rank 3 and 4, respectively, characterising the

geometric nonlinearity of the structure. This formulation is mathematically exact

when the model is discretised using 3D elements or 2D elements under the von

Kármán kinematic assumption, which states that the axial strain and curvature

are small relative to the transverse deflection, such that strain can be expressed

as a quadratic function of displacement (Thomas and Bilbao, 2008). In the case of

geometrically exact beam elements, equation (2.2) is a truncated approximation that

is accurate up to moderate amplitudes (Thomas et al., 2016; Givois et al., 2019).

It is worth noting that the tensors K(2) and K(3), which contain N3 and N4

elements, respectively, can pose a significant computational burden and memory

requirements for very large FE models. In practice, and particularly in commercial

FE software, these coefficients are rarely computed explicitly, but instead the internal

forces are computed in an iterative manner.

For reduction purposes, it is often useful to consider the FE model in its modal

space, where the modal coordinates, q, are linearly uncoupled. This can be achieved

using the linear transform

x=Φq, (2.3)

where Φ is the N ×N matrix of mass-normalised modeshapes, such that

Φ⊺MΦ= I,

Φ⊺KΦ=Λ,

(2.4a)

(2.4b)

where Λ is the N ×N diagonal matrix containing the squares of the corresponding

natural frequencies, and I is the identity matrix. The nth column in Φ, ϕn, and the

nth value along the leading diagonal of Λ, ω2
n, are the eigenvector and eigenvalue,

respectively, which satisfy (
K−ω2

nM
)
ϕn = 0. (2.5)

3Note that, in general, the external forces may be displacement-dependent (e.g. follower forces)
and/or velocity-dependent (e.g. aerodynamic drag). Here, it is assumed that F=F(t) for the sake of
simplicity, but the more general case of F=F(t,x, ẋ) is considered later in Chapter 6.

4Here, the term tensor refers to a multidimensional array of dimension, or rank, greater than two.
Scalars, vectors, and matrices may be considered as arrays of rank 0, 1, and 2, respectively.
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Substituting equation (2.3) into equation (2.1) and premultiplying by Φ⊺ leads to

q̈+Λq+ fq (q)=Fq, (2.6)

where

fq(q)=Φ⊺f(Φq)=Λ(2)qq+Λ(3)qqq,

Fq =Φ⊺F

(2.7a)

(2.7b)

are the vectors of nonlinear internal forces and external forces in the modal space,

respectively, and Λ(2) and Λ(3) are tensors of rank 3 and 4, respectively.

2.3 Reduced-order modelling

There exists a vast body of literature devoted to reduced-order modelling of geometri-

cally nonlinear dynamical systems (Mignolet et al., 2013; Touzé et al., 2021), with

different methodologies often having overlapping characteristics, and sometimes

conflicting terminology. In this thesis, reduced-order modelling methods are divided

into two broad classes:

1. Intrusive or direct methods: these methods rely on manipulation of the coef-

ficients of the full-order equations of motion, or a subset thereof, in order to

compute the ROM parameters. They are typically seen in academic applications,

where in-house or open-source FE codes are employed.

2. Non-intrusive or indirect methods: these methods do not require knowledge

of the exact equations of motion of the full-order model. They are well-suited

to industrial applications, which utilise commercial FE software, where the

full-order nonlinear stiffness coefficients are inaccessible.

In the following subsections, we review both intrusive and non-intrusive model

order reduction methods used in structural dynamics, with special emphasis on the

latter, which is the focus of this thesis.

2.3.1 Intrusive methods

The category of direct reduced-order modelling methods includes any approach

which requires knowledge of the equations of motion of the full-order model. For

linearly elastic FE models, this requires access to the stiffness tensors which contain
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the coefficients of the quadratic and cubic monomials characterising the geometric

nonlinearity, in addition to the linear mass and stiffness matrices.

Early works have focussed on modal reduction methods, originally developed

for linear dynamics, in which the number of DOFs is reduced through a Galerkin

projection onto a subset of the linear normal modes of the FE model (Nash, 1977; Mei

and Moorthy, 1995; Shi and Mei, 1996; Przekop et al., 2004a,b). Due to the coupling

between modes, i.e. the membrane stretching induced by finite deflections/rotations in

thin plates or slender beams, typically a large number of modes must be included in

the reduction basis in order to accurately capture the nonlinear response. Additionally,

a major drawback of such methods is that the number and type of modes needed

to describe the response of the structure vary as the response amplitude increases,

requiring that the reduction basis be updated during time integration (Jacob and

Ebecken, 1992).

These issues stem from the fact that the eigenproblem characterising the non-

linear model is configuration-dependent; the LNMs are precisely the solution of

this problem at zero displacement, but they diverge from it as the amplitude in-

creases. In this context, modal derivatives have been introduced as the second-order

approximation of the state-dependent modes (Idelsohn and Cardona, 1985b,a). Modal

derivatives can be obtained by differentiating the nonlinear eigenproblem with re-

spect to the modal coordinates (Slaats et al., 1995), thus requiring knowledge of

the exact form of the nonlinearities in the equations of motion.5 The inertia of the

model may sometimes be neglected during this process, yielding so-called static modal

derivatives (Jain et al., 2017). Several contributions have shown that the effects of

the coupling between modes can be effectively accounted for by including (static)

modal derivatives in the reduction basis, in addition to the dynamically important

LNMs. Examples of structures for which modal derivatives have been successfully

employed during model order reduction include flat and arched clamped-clamped

beams and cantilever plates (Tiso et al., 2011; Wu and Tiso, 2016; Sombroek et al.,
2018). Since the number of modal derivatives grows quadratically with respect to

the number of retained modes, a drawback of this approach is that the size of the

reduction basis increases quickly, thus limiting the applicability of this method to

relatively simple structures. To alleviate this burden, several heuristic methods for

5Modal derivatives may also be approximated in a non-intrusive manner using finite difference
schemes in conjunction with commercial FE software; however, this can lead to significant numerical
errors if the step size is not carefully tuned (Rutzmoser, 2018).
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ranking and selecting the most relevant modal derivatives have been proposed (Tiso,

2011; Rutzmoser, 2018).

Alternatively, the concept of a quadratic manifold has been proposed as a method

of constraining the amplitude of the modal derivatives to that of the LNMs, rather

than treating them as independent DOFs (Jain et al., 2017). As such, reduction is

achieved through a nonlinear transform consisting of a linear and a quadratic part,

whose coefficients are made up of LNMs and modal derivatives, respectively. This

method was found to work remarkably well for thin-walled structures characterised

by von Kármán kinematics, where the quadratic enslavement of the in-plane modes

to the transverse modes is exact. However, poor results can be obtained when this

assumption is not valid, as has been demonstrated using a cantilever beam in

Rutzmoser et al. (2017). This suggests that, generally, a projection onto a higher-order

manifold (i.e. higher than quadratic) might be necessary to accurately capture the

nonlinear behaviour of the structure.

A similar but more general concept which has been utilised for reduced-order

modelling, is that of nonlinear normal modes defined as invariant manifolds in phase

space (Shaw and Pierre, 1991, 1993, 1994). The fundamental idea underpinning

NNMs is that, through a nonlinear transform, the system can be defined in terms of

a set of invariant, normal coordinates. In this framework, each displacement–velocity

pair of normal coordinates defines an NNM, and includes the effects of all the un-

derlying LNMs (Pesheck, 2000). As such, ROMs can be realised by retaining the

normal coordinates associated with NNMs whose linearised natural frequencies lie

in the bandwidth of interest, whilst all other coordinates can be neglected without

introducing error in the process; this may be considered as the nonlinear counterpart

of modal truncation methods used in linear dynamics. In its asymptotic formulation,

the nonlinear transform applied to each modal coordinate of the full-order FE model,

takes the form of a polynomial function spanning the reduced states (Touzé et al.,
2004b, 2008). Analytical expressions for the newly introduced coefficients can be

derived by substituting the transform into the full-order equations of motion and

equating the coefficients of like monomial terms; the dynamics of the reduced co-

ordinates can then be expressed as a function of the coefficients of the FE model.

Reduced-order modelling based on invariant manifolds has been demonstrated for a

range of structures, including beams (Touzé et al., 2004a,b; Vizzaccaro et al., 2020)

and cylindrical and spherical shells (Touzé and Amabili, 2006; Touzé and Thomas,

2006).
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Whilst this method provides a powerful tool for generating accurate ROMs with

the fewest possible time-dependent variables, it does come with a major drawback

associated with the asymptotic nature of the nonlinear change of coordinates, in

addition to being intrusive. As noted in Touzé et al. (2004b), the accuracy of the

results can deteriorate quite rapidly in strongly nonlinear regimes, where higher

orders of nonlinearity need to be considered, thus compromising the reliability of the

ROM. At the same time, due to the analytical and mathematically involved nature

of the method, calculations quickly become onerous when considering truncations

beyond cubic.

More recently, a new formulation of a reduced-order modelling methodology based

on normal form theory has been proposed, whereby the physical (rather than modal)

coordinates are directly mapped into the normal coordinates; this is referred to

as direct normal form (Vizzaccaro et al., 2021; Opreni et al., 2021). This approach

has the advantage of not requiring a full linear modal transform, which can be

a bottleneck when considering very large FE models. This framework considers

an arbitrary order of expansion (Vizzaccaro et al., 2022), the presence of damping

and external forcing (Vizzaccaro et al., 2021), following the work of Touzé et al.
(2004a, 2006), as well as the proper treatment of internal resonances; the latter

has been demonstrated using a MEMS arch resonator exhibiting a 1:2 internal

resonance (Opreni et al., 2021). Nevertheless, the direct normal form approach

requires knowledge of a subset of the nonlinear coefficients of the full-order model. As

a result, whilst it is theoretically possible for the method to be applied to FE models

built using commercial software, this must be preceded by an identification process,

using for example the stiffness evaluation procedure (Muravyov and Rizzi, 2003;

Perez et al., 2014), which is discussed in the following subsection. In addition, such

a non-intrusive implementation of the direct normal form method is only feasible

for nonlinear mappings up to the cubic order, beyond which the calculations become

intractable.

2.3.2 Non-intrusive methods

Indirect reduced-order modelling methods do not require access to the inner workings

of the FE code or knowledge of the nonlinear coefficients in the full-order equations

of motion, i.e. K(2) and K(3) in the physical space, or Λ(2) and Λ(3) in the modal space.

Instead, the two pieces of information that must be extracted from the FE model are:
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1. its linear properties, i.e. the mass (M) and stiffness (K) matrices, typically

obtained through a linear perturbation procedure;

2. a set of nonlinear static solutions, typically obtained using an iterative proce-

dure such as the Newton-Raphson method.

Both of the above are standard features in commercial FE software such as Nastran

(MSC Software Corporation, 2003) and Abaqus (Dassault Systèmes, 2017).

In this class of methods, it is assumed that the dynamics of the full-order model

can be approximated by a small subset of its linear normal modes, whilst the remain-

ing modes can be neglected (Mignolet et al., 2013). The modeshapes corresponding to

the retained modes are compiled in the N ×R matrix Φr, which forms the reduction
basis, where R ≪ N is the number of DOFs of the reduced-order model. The equations

of motion of the FE model are reduced using the linear transform

x=Φrr, (2.8)

where r is the R×1 vector of reduced coordinates. Substituting this into equation (2.1)

and premultiplying by Φ
⊺
r leads to the reduced equations of motion, written as

r̈+Λrr+ fr(r)=Φ
⊺
r F, (2.9)

where Λr = Φ
⊺
rΛΦr is the R × R diagonal matrix containing the squares of the

natural frequencies of the reduced modes, and fr(r) is the R×1 vector of nonlinear

internal restoring forces in the reduced space. The latter is given by

fr(r)=Φ
⊺
r f (Φrr)=A(2)rr+A(3)rrr, (2.10)

where A(2) and A(3) are tensors of rank 3 and 4, containing the quadratic and cubic

coefficients of the ROM, respectively. In index notation, the ith component in fr is

written

fr,i =
R∑

j=1

R∑
k=1

A(2)
i jkr jrk +

R∑
j=1

R∑
k=1

R∑
l=1

A(3)
i jklr jrkrl . (2.11)

Since the full-order nonlinear coefficients cannot be used in estimating the ROM

coefficients, these must be computed in an indirect manner. This is achieved via

linear regression, typically in a least-squares manner, using a set of nonlinear static

solutions of the FE model.

There exist two variations of indirect methods, which differ in how the static

solution dataset is obtained. In the displacement-based approach, which is often
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referred to as the enforced displacement procedure or stiffness evaluation procedure

(STEP), the structure is constrained into a prescribed shape, xst, and the resulting

reaction forces needed to hold that shape, Fst, are extracted (Muravyov and Rizzi,

2003; Rizzi and Przekop, 2005; Perez et al., 2014). For each static load case, the

displacement imposed on the structure is a linear combination of the basis functions,

i.e.

xst =Φrκdisp, (2.12)

where κdisp is an R×1 vector of displacement scale factors, typically containing up

to three non-zero components, and is equivalent to the static displacement in the

reduced modes, i.e. rst ≡κdisp. The resulting reaction forces are extracted from the FE

model using a standard nonlinear static solver, and the vector of nonlinear restoring

forces in the reduced modes is computed as

fr,st =Φ
⊺
r Fst −Λrrst. (2.13)

Finally, the nonlinear coefficients in the ROM, A(2) and A(3), are estimated by fitting

quadratic and cubic polynomial functions to the static solution dataset,
{
fr,st,rst

}
, as

expressed in equations (2.10) and (2.11). The displacement-based approach has been

used in a number of different studies involving beam and plate structures — see for

example Mignolet and Soize (2008); Lazarus et al. (2012); Kim et al. (2013); Givois

et al. (2019).

In the force-based variation of indirect methods, which is commonly referred to as

the applied loads method or implicit condensation6 (IC), a static force, Fst, is applied

to the structure, and the resulting displacement, xst, is extracted (Segalman and

Dohrmann, 1996; McEwan et al., 2001; Hollkamp and Gordon, 2008; Gordon and

Hollkamp, 2011). The shape of the applied force is a linear combination of the reduced

modeshapes, i.e.

Fst =MΦrκforce, (2.14)

where κforce is an R×1 vector of force scale factors, which is equivalent to the forces

applied to the reduced modes. The resulting displacement vector is extracted using a

nonlinear static solver, and the reduced static displacements are computed as

rst =Φ
⊺
r Mxst. (2.15)

6The term condensation refers to the elimination of a set of modes, by capturing their effects
within the dynamics of the remaining coordinates.
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The reduced nonlinear restoring forces are computed using equation (2.13), and

the nonlinear ROM coefficients are estimated using the
{
fr,st,rst

}
dataset, as with

the displacement-based approach. Examples of structures for which the force-based

method has been applied include clamped beams and plates for aeronautic (Hollkamp

et al., 2005; Gordon and Hollkamp, 2011; Kuether et al., 2015) and MEMS applica-

tions (Frangi and Gobat, 2019). The procedure for constructing ROMs using indirect

methods is summarised in table 2.1, both for the displacement-based and force-based

variations.

It is worth noting that the number of nonlinear coefficients that must be estimated

can be reduced by enforcing linear dependencies between elements of A(2) and A(3),

such that symmetry is preserved, and the resulting equations of motion are consistent

with an underlying elastic potential energy function — see Touzé et al. (2021); Gordon

and Hollkamp (2011) for further details. Reduced-order models constructed using

this approach, which is sometimes referred to as constrained IC, were found to be

more stable during time integration compared with their unconstrained counterparts

(Gordon and Hollkamp, 2011).

Table 2.1. Outline of the ROM generation procedure for indirect reduction methods.

Displacement-based method (e.g. STEP) Force-based method (e.g. IC)

→ Extract the mass matrix, M, and linear stiffness matrix, K, of the FE model.

→ Select the reduction basis, Φr; compute the linear reduced coefficients, Λr.

→ Repeat for each load case:

a) Select disp. scale factors, κdisp. Select force scale factors, κforce.

b) Enforce structure into static shape,
xst =Φrκdisp.

Apply static force to structure,
Fst =MΦrκforce.

c) Extract resulting reaction forces, Fst. Extract resulting displacement, xst.

d) Compute displacement and nonlinear
force data in the reduced modal space,
rst =κdisp and fr,st =Φ

⊺
r Fst −Λrκdisp.

Compute displacement and nonlinear
force data in the reduced modal space,
rst =Φ

⊺
r Mxst and fr,st =κforce −Λrrst.

→ Estimate the nonlinear ROM coefficients, A(2) and A(3), by fitting quadratic
and cubic polynomial functions to the

{
fr,st,rst

}
dataset (see equation (2.10)).
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Despite the similarities between displacement-based and force-based indirect

reduction methods, several important differences have been noted. Firstly, the

displacement-based approach is fundamentally an identification process, i.e. the

estimated ROM parameters approximate the true parameters of the full-order model

that correspond to the reduced modes (Tartaruga et al., 2019). In other words, a ROM

constructed using this approach is equivalent to the ROM that would be obtained

through a linear projection onto the reduced modeshapes, i.e. using equation (2.8), if

the full-order coefficients were known. As a result, the estimated ROM parameters

are largely insensitive to the displacement scale factors used to obtain the static

solution dataset, as long as:

1. the displacement amplitudes are large enough to excite non-negligible amounts

of geometric nonlinearity, in order to circumvent numerical errors;

2. the displacement amplitudes are not extremely large so as to invalidate equa-

tion (2.2), in which case, higher-order nonlinear terms would need to be included

in the dynamics of the FE model (Givois et al., 2019; Tartaruga et al., 2019).

The main drawback of the displacement-based approach lies in the fact that, when

only the low-frequency, dynamically important modes are included in the reduction

basis, the ROM fails to capture the effect of membrane stretching, resulting in overly

stiff behaviour (Shi and Mei, 1996; Mignolet et al., 2013; Tartaruga et al., 2019). To

account for the induced in-plane motions, a number of membrane modes whose natu-

ral frequencies lie well beyond the bandwidth of interest, must be explicitly included

in the reduction basis (Rizzi and Przekop, 2008; Kuether et al., 2015). Similarly,

other strategies aim to capture the effect of membrane stretching by augmenting the

reduction basis with the so-called dual or companion modes, which are generated

using a set of nonlinear static or dynamic solutions of the FE model (Hollkamp et al.,
2003, 2005; Przekop and Rizzi, 2006; Wang et al., 2009; Kim et al., 2013). As a result,

not only is the identification of the relevant membrane/dual/companion modes a cum-

bersome procedure, but the reduction basis becomes relatively large, thus limiting

the computational savings.

On the other hand, force-based indirect reduction methods do not aim to recover

the true coefficients of the full-order model. Instead, the reduced dynamics obtained

using this approach, lie on a distinct subspace in which the unmodelled modes are im-
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plicitly condensed;7 this subspace is sometimes referred to as stress manifold (Frangi

and Gobat, 2019). In other words, by applying a static force in the shape of the reduced

modeshapes, rather than enforcing a modal displacement, the unmodelled modes are

excited through the nonlinear coupling terms, and the effect of membrane stretching

is encoded implicitly within the stress manifold (Gordon and Hollkamp, 2011; Migno-

let et al., 2013). The condensation of the in-plane modes into the transverse motions

is realised by assuming that in-plane inertia may be neglected, supported by the fact

that the natural frequencies of in-plane modes are significantly larger than those of

the transverse modes (Mignolet et al., 2013). As a result, the in-plane modes need

not be included as independent DOFs in the reduction basis; instead, the reduction

basis can be constructed with only a few low-frequency transverse modes, resulting

in more efficient ROMs, relative to their displacement-based counterparts.

In some cases, the response of the in-plane modes is reconstructed in a post-

processing step, by approximating the in-plane displacements as quadratic functions

of the reduced coordinates (Hollkamp and Gordon, 2008; Kuether et al., 2015), i.e.

s≈ g(r)=Brr, (2.16)

where s is the S×1 vector containing the coordinates of the statically coupled modes,

S is the number of statically coupled modes of interest, and g is a vector of quasi-
static coupling functions. The quadratic coupling coefficients contained in the rank-3

tensor B, are approximated via regression analysis, using the same static solution

dataset that is used to approximate the stress manifold. In this case, the dataset is

projected into the {sst,rst} space, where sst =Φ
⊺
s Mxst is the static displacement of the

condensed modes, and Φs is the N ×S matrix containing the condensed modeshapes

in its columns. Then, the quasi-static coupling functions may be used to better

approximate the response of the full-order model, i.e.

x≈Φrr+Φsg(r). (2.17)

This extended version of IC is referred to as implicit condensation and expansion
(ICE) (Hollkamp and Gordon, 2008).

Nevertheless, a major drawback of force-based methods such as the ICE, is that

the quality of the ROM is greatly dependent on the choice of force scale factors used to

7The term implicit condensation refers to the non-intrusive counterpart of static condensation
(Mignolet et al., 2013), with the latter achieved through direct manipulation of the coefficients of the
full-order model.
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obtain the static solution dataset. As such, scale factors are often chosen on an ad hoc
basis guided by empirical rules which predict the combinations of forces necessary to

exercise a "sufficient" amount of geometric nonlinearity, which often involves a trial

and error process (Gordon and Hollkamp, 2011; Kuether et al., 2015).

2.4 Thesis contributions and outline

This thesis aims to improve on the current state-of-the-art of reduced-order modelling

techniques for geometrically nonlinear dynamic structures modelled using commer-

cial finite element software. Specifically, the scientific contributions and outline of

the thesis are as follows:

Chapter 3: Accounting for quasi-static coupling (Nicolaidou et al., 2020b)
This chapter explores the quasi-static coupling between low- and high-frequency

modes in geometrically nonlinear dynamical systems, using a 2-DOF oscillator. As

discussed in section 2.3.2, force-based indirect reduction methods, such as the ICE,

can implicitly capture the response of the statically coupled modes within the stress

manifold; however, the resulting ROMs are sensitive to the scaling of the static

solution dataset used to calibrate them, which can lead to significantly inaccurate

response predictions if the relevant scaling factors are not carefully tuned. It is

demonstrated that the lack of invariance of the ROMs is a result of quasi-static

coupling, which introduces higher-order nonlinear terms in the reduced dynamics,

compared to the order of nonlinearity in the full-order model. Novel ROMs, with

higher-order nonlinear terms, are then shown to be more accurate, and significantly

more robust to scaling of the calibration dataset, compared to the traditional cubic

ROMs. The robustness of these novel ROMs is further demonstrated using an FE

model of a clamped-clamped beam.

Chapter 4: Capturing in-plane inertia (Nicolaidou et al., 2020a)
The applicability of the ICE method, regardless of whether higher orders of nonlinear-

ity are included in the reduced dynamics, is limited to structures which undergo small

in-plane displacements, such as the clamped-clamped beam considered in Chapter 3.

It is shown that this limitation arises from the fact that, in the traditional approach,

the kinetic energy of the condensed in-plane modes is assumed to be negligible. For

structures such as plates and beams with fixed/pinned boundary conditions, this

is often reasonable, but in structures with free boundary conditions (e.g. cantilever
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beams), this assumption is violated. This chapter bridges the gap between direct and

indirect reduction methods, by exploiting the concept of nonlinear manifolds to show

how in-plane kinetic energy can be accounted for in a non-intrusive manner. This

new insight enables indirect reduction methods to be applied to a far wider range of

structures while maintaining accuracy to higher deflection amplitudes. The accuracy

of the proposed method is validated using an FE model of a cantilever beam.

Chapter 5: Detecting internal resonances (Nicolaidou et al., 2021)
Chapters 3 and 4 consider how, for a given reduction basis, a nonlinear system may

be reduced based on a static condensation. Nevertheless, selecting an appropriate

reduction basis without a priori knowledge of the full-order dynamics remains a

challenge. Retaining redundant modes will lead to computationally suboptimal ROMs,

whilst omitting dynamically significant modes will lead to inaccurate results, and

important features such as internal resonances may not be captured. This chapter

demonstrates how the error associated with the static condensation approximation

can be efficiently estimated during model order reduction. This approximate error can

then be used as the basis of a method for predicting when dynamic modal interactions

will occur, which will guide the reduction basis selection process. Equivalently, this

may serve as a tool for verifying the accuracy of ROMs without the need for full-order

simulations. The proposed method is demonstrated using a simple oscillator and an

FE model of a clamped-clamped beam, for which it predicts the existence of a 1:3 and

a 1:5 internal resonance, respectively.

Chapter 6: Nonconservative structures (Nicolaidou et al., 2022)
In Chapters 3–5, the quality of the computed ROMs is assessed using backbone

curves, i.e. based on the response of the underlying conservative structure. Whilst

backbone curves provide invaluable insight into the nonlinear behaviour of the

structure and are closely related to forced response curves, it is often useful to

compute forced response curves directly. This chapter demonstrates how indirect

reduced-order modelling techniques can be extended to nonconservative structures,

using a nonlinear mapping of the physical DOFs into the reduced coordinates. The

proposed method is contrasted with the traditional approach, which relies on a linear

projection of the nonconservative forces onto the reduced subspace; as a result, only

the forces acting directly on the reduced modes can be captured, whilst any energy

gained or dissipated by the statically condensed modes is neglected. This can lead
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to significant inaccuracies in the ROM predictions, which is demonstrated using a

2-DOF oscillator, an FE model of an axially-excited inclined cable, and an FE model of

a cantilever beam. The proposed method enables the nonconservative forces acting on

the statically condensed modes to be accounted for in the reduced dynamics. Excellent

agreement is observed between the forced response curves of the full-order models

and those of the proposed ROMs.

Chapter 7: Conclusions and future work
This final chapter summarises the conclusions of the thesis, and discussion is also

devoted to potential avenues of future research.



Chapter 3

Accounting for quasi-static coupling

As discussed in section 2.3.2, the main difference between displacement-based and

force-based indirect reduction methods lies in how the quasi-static coupling between

low-frequency transverse modes and high-frequency in-plane modes is captured.

Displacement-based methods require that in-plane modes are directly included in

the reduction basis, thus increasing the size and computational complexity of the

ROM. On the other hand, force-based methods can implicitly capture the response

of the in-plane modes within the stress manifold; however, the resulting ROMs are

sensitive to the scaling of the static solution dataset used to calibrate them, which

may introduce significant errors if the relevant scale factors are not carefully tuned.

In this chapter, quasi-static coupling is first investigated using a simple oscillator

with nonlinearities up to the cubic order. Reduced-order models obtained using the

Implicit Condensation and Expansion method include quadratic and cubic nonlinear

terms; however, here it is demonstrated mathematically that the ROM describing

the oscillator requires higher-order nonlinear terms to capture the modal coupling.

Novel ROMs, with higher-order nonlinear terms, are then shown to be more accurate,

and significantly more robust to scaling of the calibration dataset, compared to the

traditional cubic ROMs. The robustness of these novel ROMs is further demonstrated

using an FE model of a clamped-clamped beam.

Publication resulting from this work
Nicolaidou, E., Melanthuru, V. R., Hill, T. L., and Neild, S. A. (2020). Accounting

for quasi-static coupling in nonlinear dynamic reduced-order models. Journal of
Computational and Nonlinear Dynamics, 15(7):071002
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3.1 Introduction

This chapter investigates the mechanism that underpins the quasi-static coupling

between low- and high-frequency modes in nonlinear dynamical systems. Membrane

stretching is an example of quasi-static coupling, i.e. the response of in-plane/axial

modes in beams and plates, may be assumed to be a function of the response of

transverse/bending modes. Here, the more general term is employed to account

for similar effects in systems without membrane-like features, such as the simple

oscillator which will be considered as a motivating example in section 3.2. The

effect of quasi-static coupling is investigated in detail using a force-based indirect

reduction procedure, and it is demonstrated that a ROM that is insensitive to the

selection of force scale factors may exist. Specifically, it is demonstrated that, for a

general, geometrically nonlinear structure, quasi-static coupling causes the order of

the nonlinearity in the reduced dynamics to increase. In other words, even though

the full-order system contains nonlinearities only up to the cubic order, the ROM

must include higher-order nonlinear terms in order to accurately capture its response.

This is in contrast to existing approaches, whereby reduction is achieved via a linear

projection, such that the nonlinearity in the ROMs is limited to cubic order (Mignolet

et al., 2013). It is shown that, using a higher order of nonlinearity in the ROM, not

only leads to a more robust parametric fitting procedure, but the resulting ROMs can

be significantly more accurate.

The rest of this chapter is structured as follows. Section 3.2 introduces a simple,

2-DOF oscillator which exhibits quasi-static coupling between its two modes; this is

used as a motivating example to demonstrate the effect of including higher orders of

nonlinearity in the ROMs. After formalising the definition of quasi-static coupling in

section 3.3, the oscillator is used to demonstrate that a ROM which is invariant to

the force scale factors does exist, but requires a higher order of nonlinearity in the

reduced dynamics. In section 3.4, the approach is demonstrated using an FE model

of a clamped-clamped beam. Finally, the conclusions are summarised in section 3.5.

3.2 Motivating example

Quasi-static coupling describes the coupling between the linear normal modes of

a system, whereby the response of one mode may be expressed as a function of

the response of another mode or set of modes. For example, as shown in figure 3.1,
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the tip of a thin cantilever beam will move towards the root of the beam as the

bending amplitude increases; this may be viewed as an axial displacement of the

beam. However, this axial motion is a function of the vertical deflection, rather than

an independent DOF, provided that the axial stiffness is much greater than the

bending stiffness. A beam is considered in section 3.4, however, first, a conceptually

simple system is used to demonstrate the quasi-static coupling effects and examine

their influence on the process of reduced-order modelling.

Figure 3.1. Schematic diagram depicting the axial motion of the tip of a cantilever
beam undergoing a large deflection. The dashed red line shows the path of the tip of
the beam.

3.2.1 Two-DOF oscillator

In this section, a simple, 2-DOF oscillator is used to investigate the effects of

quasi-static coupling. The oscillator consists of a single mass m = 0.1 kg, and is

constrained by two springs of length ℓ= 0.1 m, which are undeformed and oriented

along the x- and y-directions at the equilibrium configuration, as shown in fig-

ure 3.2 (a). The springs are linearly elastic, with stiffness coefficients k1 = 10 N m−1

and k2 = 1000 N m−1, respectively, and obey a linear strain–displacement relationship.

A similar model, which involves springs with a quadratic strain–displacement rela-

tionship, has previously been considered in the context of reduced-order modelling by

Touzé et al. (2004a; 2006).

As the two springs are orthogonal and have no pretension, the first linear mode of

the system is captured by a purely horizontal (x-direction) motion, whilst the motion

of the second mode is purely vertical (y-direction). As k2 ≫ k1, the second natural

frequency is considerably greater than the first, i.e. ω2 = 10ω1. Additionally, if the

mass is deflected horizontally (i.e. in the first mode), the strong coupling between

the modes will cause a deflection in the vertical direction (i.e. the second mode). For

small dynamic displacements in the first mode, the mass will follow an arced path, as
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(a)  
m

k1

ℓ = 100mm

k2 ℓ

x

y

(b)

Figure 3.2. (a) Schematic diagram of the single-mass, 2-DOF oscillator at its equi-
librium position. (b) A free, periodic response of the 2-DOF oscillator, shown in the
projection of horizontal displacement against vertical displacement, parameterised
in time.

shown in figure 3.2 (b).1 This response clearly shows a displacement in the vertical

direction; however, rather than being an independent DOF, the vertical displacement

may be considered to be a function of the horizontal displacement, i.e. y= f (x). This

is analogous to the cantilever beam shown in figure 3.1, which also exhibits strong

coupling between modes with a large separation in their natural frequencies. Note

that, in the extreme case of k2 →∞, this oscillator represents a pendulum — a system

with only one DOF, which exhibits a response similar to that shown in figure 3.2 (b).

The equations of motion of the 2-DOF oscillator are written as

mẍ+Fx (x, y)= 0,

mÿ+Fy (x, y)= 0,

(3.1a)

(3.1b)

where Fx and Fy describe the restoring forces acting on the oscillator along the x- and

y-direction, respectively. These restoring forces lead to coupling between motions in

the x- and y-directions; however, as previously discussed, they do not generate a linear

coupling force. Therefore, the linear modal coordinates may be written as q1 = mx

1As this is a periodic response of the conservative system, this motion represents a nonlinear
normal mode, i.e. a point on the first backbone curve of the oscillator, which emanates from the first
natural frequency.
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and q2 = my which, when substituted into equations (3.1) may be approximated to

q̈1 +ω2
1q1 +α1q2

1 +α2q1q2 +α3q2
2 +α4q3

1 +α5q2
1q2 +α6q1q2

2 +α7q3
2 = 0,

q̈2 +ω2
2q2 +β1q2

1 +β2q1q2 +β3q2
2 +β4q3

1 +β5q2
1q2 +β6q1q2

2 +β7q3
2 = 0,

(3.2a)

(3.2b)

where the parameters are given in table 3.1. Note that, for the sake of simplicity,

the nonlinear terms have been truncated to the cubic order, using a Taylor series

expansion. Although this approximate model is no longer an exact reflection of the

dynamics of the system, it does still exhibit the strong quasi-static coupling between

the modes, which allows this effect to be investigated for a mathematically simple

model. As such, the cubic approximation of the oscillator is referred to as the full-

order model throughout this chapter, whilst a geometrically exact model is considered

later in Chapter 6.

Table 3.1. Coefficients of the truncated equations of motion of the 2-DOF oscillator,
equations (3.2).

Coefficient Value Coefficient Value

ω1 10 ω2 100
α1 0 β1 5×105

α2 106 β2 104

α3 5000 β3 0
α4 5×107 β4 0
α5 0 β5 −1.01×108

α6 −1.01×108 β6 0
α7 0 β7 5×105

3.2.2 Overview of nonlinear reduced-order modelling

A nonlinear reduced-order model has fewer degrees-of-freedom than the original,

full-order model; in this case, equations (3.2) are treated as the full-order model. The

ROM must accurately reproduce the dynamic behaviour of the full-order model over

a specific region, such as a range of response frequencies. For the case of the simple

oscillator, the region of interest is defined as responses in the vicinity of the first

natural frequency.2 The reduced-order modelling approach developed here assumes

that the full-order equations of motion are unknown, which is often the case when

2As discussed later, the region of interest corresponds to NNMs represented by the first backbone
curve of the system.



26 CHAPTER 3. ACCOUNTING FOR QUASI-STATIC COUPLING

a nonlinear structure is modelled using commercial FE software. Therefore, the

reduction methodology should not require access to the full-order equations of motion.

For the simple example considered here, the coefficients describing the full-order

equations of motion are known, however these will not be explicitly used to compute

the ROMs.

The reduced-order modelling procedure used here is the force-based indirect

method described in section 2.3.2, known as Implicit Condensation and Expansion,

which is implemented as follows:

1. Select the reduction basis and compute the linear reduced coefficients.

2. Apply a series of static forces to the full-order model, and extract the corre-

sponding static displacements. For each load case, the applied force is a linear

combination of the reduced modeshapes.

3. Estimate the parameters of the reduced nonlinear functions (i.e. the stress

manifold) using the static force and displacement dataset.

Note that the number of load cases must be at least equal to the number of unknown

parameters in the nonlinear functions. Therefore, a larger ROM (i.e. with a larger

number of DOFs) or a higher order of nonlinearity, will require a larger number of

static load cases. Traditionally, the nonlinear functions in the ROM are expressed

as quadratic and cubic polynomials of the reduced coordinates, as discussed in

section 2.3.2, equation (2.10) (Hollkamp and Gordon, 2008; Mignolet et al., 2013).

3.2.3 Motivating results

The ICE method is now used to compute ROMs of the full-order model of the oscillator,

equations (3.2). As previously discussed, the responses in the region of the first

natural frequency are of interest, hence the ROM consists of a single mode, q1. A

typical ROM, with nonlinearities up to the cubic order, is written in the form

q̈1 +ω2
1q1 + A2q2

1 + A3q3
1 = 0 , (3.3)

where the nonlinear coefficients, A2 and A3, are to be estimated using the static

solution dataset, whilst the linear natural frequency, ω1, is obtained using the linear

mass and stiffness matrices of the full-order model. Equation (3.3) is referred to as

the third-order ROM and may be considered as the standard approach used in the

literature. An additional, and novel, ROM with nonlinear terms up to the ninth order3

3The motivation for this particular order of ROM is discussed in section 3.3.
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is also used for comparison. This is termed the ninth-order ROM, and is written as

q̈1 +ω2
1q1 +

9∑
k=2

Akqk
1 = 0. (3.4)

The ninth-order ROM has six additional parameters that must be estimated, and

hence requires the computation of additional static solutions.

For both ROMs, the force-displacement dataset is obtained by applying a static

force to the first mode of the oscillator, i.e. solving

ω2
1q1 +α1q2

1 +α2q1q2 +α3q2
2 +α4q3

1 +α5q2
1q2 +α6q1q2

2 +α7q3
2 = κFq1,

ω2
2q2 +β1q2

1 +β2q1q2 +β3q2
2 +β4q3

1 +β5q2
1q2 +β6q1q2

2 +β7q3
2 = 0,

(3.5a)

(3.5b)

for q1 and q2, where Fq1 is a normalised force applied to the first mode, and κ is

a force scale factor. For each load case, the static force applied to the first mode is

evenly spaced between −κ and +κ, and the number of load cases matches the number

of unknown parameters in the ninth-order ROM,4 i.e.

Fq1 =
{
−1 ,−5

7
, −3

7
, −1

7
,

1
7

,
3
7

,
5
7

, 1
}

. (3.6)

Once the static displacements corresponding to each load case are computed, the

ROM parameters are estimated in a least-squares manner. For the third-order ROM,

the nonlinear coefficients, A2 and A3, are computed as(
A2

A3

)
=Q−1c1 , (3.7)

where the ith rows of Q and c1 are populated with the results of the ith load case, i.e.

Q =



[
q2

1 q3
1

]
Fq1=−1[

q2
1 q3

1

]
Fq1=−5/7

...[
q2

1 q3
1

]
Fq1=+1

 , (3.8a)

c1 =



[
κFq1 −ω2

1q1

]
Fq1=−1[

κFq1 −ω2
1q1

]
Fq1=−5/7

...[
κFq1 −ω2

1q1

]
Fq1=+1

 . (3.8b)

4Note that, typically, ROMs are calibrated using a minimum number of load cases, e.g. 2 for
a single-DOF third-order ROM. Here, each ROM utilises 8 load cases, which allows for a direct
comparison between ROMs with different orders of nonlinearity.
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A similar expression is used to estimate the parameters of the ninth-order ROM,

where Q and c1 measure 8×8 and 8×1, respectively.

Figure 3.3 (a) shows how the cubic parameter, A3, of the third- and ninth-order

ROMs, varies with the force scale factor, κ.5 The maximum force scale factor consid-

ered here, κ= 0.16, corresponds to an absolute static displacement of approximately

0.17 ℓ and 0.02 ℓ in the x- and y-directions, respectively. As previously noted in

studies of the ICE method (Gordon and Hollkamp, 2011; Kuether, 2014), the values

of the ROM parameters are dependent on the force scale factor. This is clearly seen

in figure 3.3 (a) where, for the third-order ROM, A3 varies significantly. As a result,

the force scale factor must be carefully chosen to obtain an accurate model of the

system. This large variation in A3 illustrates a fundamental issue with the structure

of the nonlinear function in the ROM. The cubic parameter of the ninth-order ROM,

(a) (b)

Figure 3.3. (a) Estimated value of the cubic parameter, A3, of the third- and ninth-
order ROMs, as the force scale factor varies. The circles denote specific force scale
factors, at κ= {0.01,0.10,0.15}, that are used to compute the backbone curves shown
on the right. (b) Comparison between the backbone curves of the third- and ninth-
order ROMs, calibrated using different force scale factors. These are compared to the
first backbone curve of the full-order model, shown in the projection of the response
frequency, Ω, against the amplitude of displacement of the first mode, Q1.

5Note that, typically, only one force scale factor is chosen to calibrate the ROM. Here, multiple
scale factors are used in order to demonstrate the effect of this choice on the ROM parameters.
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however, appears to be less sensitive, indicating that this model is more robust to the

choice of force scale factor.

A backbone curve is a locus of periodic responses of the conservative system, and

captures the fundamental dynamic behaviour of a nonlinear system (Kerschen et al.,
2009). As such, backbone curves may be used as a means of assessing the accuracy of

ROMs (Kuether et al., 2015). The backbone curves of the two ROMs, calibrated using

three different force scale factors, are shown in figure 3.3 (b), along with the first

backbone curve of the full-order model.6 It can be seen that the ninth-order ROMs are

not only more accurate than the corresponding third-order ROMs, but they are also

significantly more robust to the choice of force scale factor. As shown in figure 3.3 (a),

the cubic parameter of the third- and ninth-order ROMs becomes equivalent at low

force scale factors, demonstrating that the difference between the backbone curves of

these ROMs is driven by the higher-order terms.These results motivate the need for

higher-order nonlinear terms in the ROM.

Recalling that the nonlinearities of the full-order system, equations (3.2), are

truncated at the third order, it may seem counter-intuitive that the dynamics are best

captured by a ninth-order ROM. The following section explores how the quasi-static

coupling between the two modes leads to a ROM that requires a higher order of

nonlinearity than the full-order system.

3.3 Accounting for quasi-static coupling

3.3.1 Effect of quasi-static coupling on the order of nonlinearity

When a force is applied in the first mode of the 2-DOF oscillator, the resulting static

deflection in the first mode is accompanied by a static deflection in the highly stiff

second mode, such that the oscillator follows an arced path, as previously illustrated

in figure 3.2 (b). This modal coupling may be approximated as quasi-static, i.e.

the second mode may respond dynamically,7 but is constrained by the coupling

with the first mode, which may be captured statically. Therefore, the reduction

procedure cannot rely on the assumption that q2 is small; in other words, removing

all q2-dependent terms in the first modal equation of motion of the full-order model,

6All backbone curves have been computed using the MATLAB-based numerical continuation
package Continuation Core (COCO), which solves boundary-value problems using a collocation method
with piecewise polynomials (Dankowicz and Schilder, 2013; Schilder and Dankowicz, 2015).

7In the presence of a dynamic interaction (e.g. internal resonance), the participating modes must
be included as independent DOFs in the reduction basis — this will be explored in Chapter 5.
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equation (3.2a), will lead to inaccurate results. Instead, reducing the number of

DOFs of the full-order model relies on the assumption that the inertial term, q̈2, is

small relative to the stiffness components in the second modal equation of motion,

equation (3.2b). This allows the dynamics of the second mode to be neglected, without

requiring the displacement to be negligible. When the second natural frequency is

significantly larger than the first, i.e. ω2 ≫ω1, and the response frequency of the

system is in the vicinity of ω1, this assumption is reasonable, and does not require q2

to be small relative to q1. This is because the inertial term in the second equation of

motion is in the order of ω2
1q2, whilst the linear stiffness term is ω2

2q2. By assuming

that q̈2 ≈ 0, the second equation of the static full-order system, equation (3.5b), allows

the response of the second mode to be written as a function of q1, i.e.

q2 = f
(
q1 ,ω2 , β1 , β2 , . . .

)
, (3.9)

where ω2 and βi are the linear and nonlinear parameters of equation (3.5b), respec-

tively. This may be approximated as a Jth-order polynomial function of q1, i.e.

q2 ≈
J∑

j=2
B j q

j
1 , (3.10)

where the coefficients, B j, are a function of the parameters in the second equation of

motion of the full-order model, but are independent of q1 or the force applied to the

system, i.e. B j = B j
(
ω2 , β1 , β2 , . . .

)
. As such, the values B j are fixed for a given set

of system parameters. Note that no linear term is included in equation (3.10), as q1

and q2 are, by definition, linearly uncoupled. Substituting equation (3.10) into the

first equation of motion of the full-order model, equation (3.2a), leads to the reduced

equation of motion

q̈1 +ω2
1q1 +

3J∑
j=2

A j q
j
1 = 0 , (3.11)

where

A2 =α1,

A3 =α4 +B2α2,

A4 = B2α5 +B2
2α3 +B3α2,

A5 = B2
2α6 +2B2B3α3 +B3α5 +B4α2,

A6 = B3
2α7 +2B2B3α6 +2B2B4α3 +B2

3α3 +B4α5 +B5α2,

A7 = 3B2
2B3α7 +2B2B4α6 +2B2B5α3 +B2

3α6 +2B3B4α3 +B5α5 +B6α2,
...

...

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)

(3.12f)
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Note that when J = 3, equation (3.11) is equivalent to the ninth-order ROM consid-

ered earlier, equation (3.4).

Equations (3.12) show that the ROM parameters, A i, are only dependent on the

quasi-static coupling parameters, B j, and the nonlinear full-order parameters, αk.

As such, the ROM parameters are independent of the force scale factor. Recalling that

the nonlinear terms in the full-order model do not go beyond the cubic order, it should

be highlighted that this ROM has a significantly higher order of nonlinearity than

the full-order equations of motion. In general, assuming that q2 is a function of q1

will lead to higher-order nonlinear terms in the ROM, as this quasi-static coupling

function must be nonlinear.

As the lowest order of nonlinearity in the full-order system is quadratic, the

quasi-static coupling parameter B j cannot contribute to the parameter A i, where

i < j+1. This can be seen in equations (3.12), where B2 does not contribute to A2,

and B3 does not contribute to A2 or A3, etc. As such, the ROM parameters up to A9

can be computed precisely by finding q2 as a function of q1 up to order J = 8, from

equation (3.10). These parameters are given in table 3.2.

Table 3.2. Values of parameters of the quasi-static coupling function, and the func-
tion of reduced nonlinear restoring forces.

Coefficient Value Coefficient Value

B2 −50 A2 0
B3 +50 A3 0
B4 −5.051×105 A4 +6.250×107

B5 +1.010×106 A5 −7.576×1011

B6 −5.096×109 A6 +1.768×1012

B7 +1.528×1010 A7 −1.020×1016

B8 −5.129×1013 A8 +3.440×1016

A9 −1.285×1020

Table 3.2 shows that the quadratic and cubic parameters, A2 and A3, of the

reduced-order model are both zero. Recalling that the full-order equations of motion

contain quadratic and cubic terms, this may seem surprising and further highlights

the importance of considering higher-order terms during the fitting procedure. This

also demonstrates why, for low force scale factors, the third-order ROM tends towards

a linear system, as seen in figure 3.3 (b). Note, however, that A2 = A3 = 0 is not a
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feature that is common to all ROMs; this is demonstrated in section 3.4, where an

FE model of a clamped-clamped beam is considered.

In all but the simplest of systems, computing the ROM parameters directly as a

function of the coefficients of the full-order model is impractical, and often altogether

infeasible, e.g. when considering structures modelled using commercial FE software.

For more complex systems, these parameters may still be estimated in a least-squares

manner, as shown in section 3.2.3, which will require a truncation of the order of the

nonlinearity in the ROM. This will introduce an error, which is likely to increase as

the force scale factor is increased; this is because the neglected higher-order terms

become relatively more significant as the response amplitude increases. However,

this may be viewed as an approximation error, rather than a tuning of the model, as

the ROM parameters are invariant with respect to the force scale factor.

3.3.2 Reduced-order models of the oscillator

Figure 3.4 shows the relative errors between the true (equation (3.12)) and estimated

parameters (equations (3.7) and (3.8)) of the third- and ninth-order ROMs. The rela-

tive error is defined as
(
Â i − Ā i

)
/Ā i, where Ā i and Â i denote the true and estimated

values of A i, respectively. For the quadratic and cubic coefficients, the estimated

values are shown, rather that the relative errors, since Ā2 = Ā3 = 0. Note that the

plot of the estimated values of A3, for the two different ROMs, was shown previously

in figure 3.3 (a).

Figure 3.4 further demonstrates that the ninth-order ROM is significantly more

robust with respect to the force scale factor, κ, than the third-order model. However,

figure 3.4 does reveal that there is some error associated with the estimation of the

ninth-order parameters, and that this error increases with κ. As previously discussed,

this is due to the higher-order terms becoming relatively more significant at higher

force scale factors. The magnitude of these errors appears to increase as the order of

the nonlinear terms increases; however, for the range of force scale factors considered

here, these errors remain small. This is because the relative significance of the

corresponding polynomial term is small, as discussed in the following section and

shown in figure 3.6. Assuming that the terms above the ninth-order are negligible,

this suggests that the ninth-order fit should give consistently accurate results, even

at low force scale factors.

The dynamics of the condensed mode, q2, can be approximated by means of
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Figure 3.4. Relative errors of the estimated parameters of the third- and ninth-order
ROMs, as the force scale factor varies. For the quadratic and cubic parameters, A2
and A3, the estimated values are shown, rather than the relative errors, as the true
parameters are equal to zero (see table 3.2).

the quasi-static coupling function. The quasi-static coupling coefficients may be

approximated in a least-squares manner, as with the function of reduced nonlinear

restoring forces, using the existing static solution dataset. For the third-order ROM,

these may be computed as (
B2

B3

)
=Q−1c2 , (3.13)

where

c2 =



[
q2

]
Fq1=−1[

q2

]
Fq1=−5/7
...[

q2

]
Fq1=+1

 , (3.14)

and Q is as defined in equation (3.8). A similar expression is used for the ninth-order

ROM.

Figure 3.5 shows the first backbone curve of the oscillator in terms of the ampli-

tudes of the first and second modes, Q1 and Q2. The response of the first mode is
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Figure 3.5. Comparison between the backbone curves of the third- and ninth-order
ROMs, calibrated using different force scale factors. These are compared to the first
backbone curve of the full-order model.

computed directly based the reduced equation of motion, equation (3.11), whilst the

amplitude of the condensed mode is computed in a post-processing step, using the

quasi-static coupling function, equation (3.10). The values of parameters B j differ be-

tween the force scale factors and ROMs. As previously discussed for the Q1-projection

in figure 3.3 (b), the backbone curve of the ninth-order ROMs (red lines) show a

much better agreement with that of the full-order model (black line) than that of the

third-order ROMs (blue lines); this trend is also seen in the projection of the second

modal amplitude, Q2. In both projections, the backbone curves of the ninth-order

ROMs overlap, demonstrating the robustness of the ROM with respect to the force

scale factor. It should be acknowledged that, to some degree, it is unsurprising that a

higher-order polynomial enables a better approximation of the static solution dataset;

however, it is the physical justification for this that is paramount.

3.3.3 Comparing the accuracy of different truncation orders

The ninth-order ROM has been shown to be significantly more accurate in capturing

the response of the full-order model, and significantly more robust with respect to

the force scale factor, in comparison with the third-order ROM. This demonstrates

the advantages of including a high order of nonlinearity in the ROM, even when the

full-order model contains nonlinear terms only up to the cubic order. As previously

discussed, the ninth-order of nonlinearity captures the effects of all terms in the

quasi-static coupling function, equation (3.10), up to the third order, i.e. for J = 3.

However, it has also been noted that the terms in the ROM with a very high order are
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likely to be less significant. This implies that a lower order of nonlinearity (i.e. lower

than ninth-order) in the ROM may still be able to accurately capture the dynamics of

the full-order system. This is first investigated by inspecting the magnitudes of the

terms in the ninth-order ROM at different response amplitudes.

Figure 3.6 compares the magnitudes of each monomial in the ROM for three

different points on the backbone curve. The magnitude of the nth-order term is

defined as max{|Anqn
1 |}, where the true value of An is used, from table 3.2, and

the backbone curve is computed using the full-order model. The labels on the axes

of the inset panels denote the term order. Note that the second- and third-order

terms are not shown as A2 = A3 = 0, hence their magnitudes must be zero. Figure 3.6

clearly demonstrates that, for the three points shown here, the fifth-order term is

dominant. The seventh-order term becomes more significant at higher amplitudes,

whilst the ninth-order term is negligible at lower amplitudes, and very small at

higher amplitudes. Of the even-valued terms, the fourth-order term is relatively

significant, particularly at low amplitudes, whilst the sixth- and eighth-order terms

are negligible for all three points shown.8

Figure 3.6. Comparison of the relative magnitudes of the nonlinear terms in the
ROM, for three different points on the backbone curve. The black line shows the
backbone curve of the full-order system and the three black dots denote the three
responses used for comparison. The inset panels show the relative magnitude of each
term, where the nth term is given by max{|Anqn

1 |}.

8Note that this analysis requires the true parameters of the ROM to be known, and hence the
significance of each nonlinear term cannot typically be determined a priori.
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The observation that the magnitudes of the high-order terms appear to be small,

implies that a lower-order (i.e. lower than ninth-order, but higher than third-order)

ROM may be able to produce accurate results. This is now investigated by comparing

all orders of ROM, from the third to the ninth. As before, each ROM uses 8 evenly

distributed load cases.

Figure 3.7 shows the backbone curves obtained using ROMs truncated to different

orders of nonlinearity, all found using a force scale factor of κ= 0.1. The top panels

compare the third- and fourth-order ROMs, represented by dashed blue and solid red

lines, respectively, to the full-order model, represented by a solid black line. It can be

seen that the addition of the fourth-order term only allows for a small improvement

to the accuracy of the backbone curve. This is to be expected as, from figure 3.6, the

fifth-order monomial is the most significant term, but is not included in either the

third- or fourth-order ROM.

The bottom panels in figure 3.7 compare the backbone curves of the fifth- to ninth-

order ROMs, to that of the full-order model. These are significantly more accurate

than the third- and fourth-order ROMs; this is primarily due to the presence of a

fifth-order nonlinearity, which was previously identified as the most significant term.

Figure 3.7. Comparison between the backbone curves of ROMs truncated to different
orders of nonlinearity, for κ= 0.1. Top: third- and fourth-order ROMs; bottom: fifth- to
ninth-order ROMs. These are compared to the first backbone curve of the full-order
model.
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Comparing the fifth- and sixth-order ROMs reveals that the addition of the sixth-

order term results in a small improvement, reflecting the observation from figure 3.6

that the sixth-order term is negligible. Likewise, the seventh- and eighth-order

backbone curves are indistinguishable, as the eighth-order term is also negligible.

However, as the seventh-order term is significant, the seventh- and eighth-order

ROMs do show a significant improvement compared to the lower orders. Finally, the

ninth-order ROM leads to an improvement in accuracy; however, this improvement

is minor, due to the relative magnitude of the ninth-order term.

It can be concluded that, whilst the ninth-order ROM is required to fully capture

the cubic enslavement of the second mode to the reduced mode (i.e. for J = 3), the

effect of the ninth-order term is negligible. A very good fit in the backbone curve may

still be achieved with a seventh-order model, and a fifth-order model also provides a

good fit. Overall, this demonstrates that a higher-order will lead to a greater accuracy

but, if a lower-order is desired (for example, if a limited number of load cases, and

hence parameters, are available) then a good accuracy may still be achieved.

In summary, this section has demonstrated that the quasi-static coupling between

the two linear modes of the simple, 2-DOF oscillator leads to a higher order of

nonlinearity in the ROM than in the full-order equations of motion. Whilst a higher-

order ROM does require additional parameters to be estimated, it is significantly

more robust to the force scale factor and produces significantly more accurate results.

The following section extends this analysis to an FE model of a clamped-clamped

beam.

3.4 Application to FE model of a clamped-clamped beam

The third- and ninth-order single-mode ROMs of a geometrically nonlinear clamped-

clamped beam, modelled using the FE software Abaqus9 (Dassault Systèmes, 2017),

are now considered. The beam has a length, width and thickness (h) of 650 mm,

30 mm and 2 mm, respectively, and is constructed of steel with a Young’s modulus,

shear modulus and density of 210 GPa, 80 GPa and 7850 kg m−3, respectively. The

beam is discretised using 130 three-node quadratic beam elements (Timoshenko type,

B32 (Dassault Systèmes, 2017)), resulting in 1554 DOFs. Its first mode, which is the

only mode retained in the ROMs, corresponds to the first bending mode of the beam

9All numerical modelling throughout this thesis is implemented in MATLAB, with the aid of the
Abaqus2Matlab toolbox (Papazafeiropoulos et al., 2017).
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and has a linear natural frequency of ω1 ≈ 158 rad s−1. Note that the single-mode

ROMs computed here, aim to capture the salient behaviour of the beam in the vicinity

of the first backbone curve, and are used to investigate the coupling between the low-

frequency (bending) and high-frequency (axial) modes; they are not intended to fully

describe the dynamics of the system, for example by capturing internal resonances.

The static solution data used to construct the ROMs are obtained by applying a

static force proportional to the first modeshape, and projecting the resulting physical

displacement of the beam, onto the mass-normalised linear modeshapes. Similar

to the approach described in section 3.2.3, both the third- and ninth-order ROMs

constructed for each force scale factor, utilise 8 pairs of force–displacement data, in

which the reduced modal force applied to the beam is equally distributed between

−κ and +κ. The minimum force scale factor considered here, κ= 8.7, corresponds

to the force required to achieve a maximum displacement of ∼ 1mm= 0.5h in the

underlying linear system, which occurs at the midspan of the beam. This value was

found to produce optimal results for a single-mode ROM of a clamped-clamped beam

in Kuether et al. (2015), where the sensitivity to the scale factor was demonstrated

using the Constant Linear Displacement method of scaling, originally proposed by

Gordon and Hollkamp (2011). The maximum force scale factor considered here,

κ= 100, extends beyond the optimal value, and corresponds to a linear maximum dis-

placement of ∼ 11.5mm= 5.75h, and an actual (nonlinear) maximum displacement

of wmax ∼ 3.64mm= 1.82h.

3.4.1 Modal coupling

Figure 3.8 (a) shows the displacement of the first and second axial modes, q59

and q101, against the displacement of the first (bending) mode, q1. These modal

displacements are reached when forces are applied in only the first mode, hence the

axial displacements are only induced due to the coupling with the first mode. As these

modes are significantly stiffer than the first (i.e. ω59/ω1 ≈ 316 and ω101/ω1 ≈ 632),

this coupling may be assumed to be quasi-static, as seen in the simple oscillator

considered previously. There is a clear similarity between the free periodic response

of the simple oscillator, shown previously in figure 3.2 (b), and the response of the

beam shown in figure 3.8 (a).

Figure 3.8 (b) shows the corresponding elastic potential energy of the two axial

modes as a percentage of the energy of the first mode, plotted against the displace-
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(a) (b)

Figure 3.8. (a) Static displacements of the first bending mode, q1, and two axial
modes, q59 and q101, when a force is applied in the first mode of the clamped-clamped
beam. (b) Elastic potential energy of the two axial modes, E59 and E101, as a fraction
of the energy of the first mode, E1, plotted against the static displacement of the first
mode.

ment of the first mode.10 These are calculated using a linear energy integral, i.e.

En = 0.5ω2
nq2

n, for n = 1, 59, 101. Even though the force was only applied to the first

mode of the beam, the amount of energy induced in the highly stiff axial modes is

relatively large. This highlights the significance of the axial modes in the response

of the beam, even when operating at frequencies much lower than their natural

frequencies.

3.4.2 Single-mode ROM results

Figure 3.9 shows the estimated parameters of the third- and ninth-order ROMs of

the clamped-clamped beam, for force scale factors in the range κ= [8.7, 100]. It can

be seen that both the third- and ninth-order ROMs predict a quadratic parameter,

A2, that is close to zero, regardless of the scale of the load applied. This is expected,

as the structure is symmetric.

The cubic parameter, A3, of the third-order ROM (represented by blue dots) varies

significantly as the force scale factor is increased. The cubic parameter in the ninth-

order ROM, meanwhile, remains close to a fixed value, suggesting that it is less

sensitive to the force scale factor. This agrees with the findings of the simple oscillator

10As the response of the axial modes is symmetric, only positive displacements are shown here.
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Figure 3.9. Estimated values of the parameters of the third- and ninth-order ROMs,
as the force scale factor varies. The circles denote specific force scale factors, at
κ= {8.7,50,100}, that are used to compute the backbone curves shown in figure 3.10.

considered in previous sections.

The even-valued parameter A4 (only present in the ninth-order ROM) fluctuates

around relatively small values.11 The term corresponding to this parameter may be

considered negligible, which, again, is expected due to the symmetric nature of the

beam.

In contrast, the odd-valued parameter A5 is more than 10 orders of magnitude

larger than A4, and the trend it exhibits is qualitatively similar to that of A3. The

significance of this term is also later verified in figure 3.11, further justifying the

need for nonlinear terms of order higher than cubic. Given the magnitude of the

quintic monomial in the ROM, relative to the cubic one, the effect of the variation in

A5 is small, resulting in a robust ROM as the force scale factor varies.

Figure 3.10 shows a comparison of the backbone curves of the third- and ninth-

order ROMs, calibrated using three different force scale factors (κ= {8.7, 50, 100}).

Note that, as the backbone curve of the full-order FE model is unknown, it is not

compared to that of the ROMs in this case. The figure demonstrates the sensitivity of

the third-order ROMs to the force scale factor, which can lead to inaccurate response

predictions when the scaling of the static solution dataset is not carefully tuned. In

contrast, the ninth-order ROMs result in backbone curves that remain practically

indistinguishable as the scale factor varies.

It should also be highlighted that the ninth-order ROMs produce results similar

11Note that, whilst A4 = O(104), the corresponding ROM term will be insignificant, i.e.
A4q4

1 =O(10−8), since q1 =O(10−3).
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Figure 3.10. Comparison between the backbone curves of the third- and ninth-order
ROMs, calibrated using different force scale factors.

to those obtained using the optimal third-order ROM (κ= 8.7), as reported in Kuether

et al. (2015). This highlights the accuracy, as well as robustness of the ninth-order

ROMs, which can eliminate the need for carefully tuning the force scale factors for

each specific application and set of operating conditions.

Figure 3.11. Comparison of the relative magnitudes of the nonlinear terms in the
ROM, for three different points on the backbone curve. The black line shows the
backbone curve of the ninth-order ROM and the three black dots denote the three
responses used for comparison. The inset panels show the relative magnitude of each
term.
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Figure 3.11 shows the backbone curve predicted by the ninth-order ROM, cali-

brated using a force scale factor of κ= 100. Similar to figure 3.6, the inset panels

represent the magnitude of the nonlinear term for three different points on the

backbone curve. The figure demonstrates that the cubic terms are dominant in all

three responses, which largely justifies the use of third-order ROMs in similar studies

in the literature, especially for lower response amplitudes. However, it is highlighted

that the odd-valued higher-order nonlinearities become increasingly significant at

higher amplitudes. This indicates that, as with the simple oscillator, a ROM with

an order of nonlinearity that is higher than cubic, is required to robustly and accu-

rately capture the backbone curve of the full-order model as the response amplitude

increases.

3.5 Summary

This chapter has demonstrated that the coupling between high- and low-frequency

modes in a nonlinear dynamical system may be approximated as a quasi-static
interaction. If this coupling is sufficiently strong, the response of the statically coupled

modes must be accounted for in the reduced-order model, but they do not need to

be modelled as independent DOFs. Specifically, it has been shown that quasi-static

coupling introduces higher orders of nonlinearity in the reduced dynamics, beyond the

order of nonlinearity present in the full-order model. It has been demonstrated that

including higher-order nonlinear terms leads to a significant increase in the accuracy

of the ROMs, determined by comparing the backbone curves of a conceptually simple,

2-DOF oscillator. Furthermore, these higher-order ROMs are significantly more

robust to the force scale factor used to estimate the reduced parameters. These

findings have also been validated by computing ROMs of a clamped-clamped beam,

modelled using commercial FE software.

Even though ROMs with higher orders of nonlinearity require a larger number of

parameters to be estimated, their invariance to force scale factor renders them more

robust and removes the need for any tuning of the force scale factor. Additionally,

ROMs may be calibrated using larger force scale factors, thus removing the need to

extrapolate the responses of the models beyond their calibrated domain. This further

adds to the robustness and trustworthiness of the higher-order ROMs.



Chapter 4

Capturing in-plane inertia

The applicability of force-based indirect reduced-order modelling methods, regardless

of whether higher orders of nonlinearity are included in the reduced dynamics, is

typically limited to structures in which: (a) the main source of nonlinearity is the

quasi-static coupling between transverse and in-plane modes; and (b) the amount

of in-plane displacement is limited. The second requirement arises from the fact

that, in existing methods, in-plane inertia/kinetic energy is assumed to be negligible.

For structures such as thin plates and slender beams with fixed/pinned boundary

conditions, such as the clamped-clamped beam considered in Chapter 3, this approx-

imation is often reasonable; however, in structures with free boundary conditions

(e.g. cantilever beams), this assumption is violated. This chapter bridges the gap

between direct and indirect reduction methods, by exploiting the concept of nonlinear

manifolds to show how in-plane kinetic energy can be accounted for in a non-intrusive

manner, without requiring any additional information from the FE model. This new

insight enables indirect reduction methods to be applied to a far wider range of

structures whilst maintaining accuracy to higher deflection amplitudes. The accuracy

of the proposed method is validated using an FE model of a cantilever beam.

Publication resulting from this work
Nicolaidou, E., Hill, T. L., and Neild, S. A. (2020). Indirect reduced-order modelling:

using nonlinear manifolds to conserve kinetic energy. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 476(2243):20200589
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4.1 Introduction

Direct and indirect reduced-order modelling methods, which were previously dis-

cussed in section 2.3, are often considered as largely distinct research areas. Methods

in the former class, and specifically approaches based on the theory of invariant

manifolds, are supported by a rigorous mathematical framework, but due to their

high analytical complexity and intrusive nature, they cannot readily be employed

for the reduction of large-scale FE models built within commercial software. On the

other hand, indirect methods are much more applicable in practice; however, their

approximate nature often means that the resulting ROMs are not necessarily optimal.

The aim of this chapter is to bridge the gap between the two classes of methods, by

exploiting the concept of underlying nonlinear manifolds whilst retaining the non-

intrusive nature of indirect methods. Specifically, a Lagrangian approach to deriving

ROMs of geometrically nonlinear structures is proposed, which aligns with the theory

of NNMs defined as invariant manifolds in phase space for structures characterised

by slow/fast dynamics; the proposed method may be considered as an extension to

force-based indirect methods such as the ICE.

In the standard ICE method, the static solution dataset that is used to com-

pute the stress manifold, is also used to approximate a set of quasi-static coupling

functions, which relate the response of the condensed (in-plane) modes to that of

the reduced (transverse) modes. These are only used in post-processing to recover

physical deformations, stresses and strains of the FE model, but they do not influence

the reduced dynamics. In the proposed method, the same information is utilised to

enrich the reduced dynamics by accounting for the kinetic energy of the statically

coupled modes, which the standard approach neglects; this additional treatment is

referred to as inertial compensation.

The rest of this chapter is structured as follows. Section 4.2 introduces the theory

behind force-based indirect reduction methods, and demonstrates the effectiveness

and limitations of the ICE method using FE models of a clamped-clamped beam and a

cantilever beam. In addition, it is shown that the inaccuracy of the ICE method, when

considering the cantilever beam, is related to the kinetic energy of the in-plane modes.

Section 4.3 introduces the proposed method of deriving nonlinear ROMs such that

the kinetic energy of the statically coupled modes is retained, and in section 4.4 we

revisit the cantilever beam example to compare ROMs computed using the traditional

and the proposed method. Finally, conclusions are summarised in section 4.5.
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4.2 The standard ICE method

4.2.1 Theory

Note that force-based indirect reduction methods, such as the ICE, were previously

introduced in section 2.3.2 and utilised in Chapter 3, however the relevant equa-

tions are recalled here for completeness. The equations of motion of an undamped,

continuous structure, discretised into N DOFs using the FE method, can be written

as

Mẍ+Kx+ f(x)=F (4.1)

in the physical space, and

q̈+Λq+ fq(q)=Fq (4.2)

in the modal space. Here, the linear normal modes of the FE model are separated

into three distinct classes:

1. a small set of dynamically important, low-frequency transverse modes;

2. a small set of high-frequency in-plane modes, which may be assumed to be stat-

ically coupled to the transverse modes (Hollkamp and Gordon, 2008; Mignolet

et al., 2013);

3. the remaining modes, which are neither dynamically relevant nor statically

coupled, and whose response is small enough to be neglected.

Modes from each group are denoted, respectively, by the subscripts •r (reduced), •s

(statically coupled), and •u (unmodelled), such that equation (4.2) can be rewritten as
q̈r

q̈s

q̈u

+


Λr 0 0
0 Λs 0
0 0 Λu




qr

qs

qu

+


f̃r(qr,qs,qu)

f̃s(qr,qs,qu)

f̃u(qr,qs,qu)

=


Fr

Fs

Fu

 , (4.3)

where the lengths of vectors qr, qs and qu are R, S and U, respectively, such that

R+S+U = N and R,S ≪ N. The corresponding modeshapes are contained in matri-

ces Φr, Φs and Φu, whose dimensions are N ×R, N ×S and N ×U , respectively.

In the ICE method (Hollkamp and Gordon, 2008), the reduced equations of motion

are obtained using the linear transform x=Φrr, such that r≈qr, i.e. the reduced

coordinates aim to approximate the first group of modes. Then, the reduced dynamics

are written as

r̈+Λrr+ fr(r)=Fr, (4.4)
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where fr(r) is the R×1 vector of nonlinear restoring forces which must be approxi-

mated using the a static solution dataset from the full-order FE model. The coupling

between qs and qr is approximated as quasi-static, and is here denoted by the S×1

vector function g, i.e.

s= g(r), (4.5)

such that s≈qs. Physically, this may be interpreted as meaning that the displacement

of the quasi-statically coupled modes may be determined from the displacement of the

reduced modes. Then, the physical displacement of the FE model is approximated as

a superposition of the reduced and the statically coupled modes, while the remaining

modes are neglected (u= 0≈qu), i.e.

x≈Φrr+Φsg(r). (4.6)

As such, a reduction from N to R DOFs is achieved. It should be highlighted that,

in the standard ICE method, the quasi-static coupling functions are utilised in a

post-processing step to better approximate the physical deformation of the structure

(equation (4.6)), yet they are not explicitly taken into account when deriving the

reduced dynamics (equation (4.4)).

For the identification of fr(r), it is typically assumed that the nonlinearities in the

ROM take the same form as the nonlinearities in the full-order system; in the case of

a linearly elastic FE model characterised by a quadratic strain–displacement relation-

ship, each entry in fr(r) then becomes a quadratic and cubic polynomial spanning the

reduced modes (Mignolet et al., 2013). However, as discussed in Chapter 3, to account

for the effect of the statically coupled in-plane modes, the order of nonlinearity in the

ROM must generally exceed that of the full-order model, such that a more robust

form for fr(r) is given by

fr(r)=
K∑

k=2
Akr(k), (4.7)

where r(k) is the nk ×1 vector containing all combinations of kth-order monomials1

involving the elements of r, Ak is the R ×nk matrix containing the corresponding

kth-order coefficients in each reduced equation, K > 3 is the truncation order, and

nk =
(k+R−1)!
k! (R−1)!

is the number of kth-order terms in each reduced equation. Similarly,

1For example, for R = 2 i.e. r= [r1 r2]⊺: r(2) = [
r2

1 r1r2 r2
2
]⊺; r(3) = [

r3
1 r2

1r2 r1r2
2 r3

2
]⊺ etc.

This notation is employed here, rather than the tensor notation introduced earlier, in order to avoid
the use of very high-dimensional arrays as higher orders of nonlinearity are considered.
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the quasi-static coupling functions, g(r), can be approximated as K th-order polynomial

functions2 of the reduced modes, i.e.

g(r)=
K∑

k=2
Bkr(k), (4.8)

where Bk is the S×nk matrix containing the kth-order coupling coefficients for each

statically coupled mode.3

The linear properties in the reduced equations of motion, equations (4.4), can be

computed directly using the mass and stiffness matrices of the FE model; however,

the coefficients in the reduced nonlinear restoring forces, f(r), and in the quasi-static

coupling functions, g(r), are computed indirectly using a set of static solution data,

as detailed in Gordon and Hollkamp (2011). Each solution is obtained by applying a

static force, Fst, that is a linear combination of the reduction basis, Φr, and computing

the corresponding static displacement, xst. The physical force to be applied is given

by

Fst =MΦrκ (4.9)

where κ is the R×1 vector of force scaling factors, which is equivalent to the force

applied in the reduced modes. After applying the static force and extracting the

resulting physical displacement vector from the FE model, using a standard nonlinear

solver, this may projected into the modal space using


rst

sst

ust

=Φ−1xst. (4.10)

Finally, the coefficients in Ak and Bk, for k = {2, . . . ,K}, are computed in a least-

squares manner according to equations (4.7) and (4.8), using datasets of {κ−Λrrst,rst}

and {sst,rst}, respectively. The number of unique static solutions in the datasets must

be at least equal to the number of unknown coefficients in each equation. The

number of unknown coefficients in equation (4.7) can be reduced by enforcing linear

dependencies between elements of Ak such that the resulting equations of motion

are consistent with an underlying elastic potential energy function.

2In the standard ICE method, a quadratic relationship is assumed.
3Note that B1 = 0 as qr and qs are linearly independent.
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4.2.2 Motivating examples

In order to demonstrate the effectiveness as well as the shortcomings of the ICE

method described above, it is used here to reduce two different FE models of a linearly

elastic, geometrically nonlinear beam: one with clamped-clamped (C-C) and one with

clamped-free (C-F) end conditions. The beams have a length, width and thickness

of ℓ= 300 mm, w = 25 mm and h = 1 mm, respectively, and are made of steel with

a Young’s modulus of 205 GPa, density of 7800 kg m−3 and Poisson’s ratio of 0.3.

The models are constructed in the FE software Abaqus (Dassault Systèmes, 2017),

and meshed with 120 three-node quadratic beam elements (Timoshenko type, B32),

resulting in 1434 and 1440 DOFs for the C-C and the C-F beam, respectively. The

shapes of the first three (symmetric) bending modes and the first two (symmetric)

axial modes of the C-F (C-C) beam, as well as the corresponding natural frequencies,

are shown in figure 4.1. The significance of these modes will be discussed later in this

section.

(a) (b)

Figure 4.1. Modeshapes and natural frequencies of three bending and two axial
modes of (a) the clamped-clamped beam and (b) the cantilever beam.
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(a) (b)

Figure 4.2. Quasi-static response of the beams as a function of the force applied in
the first mode. The response is shown in the modal space (bottom panel) in terms
of the reduced mode and the two most strongly coupled bending and axial modes,
and in the physical space (top panel) in terms of the vertical displacement of (a) the
centre node for the C-C beam, and (b) the tip node for the C-F beam.

For each FE model, a single-DOF quintic ROM of the first bending mode is

constructed, according to equations (4.4) and (4.7) (R = 1, r≈ [q1], K = 5), i.e.

r̈1 +ω2
1r1 + A2r2

1 + A3r3
1 + A4r4

1 + A5r5
1 = F1. (4.11)

The static solution dataset used to identify the nonlinear coefficients, Ak, consists

of four load cases, in which the force applied to the first mode, F1, is equal to

{−45,−22.5,+22.5,+45}. The quasi-static response of the beams for the range of

applied loads is shown in figure 4.2, both in the physical (top) and in the modal

space (bottom).4 The maximum vertical deflection of the tip (centre) node of the C-F

(C-C) beam is ytip = 100 mm = ℓ/3 (ymid = 1.13 mm = 1.13h). This corresponds to a

maximum von Mises stress of 421 MPa (51.3 MPa) occurring at the clamped end(s),

at which point the material approaches the limit of the linearly elastic regime.

4Note that, in the modal space, only the response of the reduced mode and the two most strongly
coupled bending and axial modes is shown.
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(a) (b)

Figure 4.3. Static displacement of the relevant bending and axial modes as a
function of the displacement in the first mode for (a) the C-C and (b) the C-F beam,
when a force is applied in the first mode.

Figure 4.3 shows the quasi-static coupling between the reduced mode, q1, and

the two most strongly coupled bending modes, q2 and q3 (q3 and q6), as well as the

two most strongly coupled axial modes, q27 and q59 (q72 and q129), for the C-F (C-C)

beam. The modal displacement amplitudes resulting from the maximum applied

static force, F1 = 45, normalised with respect to the largest amplitude, are listed

in table 4.1. It can be seen that the first mode of the C-C beam is most strongly

coupled with the third bending mode, whilst the coupling with the axial modes is

less significant. Conversely, the first mode of the C-F beam exhibits weaker coupling

with other bending modes, but significantly stronger coupling with axial modes; this

is to be expected, as the free end of the cantilever beam allows for large in-plane

displacements.

Table 4.1. Relative modal displacement amplitudes of the two most strongly coupled
bending and axial modes, when a static force F1 = 45 is applied in the first mode.

C-C beam
Mode no. 1 3 6 72 129
Rel. amp. 1.0×100 2.0×10−2 3.1×10−3 4.5×10−4 7.1×10−4

C-F beam
Mode no. 1 2 3 27 59
Rel. amp. 1.0×100 6.3×10−3 3.8×10−4 1.7×10−1 6.7×10−2

Figures 4.4 (a) and (b) show the backbone curves of the computed single-DOF

ROMs of the C-C and the C-F beams, respectively, in the projection of reduced modal

amplitude, R1, against the fundamental response frequency, Ω. Both models exhibit
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(a) (b)

(c) (d)

Figure 4.4. Top: first backbone curve of (a) the C-C and (b) the C-F beam, predicted
by the quintic single-DOF ICE ROMs. These are plotted in the projection of response
frequency against amplitude. Bottom: comparison between the periodic response
predicted by the ROMs (dashed lines) and the response of the FE model (solid black
line), plotted in the physical phase space, for (c) the C-C and (d) the C-F beam. Ten
different sets of initial conditions are considered for each ROM, and these are marked
with black dots on the backbone curves. For each free response, the FE states at time
t = 0 and t = TΩ are marked with circles and crosses, respectively.

hardening nonlinearities due to the effect of membrane stretching induced by the

large transverse displacements. It should be highlighted that the quintic ROMs

presented here were found to be robust with respect to the scaling of the static

solution dataset, suggesting that a higher truncation order is not necessary, at least

for the range of response amplitudes considered here. The accuracy of the ROMs is

assessed by comparing different periodic solutions of the ROM, to the corresponding

full-order free response of the FE model. The initial conditions of the FE model are
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set using the applied modal force method proposed in Kuether and Allen (2014). For

each ROM solution, the initial modal displacement, r0, which occurs at zero initial

velocity, is used to compute the corresponding static modal force, i.e.

Fr0 =Λrr0 + fr(r0). (4.12)

This force, projected into the physical space, is then applied to the FE model, before

the structure is released from its static equilibrium at time t = 0 and allowed to

undergo free oscillation for one period of the ROM, TΩ = 2π/Ω. If the state of the FE

model after one ROM period coincides with its initial state, then a periodic solution

is obtained and the ROM may be considered ideal. Here, the initial and final states

of the FE model are compared, in order to qualitatively assess the accuracy of each

ROM.

Figures 4.4 (c) and (d) show the FE response of the C-C and the C-F beam, re-

spectively, obtained from ten different sets of initial conditions over one period based

on the frequency predicted by the ROM (solid black line); the FE states at t = 0 and

t = TΩ are marked with black circles and crosses, respectively. The corresponding

periodic ROM solutions are represented by dashed blue lines. The initial reduced

modal displacements used are equally spaced and marked with black dots on the

backbone curves. It can be seen that the ROM of the C-C beam can very accurately

predict the response frequency of the full-order NNMs for the whole range of am-

plitudes considered here.5 On the other hand, the ROM of the C-F beam appears to

overestimate the frequency of the NNMs; the period predicted by the ROM is not

sufficient to allow the FE model to reach its initial state and "close" the loop in the

phase space. In addition, the ROM predictions become increasingly inaccurate as the

response amplitude increases.

The fact that the coupling between the first and higher bending modes in the

C-F beam is less significant compared to that in the C-C beam (see figure 4.3 and

table 4.1), suggests that the inaccuracy of the C-F ROM is unlikely to stem from any

unmodelled dynamic interaction with other low-frequency transverse modes. Instead,

we suggest it is due to the classical observation for the cantilever beam, that there is

competing action between the geometric nonlinearity, which is of the hardening type,

and the in-plane inertia, which has a softening effect (Haight and King, 1972; Pai
5Note that for larger force scaling factors, which are not shown here, the modal interaction between

the first mode and other bending modes, particularly the third one, becomes relatively more significant.
In such cases, and/or when internal resonances are of interest, additional modes must be included in
the reduction basis; this is explored in Chapter 5.
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and Nayfeh, 1990; Hsieh et al., 1994; Nayfeh and Mook, 1995). Since the ICE method

is unable to capture the latter effect, it is perhaps not surprising that the resulting

ROM leads to overpredictions of the response frequency.

To quantify the significance of the inertia of the statically coupled modes, the

kinetic energy (KE) in each mass-normalised mode, which is directly related to the

resulting inertial force acting on it, is considered. The normalised maximum KE in

each mode during a free response of the FE model is defined as

T n := max[Tn(t)]
max[T1(t)]

= max
[
q̇2

n(t)
]

max
[
q̇2

1(t)
] , (4.13)

where Tn is the KE in the nth mode.

(a) (b)

Figure 4.5. Normalised maximum kinetic energy in the first bending mode and the
first seven axial modes, for (a) the C-C and (b) the C-F beam. These were computed
from the free response of the FE model, where the initial conditions correspond to a
static force of F1 ≈ 45.

Figure 4.5 shows the normalised maximum KE of the first seven axial modes of

the C-C and C-F beams, for the free response with the maximum initial static force

applied to the FE model. It can be seen that, for the C-C beam, the KE in the axial

modes is more than six orders of magnitude smaller than that in the reduced mode.

As such, the condition that in-plane inertia can be neglected, which the ICE method

imposes, is a fairly good approximation. Conversely, the KE in the first axial modes

of the C-F beam is much more significant; in this case, neglecting the effect of in-

plane inertia leads to erroneous predictions. In the next section, a Lagrangian-based

approach for deriving nonlinear reduced-order models is proposed, such that the KE

of the statically coupled modes is accounted for in the reduced dynamics.
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4.3 Accounting for the kinetic energy of the condensed modes

4.3.1 Proposed method

The point of departure is equation (4.3), i.e. the equations of motion of the FE

model, split into the reduced, statically coupled, and unmodelled, mass-normalised

modal coordinates. It is assumed that Lagrangian of the system, which underpins

equation (4.3), can be expressed in terms of the categorised modal coordinates as

L≡ T (q̇r, q̇s, q̇u)−V(qr,qs,qu)

= 1
2

(q̇r)⊺ q̇r + 1
2

(q̇s)⊺ q̇s + 1
2

(q̇u)⊺ q̇u −V(qr,qs,qu),
(4.14)

where T and V denote kinetic and potential energy functions, respectively, such that

∂V
∂qr

=Λrqr + f̃r(qr,qs,qu),

∂V
∂qs

=Λsqs + f̃s(qr,qs,qu),

∂V
∂qu

=Λuqu + f̃u(qr,qs,qu).

(4.15a)

(4.15b)

(4.15c)

Assuming that the response of the unmodelled modes (qu) can be neglected, the

Lagrangian can be approximated as

L≈ L̂= 1
2

(ṙ)⊺ ṙ+ 1
2

(ṡ)⊺ ṡ− V̂(r,s), (4.16)

where V̂(r,s) :=V(r,s,0), such that r≈qr, s≈qs, u= 0≈qu, and

∂V̂
∂r

=Λrr+ f̂r(r,s),

∂V̂
∂s

=Λss+ f̂s(r,s),

(4.17a)

(4.17b)

where f̂r(r,s) := f̃r(r,s,0) and f̂s(r,s) := f̃s(r,s,0). Using the quasi-static coupling

approximation, s = g(r), as given in equation (4.5), and noting that ṡ = ∂g
∂r

ṙ, equa-

tion (4.16) can be rewritten in terms of the reduced coordinates as

L̂= 1
2

(ṙ)⊺ ṙ+ 1
2

(ṙ)⊺
(
∂g
∂r

)⊺ ∂g
∂r

ṙ− V̂(r,g(r)). (4.18)

From this, the partial derivatives of L̂ with respect to ṙ and r, can be written,

respectively, as

∂L̂
∂ṙ

= ṙ+
(
∂g
∂r

)⊺ ∂g
∂r

ṙ

∂L̂
∂r

=
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ− (

Λrr+ f̂r(r,g)
)−(

∂g
∂r

)⊺ (
Λsg+ f̂s(r,g)

)
.

(4.19a)

(4.19b)
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According to the Euler-Lagrange equation, the reduced equations of motion can be

written as
d
dt

(
∂L̂
∂ṙ

)
− ∂L̂
∂r

=Fr. (4.20)

Substituting equations (4.19) into equation (4.20) leads to, after some algebraic

manipulation,

r̈+
(
∂g
∂r

)⊺ ∂g
∂r

r̈+
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ+Λrr+ fr(r)=Fr, (4.21)

where fr(r) := f̂r(r,g)+
(
∂g
∂r

)⊺ (
Λsg+ f̂s(r,g)

)
. By definition, g(r) must satisfy

Λsg+ f̂s(r,g)= 0, (4.22)

as it is computed based on static solution data where only the reduced modes are

directly forced, while the response of the quasi-statically coupled modes is captured

implicitly. As such, the second term in fr(r) may be neglected, i.e. fr(r)= f̂r(r,g). As

with the ICE method (equation (4.4)), the reduced coordinates are related to the FE

coordinates through equation (4.6), such that the number of DOFs is reduced from N
to R. As with equation (4.4), equation (4.21) can be solved using numerical tools such

as continuation.

4.3.2 Indirect methods and nonlinear manifolds

The ROM obtained using the proposed method, equation (4.21), may be considered as

a natural extension to the ICE ROM, equation (4.4). In both cases, the expressions

for the nonlinear restoring forces, fr(r), are equivalent and can be approximated as

polynomial functions in r (see equation (4.7)), whose order may generally exceed the

order of nonlinearity in the full-order model.6 However, when the kinetic energy of

the in-plane modes is taken into account, two additional terms emerge in the reduced

equations of motion: a configuration-dependent inertial term,
(
∂g
∂r

)⊺ ∂g
∂r

r̈, and a con-

vective term,
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ. The coefficients of both terms can be expressed in terms of

the precomputed quasi-static coupling coefficients, Bk, which define the relationship

between the reduced and the statically coupled coordinates (equation (4.8)). As such,

the proposed reduction method does not require that any additional information be

6The higher-order nonlinear terms may be necessary to accurately capture the effect of the
geometric nonlinearity related to the quasi-static coupling between the low-frequency transverse
modes and the high-frequency in-plane modes, as discussed in Chapter 3.
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extracted from the FE model; instead, the existing information is used, after some

computationally cheap post-processing, to enrich the reduced dynamics. The inclu-

sion of these additional terms in the reduced dynamics will be referred to as inertial
compensation, and the corresponding model, i.e. equation (4.21), will be referred to

as ICE-IC ROM. A schematic of the ROM generation procedure using the ICE-IC

method is shown in figure 4.6, where the extension proposed here is represented in

red.

The importance of retaining the effect of in-plane inertia, compared to the static

condensation approach, has previously been demonstrated using the concept of modal

derivatives and the quadratic manifold (Rutzmoser et al., 2014; Jain et al., 2017). In

the quadratic manifold approach, reduction is achieved through a nonlinear mapping

between the FE coordinates and a small set of modal coordinates; the mapping is

quadratic, and it is defined such that its gradient is given by linear modeshapes,

and its curvature is given by modal derivatives. Whilst this approach was found to

provide excellent accuracy in some cases, its applicability is limited to structures

characterised by von Kármán kinematics, and in which the dominant source of

nonlinearity is membrane stretching (Rutzmoser et al., 2017; Jain et al., 2017).

Compared to the quadratic manifold approach, the merits of the ICE-IC method

are twofold. Firstly, the relationship between the reduced and the statically coupled

modes is not limited to being quadratic, which allows the method to be applied to

a broader range of structures. In addition, the proposed method is non-intrusive in

nature, and can be applied using any commercial FE software package. Nevertheless,

the inertial compensation approach aligns with the idea underpinning nonlinear

manifolds; in fact, it can be shown that the reduced equations of motion derived

through a general, not necessarily quadratic, nonlinear projection, are equivalent to

equations (4.21); this is demonstrated in section 4.3.2.1 below.

The more general concept of invariant manifolds based on the theory of normal

forms has been utilised, under its asymptotic formulation, for the reduction of thin

shells and beams (Shaw and Pierre, 1993, 1994; Hsieh et al., 1994; Shaw et al.,
1999; Pesheck et al., 2001; Touzé et al., 2004b,a, 2008; Touzé and Thomas, 2004;

Touzé and Amabili, 2006). The invariant manifold approach has the added capacity

to allow for coupling between modal displacements and modal velocities, whereas

in the proposed method, quasi-static coupling is assumed. However, it has been

observed that, for non-gyroscopic, conservative systems, any velocity dependence

can be neglected without much loss of accuracy (Hsieh et al., 1994; Shaw et al.,
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Figure 4.6. Schematic of the ROM generation procedure using the ICE method,
with the schematically modest, but dynamically significant, proposed changes to
incorporate inertial compensation shown in red.
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1999), making the aforementioned assumption a good approximation. On the other

hand, the main limitation of the invariant manifold approach is its high algebraic

complexity, which makes the derivation of expressions for manifolds of order higher

than cubic, intractable (Touzé et al., 2004b). Even though third-order invariant

manifolds can very accurately capture the NNMs of the full-order system at moderate

amplitudes, the results deteriorate rapidly beyond a certain amplitude, where higher-

order nonlinear terms are necessary to capture the reduced dynamics (Touzé and

Thomas, 2004; Touzé et al., 2004a,b). With the proposed method, this issue does not

occur, since the coefficients of the nonlinear functions in the equations of motion

are computed indirectly via regression analysis, using a set of static solutions of the

full-order system. As a result, the expressions that directly relate the coefficients

of the full-order system to those of the ROM need not be derived, and thus higher

orders of nonlinearity can easily be considered.

4.3.2.1 Equivalence of approaches

This section demonstrates that the Lagrangian-based approach presented in sec-

tion 4.3.1, is equivalent to projecting the equations of motion of the full-order system

onto an underlying nonlinear manifold. We start by considering the equations of mo-

tion of the full-order model, split into the reduced, statically coupled, and unmodelled

modal coordinates, i.e. equation (4.3). When the response of the third group of modes

is neglected, the full-order equations of motion can be approximated7 as

[
r̈
s̈

]
+

[
Λr 0
0 Λs

][
r
s

]
+

[
f̂r(r,s)

f̂s(r,s)

]
=

[
Fr

0

]
. (4.23)

Then, since the coordinates in s are assumed to be statically coupled to the coordinates

in r (equation (4.5)), the system can be reduced using a nonlinear mapping Γ, defined

as [
r
s

]
=

[
r

g(r)

]
=Γ(r). (4.24)

7Note that this is equivalent to applying the Euler-Lagrange equation to the approximated
Lagrangian, equation (4.16).
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Differentiating this twice with respect to time, leads to[
ṙ
ṡ

]
= ∂Γ

∂r
ṙ,[

r̈
s̈

]
= ∂Γ

∂r
r̈+ ∂2Γ

∂r2 ṙṙ,

(4.25a)

(4.25b)

where
∂Γ

∂r
and

∂2Γ

∂r2 are arrays with dimensions of (R +S)×R and (R+S)×R×R,

respectively. These can be expressed as

∂Γ

∂r
=

 I
∂g
∂r

 ,

∂2Γ

∂r2 =
 0
∂2g
∂r2

 ,

(4.26a)

(4.26b)

where
∂g
∂r

[i, j]= ∂g i

∂r j
,
∂2g
∂r2 [i, j,k]= ∂2 g i

∂r j∂rk
, I is the R×R identity matrix and 0 is the

R×R×R zero tensor. Substituting equations (4.24) and (4.25) into equation (4.23)

and premultiplying by the transpose of the tangent subspace,8
(
∂Γ

∂r

)⊺
, leads to

(
∂Γ

∂r

)⊺[
∂Γ

∂r
r̈+

(
∂2Γ

∂r2 ṙ
)
ṙ
]
+

(
∂Γ

∂r

)⊺[
Λr 0
0 Λs

]
Γ+

(
∂Γ

∂r

)⊺[
f̂r(r,g)

f̂s(r,g)

]
=

(
∂Γ

∂r

)⊺[
Fr

0

]
. (4.27)

Finally, after substituting equations (4.26) into equation (4.27), and some algebraic

manipulation, equation (4.21) is obtained.

4.4 Application to the cantilever beam

We now revisit the FE model of the cantilever beam considered in section 4.2.2

(figure 4.1 (b)), for which the standard ICE method resulted in inaccurate response

predictions. Reduced-order models obtained using the standard ICE method, equa-

tion (4.4), are compared with those obtained using the extended ICE-IC method,

equation (4.21). The first and second backbone curves of the cantilever beam are

considered separately in the following subsections.

8This ensures that the residual introduced by the projection approximation is orthogonal to the
kinematically admissible displacements (Jain et al., 2017; Rutzmoser et al., 2017).
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4.4.1 First backbone curve

As in section 4.2.2, single-DOF quintic ROMs of the first mode are considered. The

standard ICE ROM is described by equation (4.11), whilst the ICE-IC ROM includes

some additional terms to account for the kinetic energy of the statically coupled

modes, i.e.

[
1+∑

i

(
∂g i

∂r1

)2
]

r̈1 +
∑

i

∂g i

∂r1

∂2 g i

∂r2
1

ṙ2
1 +ω2

1r1 + A2r2
1 + A3r3

1 + A4r4
1 + A5r5

1 = F1, (4.28)

where g i(r1)= si = B(i)
2 r2

1 +B(i)
3 r3

1 +B(i)
4 r4

1 +B(i)
5 r5

1 and i spans the indices of the stati-

cally coupled modes. In this case, only the three most strongly coupled axial modes

are included in the statically coupled basis (i.e. S = 3, s≈ [q27 q59 q90]⊺). The

coefficients in the quasi-static coupling functions, Bk, are computed according to

equation (4.8) using the same static solution dataset that is used to compute the

nonlinear stiffness coefficients, Ak. As before, this consists of four load cases, where

the applied force in the first mode is F1 = {−45,−22.5,+22.5,+45}. The resulting

quasi-static behaviour of the cantilever beam for the range of applied loads is shown

in figures 4.2 (b) and 4.3 (b).

Figure 4.7 (a) shows the computed backbone curves of the ICE (blue) and ICE-IC

(red) ROMs. It can be seen that the inertial compensation terms have a softening

effect on the model, bringing the nonlinear response frequency very close to the

underlying linear natural frequency even at large vibration amplitudes; this observa-

tion is consistent with results in the literature (Haight and King, 1972; Touzé and

Thomas, 2004; Pai, 2007). As in section 4.2.2, the accuracy of each ROM is estimated

by computing the free response of the FE model with the initial conditions and period

of integration predicted by the ROM. The results obtained from ten different free

response runs are shown in figures 4.7 (b) and (c) for the ICE and ICE-IC ROM,

respectively. It can be seen that the novel ROM is able to predict the response fre-

quency of the first NNM of the cantilever beam remarkably well, as it gives rise to

nearly perfect free response loops in the phase space, for the whole range of ampli-

tudes considered here. It should be noted that, for this system, the computational

cost associated with solving the equations of motion of the ICE-IC ROM using the

MATLAB built-in ode45 solver, is increased only by ∼ 4% relative to the ICE ROM.
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(a)

(b) (c)

Figure 4.7. (a) First backbone curve of the C-F beam, predicted by the quintic single-
DOF ROMs without (blue) and with (red) inertial compensation. These are plotted in
the projection of response frequency against amplitude. Bottom: comparison between
the periodic response predicted by the ROMs (dashed lines) and the response of the
FE model (solid black line), plotted in the physical phase space, for (b) the ICE ROM
and (c) the ICE-IC ROM. Ten different sets of initial conditions are considered for
each ROM, and these are marked with black dots on the backbone curves. For each
free response, the FE states at time t = 0 and t = TΩ are marked with circles and
crosses, respectively.

4.4.2 Second backbone curve

We now consider the second backbone curve of the cantilever beam by computing

2-DOF quintic ROMs. Since the natural frequencies of the first two modes are not

well-separated, the dynamics of the first mode can be neither statically condensed

nor neglected when computing the second backbone curve; as such, both modes must
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be included in the reduction basis. As before, the statically coupled basis consists

of the 27th, 59th and 90th modes. The 2-DOF equations of motion for the ICE and

ICE-IC ROMs are given, respectively, by[
r̈1

r̈2

]
+

[
ω2

1 0

0 ω2
2

][
r1

r2

]
+

[
fr1(r1, r2)

fr2(r1, r2)

]
=

[
F1

F2

]
(4.29)

and

[
r̈1

r̈2

]
+

[
ω2

1 0

0 ω2
2

][
r1

r2

]
+

[
fr1(r1, r2)

fr2(r1, r2)

]
+∑

i


(
∂g i

∂r1

)2 ∂g i

∂r1

∂g i

∂r2
∂g i

∂r1

∂g i

∂r2

(
∂g i

∂r2

)2


[

r̈1

r̈2

]

+∑
i


∂g i

∂r1
∂g i

∂r2


(
∂2 g i

∂r2
1

ṙ2
1 +2

∂2 g i

∂r1∂r2
ṙ1 ṙ2 + ∂2 g i

∂r2
2

ṙ2
2

)
=

[
F1

F2

]
, (4.30)

where fr1, fr2 and g i are fifth-order nonlinear polynomial functions of r1 and r2.

Figure 4.8. Plot of the vertical displacement of the tip of the C-F beam, as a function
of the static forces applied to the first and second modes. The load cases used for
calibrating the 2-DOF ROMs are marked with black asterisks.

The coefficients in the nonlinear stiffness functions and in the quasi-static cou-

pling functions were computed using a set of 24 unique static solutions of the FE

model. The distribution of the static loads applied in each mode, as well as the corre-

sponding static displacement of the tip node, are shown in figure 4.8. The magnitude

of the maximum load applied in the second mode, F2 = 270, was set to four times that
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in the first mode, F1 = 45.9 Table 4.2 shows the relative displacement amplitudes

of the reduced modes (q1, q2), as well as the most strongly coupled bending mode

(q3) and axial modes (q27, q59), for four of the considered load cases. It can be seen

that, when a force is applied in the second mode, the response of the first mode is

significant, which suggests that it must be retained in the reduction basis. As before,

the coupling with higher transverse modes is weak, whilst the lowest axial modes

are strongly coupled and are thus included in the statically coupled basis.

Table 4.2. Relative modal displacement amplitudes of the most strongly coupled
bending and axial modes, for different combinations of static forces applied in the
first and second modes.

Mode number
F1 F2 1 2 3 27 59
0 270 1.2×10−1 1.0×100 2.9×10−3 1.5×10−1 5.2×10−2

45 0 1.0×100 6.3×10−3 3.8×10−4 1.7×10−1 6.7×10−2

45 -270 1.0×100 1.6×10−1 1.4×10−3 1.7×10−1 2.3×10−2

45 270 1.0×100 1.7×10−1 5.9×10−3 1.9×10−1 1.2×10−1

Figures 4.9 (a) and (b) show the second backbone curve of the computed 2-DOF

ROMs of the C-F beam, shown in the projection of the amplitude of each retained

mode against response frequency. It can be seen that, as expected, the traditional

ICE ROM fails to capture the softening behaviour of the second NNM, which arises

due to the effect of in-plane inertia. The dominance of the inertial over the geometric

nonlinearities in the second backbone curve, as well as in all higher backbone curves

of the cantilever beam, is a classical observation in the literature (Haight and King,

1972; Pai and Nayfeh, 1990; Hsieh et al., 1994; Nayfeh and Mook, 1995; Touzé and

Thomas, 2004; Pai, 2007).

Figures 4.9 (c) and (d) show the phase space plots of ten different free response

runs of the FE model, with the initial conditions and period of integration predicted

by the ICE and ICE-IC ROMs, respectively. In the case of the ICE ROM, it can

be observed that not only is the response frequency overestimated, but the initial

conditions predicted by the ROM are such that the full-order response is not periodic,

regardless of the period of integration, i.e. the loops gradually shift in phase space.

9Even though the relative scaling of the applied loads was chosen semi-arbitrarily, a posteriori
computations have confirmed that the ROMs are not greatly dependent on the precise tuning of force
scaling factors; as discussed in Chapter 3, this is related to the higher orders of nonlinearity considered
in the ROMs.
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Conversely, the periodic solutions predicted by the ICE-IC ROM satisfy the FE model

with excellent accuracy.

(a) (b)

(c) (d)

Figure 4.9. Top: second backbone curve of the C-F beam, predicted by the quintic
2-DOF ROMs without (blue) and with (red) inertial compensation. These are plotted
in the projection of response frequency against (a) amplitude of the second mode, and
(b) amplitude of the first mode. Bottom: comparison between the periodic response
predicted by the ROMs (dashed lines) and the response of the FE model (solid black
line), plotted in the physical phase space, for (c) the ICE ROM and (d) the ICE-IC
ROM. Ten different sets of initial conditions are considered for each ROM, and these
are marked with black dots on the backbone curves. For each free response, the FE
states at time t = 0 and t = TΩ are marked with circles and crosses, respectively. The
numbers in brackets in the legends denote the modes included in the reduction basis.
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4.5 Summary

This chapter has investigated a fundamental assumption underpinning force-based

indirect reduction methods such as the ICE, which states that the inertia of the

condensed modes is negligible. The effectiveness as well as the limitations of the ICE

method, have been demonstrated using a clamped-clamped beam and a cantilever

beam, respectively. It has been shown that, in the latter application, the large in-

plane displacements can give rise to significant amounts of kinetic energy in the high-

frequency, statically coupled axial modes. Due to this non-negligible in-plane inertia,

the ICE method gives rise to results which are quantitatively and qualitatively

inaccurate. Using a Lagrangian approach, it has been demonstrated that the effect of

the in-plane kinetic energy can be accounted for in the reduced dynamics. This gives

rise to additional terms in the reduced equations of motion, relative to the standard

ICE ROM, which are referred to as inertial compensation; the proposed extended

method is referred to as ICE-IC.

The additional functions in the ICE-IC ROM are formulated using the existing

static solution dataset that is used to calibrate the standard ROM. Specifically,

the additional terms are expressed in terms of the functions which describe the

quasi-static coupling between the dynamically important transverse modes and

the statically coupled in-plane modes; these are used in the expansion step of the

standard ICE method in order to recover the physical displacement of the full-order

model, but they do not influence the reduced dynamics. The proposed method has

been demonstrated using an FE model of a cantilever beam, and excellent accuracy

has been observed. In practical applications, the inertial compensation approach can

significantly improve the accuracy and efficiency of ROMs of engineering structures

which have similar properties to a cantilever beam, such as wind turbine blades and

flexible wings, as well as any other structures where a significant amount of kinetic

energy is present in the condensed modes.





Chapter 5

Detecting internal resonances

Previous chapters have considered how a geometrically nonlinear dynamical system

can be reduced based on a static condensation procedure, whereby in-plane modes are

assumed to be quasi-statically coupled to a small set of transverse modes, with the

latter group forming the reduction basis. This approach is mathematically justifiable

for structures characterised by slow/fast dynamics, such as thin plates and slender

beams, and has been shown to provide highly accurate results. Nevertheless, selecting

an appropriate reduction basis without a priori knowledge of the full-order dynam-

ics remains a challenge. Retaining redundant modes will lead to computationally

suboptimal reduced-order models, whilst omitting dynamically significant modes

will lead to inaccurate results, and important features such as internal resonances

may not be captured. This chapter demonstrates how the error associated with static

condensation can be efficiently approximated during model order reduction. This

approximate error can then be used as the basis of a method for predicting when

dynamic modal interactions will occur, which will guide the reduction basis selection

process. Equivalently, this may serve as a tool for verifying the accuracy of ROMs

without the need for full-order simulations. The proposed method is demonstrated

using a simple oscillator, as well as an FE model of a clamped-clamped beam.

Publication resulting from this work
Nicolaidou, E., Hill, T. L., and Neild, S. A. (2021). Detecting internal resonances

during model reduction. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 477(2250):20210215

67
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5.1 Introduction

As previously discussed in section 2.1, the modal couplings in nonlinear dynamical

systems foster energy exchange between modes and can give rise to complex be-

haviours which have no linear counterparts, such as jump phenomena (Nayfeh and

Mook, 1995; Brennan et al., 2008), limit cycle oscillations (Patil et al., 2001; Thothadri

and Moon, 2005), and internal resonances (Amabili et al., 2000; Vakakis et al., 2001).

An internal resonance is a phenomenon which occurs when the nonlinear response

frequencies of different modes is commensurate, allowing for significantly enhanced

energy transfer between them. This effect can be exploited for practical applications

such as energy harvesting using electromagnetic and piezoelectric devices (Chen and

Jiang, 2015; Lan et al., 2015), and for enhanced stable micromechanical oscillators

(Antonio et al., 2012; Chen et al., 2017). As such, the ability to reliably identify and

model such behaviours during model order reduction is of great importance.

Chapters 3 and 4 have addressed some of the main limitations of force-based

indirect reduction methods, which are associated with the lack of invariance of the

reduced subspace. Specifically, it was shown how, for a given reduction basis, reduc-

tion can be achieved in a non-intrusive, accurate and efficient manner. Nevertheless,

selecting an appropriate reduction basis without a priori knowledge of the full-order

dynamics remains a challenge. Retaining redundant modes will lead to computation-

ally suboptimal ROMs, whilst omitting dynamically significant modes will lead to

inaccurate results, and important features such as internal resonances may not be

captured. In other words, the ICE method relies on a slow/fast decomposition and

is unable to capture any internal resonances between the reduced and condensed

modes (Shen et al., 2021).

This chapter aims to address this challenge by developing a method which can

be used to predict the existence of internal resonances in conservative systems, and

thus guide the reduction basis selection process, without the need for full-order simu-

lations. Specifically, each condensed coordinate is represented as the superposition

of two components: one that is statically coupled to the reduced coordinates, and

one that is dynamically independent of them; the latter may be considered as the

error associated with the static condensation of the mode in question. Using this

framework, it can be shown that these errors may be approximated during model

order reduction, in a computationally efficient manner. This may serve as a tool

for predicting internal resonances between the reduced and condensed coordinates,
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or, equivalently, for verifying the accuracy of ROMs by ensuring that that static

condensation approximation is sufficiently accurate for all operating conditions of

interest.

The rest of this chapter is structured as follows. In section 5.2, the nature of quasi-

static and dynamic modal coupling in geometrically nonlinear systems is explored

using a simple oscillator as a motivating example. Section 5.3 introduces a method

for approximating the error associated with static condensation during model order

reduction, which can be used to predict the existence of internal resonances. In

sections 5.4 and 5.5, the proposed method is demonstrated using the simple oscillator,

and an FE model of a clamped-clamped beam, respectively. Finally, conclusions are

summarised in section 5.6.

5.2 Motivating example

In this section, the nature of modal coupling in general, conservative, geometrically

nonlinear dynamical systems is explored. Specifically, the quasi-static coupling ap-

proximation, which is often used in reduced-order modelling frameworks, as well as

its applicability in different scenarios, are investigated. To this end, a discrete 4-DOF

system composed of two point masses, m, is considered as a motivating example. The

masses are free to move in the x–y plane and are connected to a fixed frame and to

each other through a set of linearly elastic springs, with stiffness ki∀i ∈ {1,2,3,4,5}

and unstretched length ℓ, as shown in figure 5.1. At the equilibrium position, all

springs are undeformed and oriented either horizontally or vertically. This system

may be considered an extension to the single-mass, 2-DOF oscillator previously

studied in Touzé et al. (2004a); Touzé and Amabili (2006) and in Chapter 3.

The equations of motion of the oscillator can be found using the Euler-Lagrange

equation, i.e.

d
dt

(
∂L
∂ẋ

)
− ∂L
∂x

=F, (5.1)

where all quantities have their usual meanings. The potential energy of spring i is

given by

Vi = 1
2

ki(di −ℓ)2, (5.2)

where di is its length in the deformed configuration. Then, the Lagrangian of the
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system can be expressed as

L= T (ẋ)−V(x)= 1
2

m
(
ẏ2

1 + ẏ2
2 + ẋ2

1 + ẋ2
2
)− 1

2

5∑
i=1

ki (di −ℓ)2 . (5.3)

Substituting this into equation (5.1), allows the dynamics of the oscillator to be

written in the form

Mẍ+Kx+ f(x)=F, (5.4)

where

x=


y1

y2

x1

x2

 , M=


m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m

 , K=


k4 0 0 0

0 k5 0 0

0 0 k1 +k2 −k2

0 0 −k2 k2 +k3

 (5.5a)

f(x)=



−k4ℓ(ℓ+ y1)
d4

− k1 y1(ℓ−d1)
d1

− k2(y1 − y2)(ℓ−d2)
d2

+k4ℓ

−k5ℓ(ℓ+ y2)
d5

− k3 y2(ℓ−d3)
d3

− k2(y2 − y1)(ℓ−d2)
d2

+k5ℓ

−k4x1(ℓ−d4)
d4

− k1ℓ(ℓ+ x1)
d1

− k2ℓ(x1 − x2 −ℓ)
d2

+ (k1 −k2)ℓ

−k5x2(ℓ−d5)
d5

− k3ℓ(x2 −ℓ)
d3

− k2ℓ(ℓ+ x2 − x1)
d2

+ (k2 −k3)ℓ


(5.5b)

d1 =
√

y2
1 + (ℓ+ x1)2, d2 =

√
(y1 − y2)2 + (ℓ− x1 + x2)2, d3 =

√
y2

2 + (ℓ− x2)2,

d4 =
√

(ℓ+ y1)2 + x2
1, d5 =

√
(ℓ+ y2)2 + x2

2.
(5.5c)

Using the transform x=Φq, the equations of motion can be expressed in the modal

space, where they are linearly uncoupled, in the form

q̈+Λq+ fq(q)=Fq. (5.6)

𝑘1 𝑘2 𝑘3

𝑘4 𝑘5

𝑥1

𝑦1

𝑥2

𝑦2

Figure 5.1. Schematic diagram of the 2-mass, 4-DOF oscillator used as a motivating
example, shown at equilibrium with the springs unstretched.
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For this motivating example, the physical parameters of the system are

set to the following values: m = 1 kg, ℓ= 1 m, k1 = 1000 N m−1, k2 = 10 N m−1,

k3 = 1000 N m−1, k4 = 1 N m−1, k5 = 21.2 N m−1. Note that the horizontal ground-

ing springs (k1 and k3) are significantly stiffer than the vertical grounding ones,

which creates a dichotomy between the natural frequencies of the first two modes

(ω1 = 1.0 rad s−1, ω2 = 4.6 rad s−1), and those of the other two modes (ω3 = 31.6 rad s−1,

ω4 = 31.9 rad s−1). This system aims to emulate, in a highly simplified manner, the

slow/fast dynamics that characterise the low-frequency transverse modes and high-

frequency in-plane modes in plate- or beam-like structures.

Firstly, the quasi-static behaviour of the system when only the first mode is forced

directly is considered. The static equations Λq+ fq(q)=Fq are numerically solved

for q, for a series of load cases where F1 ∈ [−3,+3] and Fn = 0∀n ∈ {2,3,4}, where Fn

denotes the nth element in Fq. Figures 5.2 (a) and (b) show the quasi-static modal

response of the system against the static force applied to the first mode, and against

the corresponding response of the first mode, respectively. As previously discussed,

in reduced-order modelling methods such as the ICE(-IC) (Hollkamp and Gordon,

2008; Nicolaidou et al., 2020a), this dataset, or more commonly a subset thereof, is

used to approximate the functions describing the nonlinear stiffness of the reduced

modes, as well as the quasi-static relationship between the condensed modes and

the reduced modes. Specifically, the latter task is carried out only for a small set

of high-frequency in-plane modes, for which the inertial forces are assumed to be

(a) (b)

Figure 5.2. Quasi-static modal response of the 4-DOF oscillator, plotted against
(a) the static force applied in the first mode and (b) the resulting response of the first
mode.
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small relative to the internal restoring forces. Here, this approach is generalised

by treating all condensed modes equally, irrespective of their natural frequency or

characteristics of their modeshapes. The quasi-static relationship between the nth

mode and the reduced mode is denoted using the function gn, and approximate it as

a K th-order polynomial, i.e.

gn(q1)=
K∑

k=2
B(n)

k qk
1, ∀n ∈ {2,3,4} , (5.7)

where the coefficients B(n)
k are identified via least-squares regression based on the

static solution dataset, i.e. fitting to the curves shown in figure 5.2 (b).

Figure 5.3 (a) shows the first backbone curve of the 4-DOF oscillator, com-

puted according to equations (5.4) and (5.5) (with F= 0). The branch emerging near

Ω= 1.55 rad s−1 corresponds to a 1:3 internal resonance between the first and second

modes. Figures 5.3 (b), (c) and (d) show the time history of the modal response of

the system (solid black lines), for three different NNMs associated with the first

backbone curve, which are represented by red dots in figure 5.3 (a) and correspond

to fundamental response frequencies of 1.01 rad s−1, 1.39 rad s−1 and 1.53 rad s−1,

respectively. The quasi-static response of modes 2–4 is computed by evaluating the

functions gn(q1) during the NNM motion; this is represented by dash-dotted lines in

figures 5.3 (b), (c) and (d). The difference between the dynamic and the quasi-static

response of each mode, i.e. qn − gn(q1), is represented by dashed blue lines. This

may be considered as the error arising from the quasi-static approximation/implicit

condensation.

It can be seen that, as expected, the quasi-static approximation is sufficiently ac-

curate when applied to the high-frequency modes, as qn ≈ gn(q1), ∀n ∈ {3,4} , ∀t, ∀Ω.

However, in the case of the second, low-frequency mode, the quasi-static approxi-

mation is initially moderately accurate near the first linear natural frequency, but

becomes increasingly inaccurate as the system approaches internal resonance. Inter-

estingly, for all NNM solutions, the error arising from this approximation appears to

be a single-harmonic signal of frequency 3Ω. This suggests that the response of each

condensed mode may be naturally decomposed into two parts: a component that is

quasi-statically coupled to the reduced mode(s), and a component that is dynamically
independent of the reduced mode(s). In the next section, this idea is exploited in order

to show how the existence of dynamic interactions can be predicted, and its relevance

to reduced-order modelling is discussed.
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(a)

(b) (c) (d)

Figure 5.3. (a) First backbone curve of the 4-DOF oscillator, shown in the projections
of the maximum amplitudes of the first two modes, Q1 and Q2, against the response
frequency, Ω. Three nonlinear normal modes of the system, corresponding to funda-
mental response frequencies of (b) 1.01 rad s−1, (c) 1.39 rad s−1 and (d) 1.53 rad s−1,
are also shown, and represented by red dots on the backbone curves. These are
plotted as modal displacement, qn, against time, t (solid black lines). The dash-dotted
red, purple and green lines show the quasi-static component of modes 2, 3 and 4,
respectively, and the dashed blue lines show the corresponding error, qn − gn(q1),
∀n = {2,3,4}.
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5.3 Predicting dynamic interactions

5.3.1 Proposed method

We start by considering the equations of motion of the full-order FE model, with its

linear normal modes separated into three distinct groups, as previously discussed

in section 4.2.1. The first group of modes, denoted by the subscript •r (reduced),

consists of a small set of modes which, for a given set of operating conditions, contain

the majority of the total energy in the system, and are dynamically independent

— these modes must form the reduction basis. The number of modes in this class,

R ≪ N, dictates the lower limit to the number of DOFs that an accurate ROM must

have. For a single backbone curve in the absence of any internal resonance, R = 1.

The second group, denoted by the subscript •s (statically coupled), is comprised of

S ≪ N modes which may contain a substantial fraction of the energy of the full-order

system, yet their response can be approximated as being quasi-statically coupled

to the reduced modes. These modes need not be included as independent DOFs in

the reduction basis, as their effects can be incorporated implicitly in the reduced

dynamics, as discussed in previous chapters. Finally, the third group, denoted by the

subscript •u (unmodelled), contains the remaining U = (N −R−S) modes which are

very weakly coupled to the reduced modes, such that they always contain a negligible

amount of energy under the operating conditions of interest. As such, it is assumed

that these modes can be ignored during the reduction process with negligible loss of

accuracy. Using this framework, the modal equations of motion of the FE model can

be rewritten as
q̈r

q̈s

q̈u

+


Λr 0 0
0 Λs 0
0 0 Λu




qr

qs

qu

+


f̃r(qr,qs,qu)

f̃s(qr,qs,qu)

f̃u(qr,qs,qu)

=


Fr

0
0

 , (5.8)

which was previously given in equation (4.3). Ignoring the third group of weakly-

coupled modes, these can be approximated as[
r̈
s̈

]
+

[
Λr 0
0 Λs

][
r
s

]
+

[
f̂r(r,s)

f̂s(r,s)

]
=

[
Fr

0

]
, (5.9)

where f̂r(r,s) := f̃r(r,s,0) and f̂s(r,s) := f̃s(r,s,0), such that qr ≈ r, qs ≈ s, qu ≈u= 0,

and x≈Φrr+Φss. Equivalently, the kinetic energy of the full-order system can be

approximated as

T̂ (r,s)= 1
2

(ṙ)⊺ ṙ+ 1
2

(ṡ)⊺ ṡ, (5.10)
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whilst the potential energy function is such that

∂V̂
∂r

=Λrr+ f̂r(r,s),

∂V̂
∂s

=Λss+ f̂s(r,s).

(5.11a)

(5.11b)

As discussed in Chapter 4, when the modes in the second group, s, can be ex-

pressed as functions of the reduced modes, r, i.e. s= g(r), then equation (5.9) can be

exactly reduced to

r̈+
(
∂g
∂r

)⊺ ∂g
∂r

r̈+
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ+Λrr+ fr(r)=Fr. (5.12)

Reduced-order models based on equation (5.12) were found to produce remarkably

accurate results for systems where a clear slow/fast dynamic behaviour can be

observed, e.g. between the low-frequency transverse modes and the highly stiff in-

plane modes in thin plates and slender beams.

In this chapter, we aim to broaden the scope of the implicit condensation approach,

and seek to quantify the error introduced by the static condensation. This error is

denoted by the S×1 time-dependent vector h(t), i.e.

s= g(r)+h. (5.13)

Using equation (5.13), and noting that ṡ= ∂g
∂r

ṙ+ ḣ, the Lagrangian of the system can

be expressed as

L̂(r,h)= T̂ (r,g+h)− V̂(r,g+h)

= 1
2

(ṙ)⊺ ṙ+ 1
2

(ṙ)⊺
(
∂g
∂r

)⊺ ∂g
∂r

ṙ+ (ṙ)⊺
(
∂g
∂r

)⊺
ḣ+ 1

2
(
ḣ

)⊺ ḣ− V̂(r,g+h).
(5.14)

The partial derivatives of the Lagrangian with respect to ṙ, ḣ, r and h can be written,

respectively, as

∂L̂
∂ṙ

= ṙ+
(
∂g
∂r

)⊺ ∂g
∂r

ṙ+
(
∂g
∂r

)⊺
ḣ,

∂L̂
∂ḣ

= ∂g
∂r

ṙ+ ḣ,

∂L̂
∂r

=
(
∂g
∂r

)⊺ (
∂2g
∂r2 ṙ

)
ṙ+

(
∂2g
∂r2 ṙ

)⊺
ḣ− (

Λrr+ f̂r(r,g+h)
)

−
(
∂g
∂r

)⊺ (
Λs(g+h)+ f̂s(r,g+h)

)
,

∂L̂
∂h

=−(
Λs(g+h)+ f̂s(r,g+h)

)
.

(5.15a)

(5.15b)

(5.15c)

(5.15d)
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Differentiating equations (5.15a) and (5.15b) with respect to time gives

d
dt

(
∂L̂
∂ṙ

)
= r̈+

(
∂g
∂r

)⊺ ∂g
∂r

r̈+2
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ+

(
∂2g
∂r2 ṙ

)⊺
ḣ+

(
∂g
∂r

)⊺
ḧ,

d
dt

(
∂L̂
∂ḣ

)
= ∂g
∂r

r̈+
(
∂2g
∂r2 ṙ

)
ṙ+ ḧ.

(5.16a)

(5.16b)

The equations of motion for r and h can be derived using the Euler-Lagrange equation,

i.e.
d
dt

(
∂L
∂ṙ

)
− ∂L
∂r

=Fr,

d
dt

(
∂L
∂ḣ

)
− ∂L
∂h

= 0.

(5.17a)

(5.17b)

Substituting equations (5.15) and (5.16) into equations (5.17) leads to

r̈+
(
∂g
∂r

)⊺ ∂g
∂r

r̈+
(
∂g
∂r

)⊺
ḧ+

(
∂g
∂r

)⊺ (
∂2g
∂r2 ṙ

)
ṙ

+Λrr+ f̂r(r,g+h)+
(
∂g
∂r

)⊺ (
Λs(g+h)+ f̂s(r,g+h)

)=Fr

ḧ+ ∂g
∂r

r̈+
(
∂2g
∂r2 ṙ

)
ṙ+ (

Λs(g+h)+ f̂s(r,g+h)
)= 0.

(5.18a)

(5.18b)

Using a Taylor series expansion about s = g, the stiffness expressions in equa-

tions (5.18) can be approximated as

Λrr+ f̂r(r,g+h)=Λrr+ f̂r(r,g)+B(r)h+O(h2)

Λs(g+h)+ f̂s(r,g+h)=Λsg+ f̂s(r,g)+C(r)h+O(h2)

=C(r)h+O(h2),

(5.19a)

(5.19b)

where

B(r)= ∂f̂r(r,s)
∂s

∣∣∣∣
s=g

C(r)=Λs + ∂f̂s(r,s)
∂s

∣∣∣∣
s=g

.

(5.20a)

(5.20b)

Note that, by definition, Λsg+ f̂s(r,g)= 0, as g(r) is computed based on the static re-

sponse of the system, with a static force only applied to the reduced modes (i.e. Fs = 0).

Substituting equations (5.19) into equations (5.18), and noting that B+
(
∂g
∂r

)⊺
C= 0

as shown in section 5.3.3, leads to

r̈+
(
∂g
∂r

)⊺ ∂g
∂r

r̈+
(
∂g
∂r

)⊺ ∂2g
∂r2 ṙṙ+Λrr+ fr(r)=Fr −

(
∂g
∂r

)⊺
ḧ+O(h2)

ḧ+C(r)h+O(h2)=p(r, ṙ, r̈),

(5.21a)

(5.21b)
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where

p(r, ṙ, r̈)=−∂g
∂r

r̈− ∂2g
∂r2 ṙṙ. (5.22)

It can be seen that, as expected, when h= 0, equation (5.21a) is equivalent to the

reduced dynamics obtained for the perfectly statically coupled case (equation (5.12))

— this is referred to as the ICE-IC ROM. The additional h- and ḧ-dependent terms

that appear on the right-hand side of equation (5.21a) may be considered as a forcing

arising due to the dynamic coupling between r and s. In addition, when the kinetic

energy of the statically coupled modes is negligible (i.e. ṡ⊺ṡ ≈ 0), the g-dependent

terms in equation (5.12) are negligible, and the reduced dynamics can be simply

expressed as

r̈+Λrr+ fr(r)=Fr, (5.23)

As discussed in Chapter 4, this more traditional form of the reduced equations of

motion is suitable for structures in which in-plane displacements are limited, such

that the effect of inertial compensation is negligible.

The remainder of this chapter demonstrates how the equations of motion for h
(equation (5.21b)) may be used to efficiently predict the presence of dynamic coupling

between the reduced modes (r) and the condensed modes (s). This allows features

such as internal resonances to be predicted, and ROMs to be validated without the

need for full-order FE simulations.

5.3.2 Use in reduced-order modelling frameworks

The linear properties of the ROM, Λr, Φr and Φs, can be computed directly using

the linear mass and stiffness matrices of the FE model. The reduced nonlinear stiff-

ness functions, fr(r), and the quasi-static coupling functions, g(r), are approximated

indirectly in a least-squares manner using a force-displacement dataset for a series

of nonlinear static solutions extracted from the FE model; these are approximated

as K th-order polynomials of the reduced coordinates. Once the ROM parameters

are identified, the reduced backbone curves can be computed, e.g. using numerical

continuation, based on either equation (5.23) (ICE) or equation (5.12) (ICE-IC).

Using equation (5.21b), additional insight can now be gained by simulating the

error dynamics for each NNM of the ROM. Given that the static modal coupling is

well-captured through the functions g(r), then, in the absence or near the onset of

a dynamic interaction, the error h is expected to be relatively small such that any
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nonlinear monomials of h become negligible, i.e. O(h2)≈ 0. As such, the linearised

version of equation (5.21b) may be considered, which can be solved efficiently using,

for example, the harmonic balance method (Nayfeh and Mook, 1995). To this end,

each element in the S×S matrix C containing the linear coefficients of h, must be

approximated as a function of r. As with fr(r) and g(r), these can be computed based

on least-squares polynomial regression. In this case, the tangent stiffness matrix,

Ktan, must be extracted for each nonlinear static load case, in addition to the vectors

of applied forces and resulting displacement, which are needed for the standard

ICE(-IC) method. The coefficients of each function in C(r) are then computed using

the
{
Φ

⊺
s KtanΦs,rst

}
dataset evaluated at each load case. The practical implications of

this are considered later in section 5.5, where the proposed technique is demonstrated

using an FE model built using commercial software.

Once these functions are approximated, then the matrix C, as well as the vector on

the right-hand side of equation (5.21b), p, can be evaluated during a periodic solution

of the ROM. These can then be expressed as summations of sinusoidal components,

i.e.

Ci j = a(i j)
0 +

Nh∑
n=1

[
a(i j)

n cos(nωt)+b(i j)
n sin(nωt)

]
,

pi =α(i)
0 +

Nh∑
n=1

[
α(i)

n cos(nωt)+β(i)
n sin(nωt)

]
,

(5.24a)

(5.24b)

where Nh is the number of harmonics, and a(i j)
n , α(i)

n ∀n ∈ [0, Nh]∩Z, and b(i j)
n , β(i)

n

∀n ∈ [1, Nh]∩Z, are coefficients which can be identified via a discrete Fourier trans-

form for each element in C and p, during an NNM motion with fundamental response

frequency ω. Similarly, each element in h can be expressed as a sum of its Fourier

components, i.e.

hi = A(i)
0 +

Nh∑
n=1

[
A(i)

n cos(nωt)+B(i)
n sin(nωt)

]
,

ḧi =−
Nh∑
n=1

(nω)2
[
A(i)

n cos(nωt)+B(i)
n sin(nωt)

]
.

(5.25a)

(5.25b)

Using equations (5.24) and (5.25), the terms in equation (5.21b) can be expanded,

the coefficients of like harmonic terms on either side of the equation equated, and

the harmonic amplitudes of h computed by solving the resulting set of simultaneous

linear equations. This can be expressed as

ch =Υ−1cp, (5.26)
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where ch and cp are vectors containing the harmonic coefficients of h and p, respec-

tively, and Υ is a matrix which can be algorithmically populated with the harmonic

coefficients of C — further details are given in section 5.3.4. Finally, the computed

amplitudes in ch are used to estimate the time history of the error corresponding to

each condensed mode during a periodic motion of the ROM (equation (5.25a)).

As discussed in section 5.1, the main limitation of the ICE(-IC) method remains

the fact that it relies on a slow/fast decomposition between the reduced and condensed

modes. With the method proposed here this limitation is overcome, as the condensed

basis can now be formed using any modes, irrespective of their natural frequency. This

method can be used to monitor the error associated with the static condensation, and

thus identify if/when a condensed mode becomes resonant. This would suggest the

quasi-static coupling assumption is no longer appropriate for the mode in question,

and instead the mode must be included as an independent DOF in the reduction

basis (Φr). Equivalently, this method can be used as a tool for validating ROMs, by

ensuring that the component of the condensed modes that is dynamically independent

of the reduced modes (i.e. h) remains sufficiently small for all operating conditions of

interest.

5.3.3 Relationship between B and C

Starting from equation (5.9), it can be seen that the quasi-static coupling functions,

g(r), are defined such that the following equation is satisfied:

(
Λss+ f̂s(r,s)

)∣∣
s=g = 0. (5.27)

Taking the partial derivative of equation (5.27) with respect to r, leads to

∂f̂s(r,s)
∂r

∣∣∣∣
s=g

+
(
Λs + ∂f̂s(r,s)

∂s

)∣∣∣∣
s=g

∂g
∂r

= 0. (5.28)

Substituting equation (5.11b), i.e. f̂s(r,s)= ∂V̂
∂s

−Λss, and equation (5.20b), i.e.

C(r)=Λs + ∂f̂s

∂s

∣∣∣∣
s=g

, into equation (5.28) leads to

∂2V
∂r∂s

∣∣∣∣
s=g

+C
∂g
∂r

= 0,(
∂2V
∂s∂r

)⊺∣∣∣∣
s=g

+C
∂g
∂r

= 0.
(5.29)
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Finally, substituting equation (5.11a), i.e.
(
∂V
∂r

)
=Λrr+ f̂r(r,s), and equation (5.20a),

i.e. B(r)= ∂f̂r

∂s

∣∣∣∣
s=g

, into equation (5.29), gives

(
∂f̂r(r,s)
∂s

)⊺∣∣∣∣∣
s=g

+C
∂g
∂r

= 0

B⊺+C
∂g
∂r

= 0,

(5.30)

This is equivalent to B+
(
∂g
∂r

)⊺
C= 0, since C=C⊺.

5.3.4 Estimation of the harmonic coefficients of h

Using equations (5.24a) and (5.25), and neglecting harmonics higher than Nhω, the

left-hand side of equation (5.21b) can be expressed as

ḧi +
S∑

j=1
Ci jh j =

S∑
j=1

c(i j)
0 +

Nh∑
k=1

cos(kωt)

[
−(kω)2A(i)

k +
S∑

j=1
c(i j)

k

]

+
Nh∑
k=1

sin(kωt)

[
−(kω)2B(i)

k +
S∑

j=1
d(i j)

k

]
,

(5.31)

where

c(i j)
0 = a(i j)

0 A( j)
0 + 1

2

Nh∑
n=1

(
a(i j)

n A( j)
n +a(i j)

n B( j)
n

)
,

c(i j)
k = a(i j)

0 A( j)
k +a(i j)

k A( j)
0 + 1

2

k−1∑
n=1

(
a(i j)

k−n A( j)
n −b(i j)

k−nB( j)
n

)
+ 1

2

Nh−k∑
n=1

(
a(i j)

n+k A( j)
n +b(i j)

n+kB( j)
n

)
+ 1

2

Nh∑
n=k+1

(
a(i j)

n−k A( j)
n +b(i j)

n−kB( j)
n

)
, ∀k ∈ [1, Nh]∩Z

d(i j)
k = a(i j)

0 B( j)
k +b(i j)

k A( j)
0 + 1

2

k−1∑
n=1

(
a(i j)

k−nB( j)
n +b(i j)

k−n A( j)
n

)
+ 1

2

Nh−k∑
n=1

(
−a(i j)

n+kB( j)
n +b(i j)

n+k A( j)
n

)
+ 1

2

Nh∑
n=k+1

(
a(i j)

n−kB( j)
n −b(i j)

n−k A( j)
n

)
, ∀k ∈ [1, Nh]∩Z.

(5.32a)

(5.32b)

(5.32c)
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Using equations (5.31) and (5.24b), the expressions on either side of equation (5.21b)

can be directly compared. The coefficients of like harmonic terms are equated and

expressed in the form

Υch = cp, (5.33)

where the S(2Nh+1)×1 vectors ch and cp contain the harmonic amplitudes of h and

p respectively, i.e.

c(i)
h =

[
A(i)

0 A(i)
1 B(i)

1 A(i)
2 B(i)

2 . . . A(i)
Nh

B(i)
Nh

]
,

ch =
[
c(1)

h c(2)
h . . . c(S)

h

]⊺
,

c(i)
p =

[
α(i)

0 α(i)
1 β(i)

1 α(i)
2 β(i)

2 . . . α(i)
Nh

β(i)
Nh

]
,

cp =
[
c(1)

p c(2)
p . . . c(S)

p

]⊺
.

(5.34a)

(5.34b)

(5.34c)

(5.34d)

The S(2Nh + 1)× S(2Nh + 1) matrix Υ
(
a(i j)

n ,b(i j)
n

)
is populated according to equa-

tion (5.32). Finally, the harmonic coefficients of h are computed by inverting equa-

tion (5.33), i.e. ch =Υ−1cp.

5.4 Application to the 4-DOF oscillator

5.4.1 Single-mode ROM results

We now revisit the 4-DOF oscillator considered in section 5.2, in order to demon-

strate the proposed method. Firstly, a seventh-order (K = 7)1, single-DOF ROM of

the first mode is computed using the ICE-IC method (equation (5.12)), while the

remaining three modes are included in the statically condensed basis, i.e. Φr =
[
ϕ1

]
,

Φs =
[
ϕ2 ϕ3 ϕ4

]
, and Φu is unpopulated as no modes are unmodelled. The

dataset used to calibrate the ROM consists of a series of static solutions where the

the static force applied to the first mode is equally spaced between −3 and +3. An

example of the fitting procedure for the reduced nonlinear stiffness function, fr(r),

and the quasi-static coupling functions, g(r), is shown in figures 5.4 (a) and (b),

respectively.

Figure 5.5 shows the backbone curve of the computed single-DOF ROM, in the

projection of modal amplitudes against fundamental response frequency (blue lines).

1As discussed earlier in this thesis, this truncation order was adopted, as the resulting ROM was
found to be robust with respect to scaling of the static forces used to calibrate it. This suggests that,
for the response range considered here, a higher truncation order is not necessary.
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(a) (b)

(c) (d)

Figure 5.4. Examples of the calibration procedure for the single-DOF ROM of the
oscillator: (a) function of reduced nonlinear internal forces, (b) quasi-static coupling
function for the second mode, and (c,d) two different components of the tangent
stiffness matrix. All quantities have been approximated as seventh-order polynomial
functions of the reduced coordinate.

It should be noted that modes 2–4 are not modelled directly, but their response is

approximated based on the response of the first (reduced) mode, using the quasi-static

coupling functions. It can be seen that the primary response of the reduced mode

(q1), and that of the high-frequency condensed modes (q3 and q4), can be accurately

predicted by the ROM. As expected, however, the internal resonance between the first

and second mode near Ω= 1.6 rad s−1 cannot be captured. This is due to the dynamic

energy transfer that takes place during an internal resonance — an effect that the

static condensation approach is unable to capture.
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Figure 5.5. Backbone curve of the seventh-order, single-DOF ICE-IC ROM of the
oscillator (blue lines). The backbone curve of the ROM when the static condensation
error is taken into account, using the proposed method, is represented by red lines.
The first backbone curve of the full-order system is also shown for reference (dashed
grey lines).

5.4.2 Internal resonance prediction

Using equation (5.21b) and the harmonic balance method, as described in sec-

tion 5.3.2, the error associated with the static condensation of each mode can now be

estimated. To achieve this, the elements of the tangent stiffness matrix corresponding

to the condensed modes, i.e. Λtan,s =Φ
⊺
s KtanΦs, must be approximated as functions

of the reduced coordinates.2 Similar to the approximation of the reduced nonlinear

stiffness functions and the quasi-static coupling functions, these are computed in a

least-squares manner, based on the same set of full-order nonlinear static solutions.

Examples of this are shown in figures 5.4 (c) and (d), for two different components of

the modal tangent stiffness matrix.

The improved prediction of the reduced backbone curves, which takes into account

the approximated error arising from the static condensation (with Nh = 7), is now

represented by red lines in figure 5.5. From this it can be seen that, as the response

frequency increases, the magnitude of h2 relative to g2 becomes increasingly large

2Note that, by definition, Λ :=Λtan(q= 0).
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until Ω≈ 1.6 rad s−1, before it rapidly decreases again.3 This singularity-type be-

haviour is caused by the third harmonic component of h2, and it indicates that a

dynamic interaction between the first and second modes exists, without the need

for simulating the dynamics of both modes simultaneously. This suggests that, in

this region, a single-mode ROM is no longer able to capture the dynamics of the

full-order model, and the second mode must be included in the reduction basis. Note

that, when considering FE models using commercial packages, the backbone curves

of the full-order model cannot readily be computed. As such, significant features

of the system, such as internal resonances, can often be overlooked during model

reduction. With the proposed method, the existence of such dynamic interactions can

be predicted, without the need for expensive full-order simulations.

5.4.3 Two-mode ROM results

A 2-DOF, seventh-order ROM (Φr =
[
ϕ1 ϕ2

]
, Φs =

[
ϕ3 ϕ4

]
) is now computed

using the same procedure, i.e. according to the ICE-IC method. The dataset used to

calibrate the ROM consists of a series of static load cases where either one or both of

the reduced modes are forced directly. The amplitude of the maximum force applied

to either mode is |F1| = 3, as before, and |F2| = 8. As before, this dataset is used to

approximate the components of the modal tangent stiffness matrix as polynomial

functions of the reduced coordinates, in addition to the reduced nonlinear stiffness

functions and quasi-static coupling functions.

The first backbone curve of the 2-DOF ROM is shown in figure 5.6, in the projection

of modal amplitudes against fundamental response frequency. The ROM (blue lines)

is now able to accurately capture the dynamic behaviour of the full-order system

for the whole range of frequencies considered. In this case, the additional treatment

proposed here (red lines), acts as a tool for validating the ROM, as it indicates that

the static condensation approximation is sufficiently accurate; this is determined by

observing that the contribution from h is negligible for both condensed modes. In the

next section, the proposed method is demonstrated using a finite element model of a

clamped-clamped beam.

3It should be noted that, in the region where |h2| is relatively large, the smallness assumption is
violated, resulting in mispredictions of the static condensation errors in modes 3 and 4. Nevertheless,
the early growth of h2 indicates the onset of a dynamic interaction, whilst the exact modal vibration
amplitudes are of little importance.
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Figure 5.6. First backbone curve of the seventh-order, 2-DOF ICE-IC ROM of the
oscillator (blue lines). The backbone curve of the ROM when the static condensation
error is taken into account, using the proposed method, is represented by red lines.
The first backbone curve of the full-order system is also shown for reference (dashed
grey lines).

5.5 Application to FE model of a clamped-clamped beam

We now consider a geometrically nonlinear model of a clamped-clamped beam, con-

structed using the commercial FE software Abaqus. The beam model is identical to

the one studied in Chapter 4. It has a length of 300 mm and a rectangular cross-

section of 25 mm × 1 mm, and is made of steel with a Young’s modulus of 205 GPa,

density of 7800 kg m−3 and Poisson’s ratio of 0.3. The mesh consists of 120 shear

deformable, three-node quadratic beam elements (type B32), resulting in 1434 DOFs.

A quintic single-DOF ROM of the first (bending) mode is computed using the

ICE method, with modes 3, 6, 72 and 129 included in the condensed basis; these

correspond to the second and third symmetric bending modes, and the first and

second symmetric axial modes, respectively.4 The static solution dataset used to

4Here, the condensed basis was chosen based on the relative amplitude of each mode evaluated at
the static solutions, as discussed in Chapter 4. For more complex structures, more intricate methods
of selecting good candidate modes for the condensed basis may be necessary — this remains a topic for
future investigation. The reader is referred to Buza et al. (2021) for a recent work on mode-selection
criteria based on the theory of spectral submanifolds.
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calibrate the ROM consists of four load cases where the static force applied to the

first mode is F1 = {−45,−22.5,+22.5,+45}, resulting in a maximum static transverse

deflection of 1.13 mm at the beam midspan. For this model, the computation time

for each load case is about 25 seconds on a standard computer. As before, the fitting

procedure for the reduced nonlinear stiffness functions, the quasi-static coupling

functions, and the tangent stiffness functions for the condensed modes,5 is carried

out in a least-squares manner.

(a) (b)

Figure 5.7. (a) Backbone curve of the quintic single-DOF ROM of the beam (top),
and the corresponding error associated with the static condensation of each mode
(bottom). (b) Comparison between the periodic responses predicted by the ROM
and the responses of the FE model, for 10 different sets of initial conditions which
correspond to the black dots on the backbone curve.

Figure 5.7 (a) shows the backbone curve of the single-DOF ROM (top), as well as

the corresponding normalised amplitude of the error in the condensed modes (bottom).

As the backbone curves of the full-order FE model cannot readily be computed, and

thus cannot be directly compared to those of the ROM, the accuracy of the ROM is

5For this additional step, the tangent stiffness matrix of the full-order model must be evaluated at
each static solution — this can be readily extracted from the FE package.
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assessed by comparing a set of reduced NNMs to the dynamic response of the FE

model when the corresponding initial conditions are applied, for a wide range of

response frequencies. The initial conditions are enforced in the form of initial applied

modal forces, as proposed in Kuether and Allen (2014). The periodic orbits of the

ROM are compared to the FE response in the time domain, as shown in figure 5.7 (b).

From this, it can be seen that the ICE method can provide accurate results for the

reduction of the clamped-clamped beam model, even with a single-mode ROM — this

agrees with observations seen in the literature (Kuether et al., 2015; Hollkamp and

Gordon, 2008; Gordon and Hollkamp, 2011), as well as the findings discussed in

Chapters 3 and 4.

Interestingly, while the standard ROM results, as shown in 5.7 (b), indicate good

agreement with the full-order model, the results obtained from the error-monitoring

treatment suggest that there is a strong dynamic interaction between the first and

(a) (b)

Figure 5.8. (a) First backbone curve of the quintic 2-DOF ROM of the beam (top),
and the corresponding error associated with the static condensation of each mode
(bottom). (b) Comparison between the periodic responses predicted by the ROM
and the responses of the FE model, for 3 different sets of initial conditions which
correspond to the black dots on the backbone curve.
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third modes of the beam near Ω= 410 rad s−1, which the single-mode ROM is unable

to capture. Note that, whilst the h components of modes 6, 72 and 129 are also

large, the component of mode 3 is the largest, and begins its rapid growth at a lower

frequency than the other modes. As such, mode 3 is treated as the candidate for a

dynamic interaction. Specifically, this is associated with the amplitude of the fifth

harmonic of the third mode. This result points to the existence of a 1:5 internal

resonance between the first and third modes — a feature of flat clamped-clamped

beams which has been widely observed in the literature, see for example Kuether

et al. (2015); Givois et al. (2019).

In order to verify this observation, a quintic 2-DOF ICE ROM of the beam is

computed, with Φr =
[
ϕ1 ϕ3

]
and Φs =

[
ϕ6 ϕ72 ϕ129

]
. The calibration dataset

consists of 24 load cases, where the maximum force applied in each reduced mode

is F1 = 45 and F3 = 360. The resulting backbone curve is shown in figure 5.8 (a).

It can be seen that the ROM now exhibits a 1:5 internal resonance, whilst the

error predicted using the proposed method remains relatively small. As before, the

accuracy of the reduced internally-resonant NNMs is verified by comparing them to

the corresponding set of responses of the full-order model (figure 5.8 (b)).

It should be noted that, in addition to enabling the internal resonance to be

modelled, the 2-DOF ROM also leads to more accurate response predictions on the

primary backbone curve. The accuracy of each reduced NNM is quantified using the

periodicity metric ϵ, as defined in VanDamme and Allen (2017), i.e.

ϵ= ∥xT −x0∥
∥x0∥

, (5.35)

where x0 is the displacement vector of the FE model at t = 0, which is imposed as

an initial condition based on the reduced NNM, and xT is the displacement vector

of the FE model after one period. A smaller ϵ value indicates a response which is

closer to being periodic, and thus a more accurate ROM. The computed periodicity

values for different NNMs on the primary backbone curves, both for the single- and

2-DOF ROMs, are shown in figure 5.9. The results suggest that the third mode of

the FE model becomes increasingly important for response frequencies higher than

∼ 420 rad s−1. This is in qualitative agreement with the results shown in 5.7 (a), and

further confirms the validity of the error-approximation procedure.
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Figure 5.9. Plot of the periodicity error of the FE model, for different sets of initial
conditions given by the single-DOF (blue crosses) and 2-DOF (red circles) ICE ROMs
of the clamped-clamped beam.

5.6 Summary

This chapter has shown how the existence of internal resonances may be predicted in

a computationally efficient manner during model order reduction of geometrically

nonlinear structures. Specifically, a simple 4-DOF oscillator was used as a motivating

example to show how each modal coordinate in a nonlinear system may be represented

as the sum of a component that is quasi-statically coupled to a small number of

coordinates, which must form the reduction basis in a ROM, and a component

that is dynamically independent of them. The latter part may be considered as

the error arising from static condensation, which is the concept on which methods

such as the ICE(-IC) rely, and is typically applied to structures characterised by

slow/fast dynamics. The harmonic balance method was used to approximate the

error dynamics independently of the reduced dynamics, thus enabling any dynamic

interaction between the reduced and condensed modes to be identified. This can be

achieved in a very computationally efficient manner, as a linear approximation of

the error dynamics is considered. The proposed method was demonstrated using the

simple oscillator, as well as a finite element model of a clamped-clamped beam, and

it was shown how the existence of a 1:3 and a 1:5 internal resonance, respectively,

could be predicted based on single-mode ROMs.

The significance of this development is twofold. Firstly, the method presented here

enables the identification of the modes which must form the reduction basis, without

relying on knowledge of the full-order dynamics. Secondly, this method can serve as a
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computationally cheap validation of ROMs without the need for full-order simulations,

which can sometimes be infeasible to obtain. This removes the need for cumbersome

trial-and-error processes and case-by-case treatment guided by empirical rules, and

is a key step towards developing reduced-order modelling methods which can be

applied systematically to a broad range of structures.



Chapter 6

Nonconservative structures

In previous chapters, the quality of the computed ROMs has been assessed using

backbone curves, i.e. based on the response of the underlying conservative structure.

Whilst backbone curves provide invaluable insight into the nonlinear behaviour of

the structure and are closely related to forced response curves, it is often useful to

compute the forced response of the structure directly. This chapter demonstrates

how indirect reduced-order modelling techniques can be extended to nonconserva-

tive structures, using a nonlinear mapping of the physical DOFs into the reduced

coordinates. The proposed method is contrasted with the traditional approach, which

relies on a linear projection of the nonconservative forces onto the reduced subspace;

as a result, only the nonconservative forces acting directly on the reduced modes

can be captured, whilst any energy gained or dissipated by the statically condensed

modes is neglected. This can lead to significant inaccuracies in the ROM predictions,

which is demonstrated using a 2-DOF oscillator, an FE model of an axially-excited

inclined cable, and an FE model of a cantilever beam. The proposed method enables

the nonconservative forces acting on the statically condensed modes to be accounted

for in the reduced dynamics. Excellent agreement is observed between the forced

response curves of the full-order models and those of the proposed ROMs for all three

structures.

Publication resulting from this work
Nicolaidou, E., Hill, T. L., and Neild, S. A. (2022). Nonlinear mapping of non-

conservative forces for reduced-order modelling. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 478(2268):20220522
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6.1 Introduction

Traditionally, the ICE method has suffered from limitations associated with the lack

of invariance of the resulting ROMs. In a practical sense, this means that the ROMs

are sensitive to the magnitude of the static forces used to obtain the calibration

dataset (Gordon and Hollkamp, 2011), and as such can only remain accurate in a

very limited range of operating conditions. As discussed in Chapters 3 and 4, this is

a consequence of the fact that the reduced dynamics are obtained based on a linear
mapping1 between the physical DOFs of the FE model and the reduced coordinates,

which is inherently unable to correctly capture the nonlinear modal couplings. It has

been shown that, when a nonlinear mapping is used instead, the reduced dynamics

must include not only higher orders of nonlinearity (Nicolaidou et al., 2020b), but

also some additional velocity- and acceleration-dependent terms associated with the

inertia of the statically condensed modes (Nicolaidou et al., 2020a). Similar results are

seen in other direct reduced-order modelling methodologies which rely on a nonlinear

mapping, including the quadratic manifold approach (Jain et al., 2017; Rutzmoser

et al., 2017), as well as the more general concept of an invariant manifold based on

normal form theory (Pesheck et al., 2001; Shaw and Pierre, 1993; Touzé et al., 2004b).

Nevertheless, these developments of the ICE method have focussed on the reduc-

tion of the underlying conservative structure, and computation of backbone curves.

Whilst backbone curves are closely related to forced response curves, and offer rich

insight into the dynamics of a system, it is often useful to compute the forced response

of the structure directly. This chapter shows how indirect reduced-order modelling

methods can be extended to nonconservative systems. The nonconservative forces
acting on the structure are reduced based on a nonlinear mapping which, relative to

the traditional, linear mapping, gives rise to some additional terms in the reduced

dynamics, referred to as force compensation. These capture the nonconservative forces

acting on the statically condensed modes, which the traditional method neglects, and

bear similarity with expressions obtained using the forced/damped invariant mani-

fold approach (Touzé and Amabili, 2006; Touzé et al., 2008; Vizzaccaro et al., 2022;

Opreni et al., 2022; Jain and Haller, 2022). In the proposed formulation, the physical

DOFs of the FE model are mapped directly into the reduced coordinates without
passing through the full modal coordinates, similar to the approach proposed in

1It should be noted that, whilst the stress manifold obtained using the ICE method is a manifesta-
tion of a nonlinear mapping which implicitly captures the effect of membrane stretching, the form of
the reduced dynamics is a result of the linear transform x=Φrr, as discussed earlier in this thesis.
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Vizzaccaro et al. (2021). This circumvents the need for a full modal transform, which

can be a bottleneck when considering large FE models, and allows for straightforward

modelling of point forces/moments.

The rest of this chapter is structures as follows. In section 6.2, the 2-DOF oscillator

introduced in Chapter 3 is used as a motivating example to show how the traditional

method, based on a linear mapping, is unable to capture the damping in the statically

condensed mode, and leads to significant overestimations of the response amplitude.

Section 6.3 introduces the proposed method, which achieves reduction through a

nonlinear mapping, such that any energy gained or dissipated by the condensed

modes can be accounted for. Section 6.4 revisits the oscillator example, and it is

shown that the augmented ROM can capture the full-order response very accurately.

In section 6.5, the proposed method is applied to an FE model of an axially-excited

inclined cable. It is shown that the proposed ROM is extremely accurate in capturing

not only the primary resonance curve, but also a parametric resonance, which the

traditional approach neglects. In section 6.6, the proposed method is applied for

the reduction of the large-amplitude forced/damped dynamics of a cantilever beam,

modelled using commercial FE software. Two loading scenarios are considered: one

with a constant-direction force and one with a follower force, both of which are applied

at the free end of the beam. Finally, conclusions are summarised in section 6.7.

6.2 Motivating example

In this section, the simple 2-DOF oscillator which was previously introduced in

Chapter 3,2 is considered as a motivating example. The oscillator consists of a mass

m = 0.1 kg, which is free to move in the x–y plane. It is constrained by two springs of

length ℓ= 0.1 m, which are undeformed and oriented along the x- and y-directions

at the equilibrium configuration, as shown in figure 6.1. The springs are linearly

elastic, with stiffness coefficients k1 = 10 N m−1 and k2 = 1000 N m−1, and obey a

linear strain–displacement relationship.

The nonconservative forces acting on the oscillator are due to harmonic external

excitation and Rayleigh damping, which is the most widely used dissipation model in

2Note that, here, the equations of motion of the oscillator are considered in their original form,
without using a Taylor series expansion to truncate them up to the cubic order, as was done in
Chapter 3.
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Figure 6.1. Schematic diagram of the single-mass, 2-DOF oscillator at its equilib-
rium position.

FE software. The equations of motion can be written in the form

mẍ+k1x+ f1(x, y)= P1 cos(Ωt)− c1 ẋ

mÿ+k2 y+ f2(x, y)= P2 cos(Ωt)− c2 ẏ

(6.1a)

(6.1b)

where P1 and P2 are the excitation amplitudes in the x- and y-directions, respectively,

c1 =αm+βk1, c2 =αm+βk2, and α and β are the mass- and stiffness-proportional

Rayleigh damping coefficients, respectively.

6.2.1 Conservative dynamics

The stiffness coefficient of the vertical spring is much larger than that of the hori-

zontal one, resulting in a large separation between the natural frequencies of the

oscillator (ω2/ω1 = 10). As such, the dynamics of this system are governed primarily

by the first mode. First, considering the underlying conservative system, a single-DOF

reduced-order model can be expressed in the form

r̈+ k1

m
r+D(r, ṙ, r̈)= 0, (6.2)

where r is the reduced coordinate, and the function D can differ both qualitatively,

depending on the reduction methodology, as well as quantitatively, depending on

the dataset used to approximate it. For example, using the ICE method (Hollkamp

and Gordon, 2008), D takes the form of a nonlinear polynomial of the reduced
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displacement, i.e.

D(r, ṙ, r̈)= fr(r)=
K∑

k=2
Akrk, (6.3)

where fr is the function of nonlinear restoring forces in the reduced space, and Ak

are coefficients to be approximated up to the truncation order K , using a static

solution dataset from the full-order model. Using the more generally applicable

ICE-IC method proposed in Chapter 4, the reduced dynamics include some additional

terms associated with the inertia of the condensed mode, i.e.

D(r, ṙ, r̈)= fr(r)+m
(

dθ
dr

)2
r̈+m

dθ
dr

d2θ

dr2 ṙ2, (6.4)

where

θ(r)=
K∑

k=2
Bkrk (6.5)

is a function characterising the (nonlinear) quasi-static coupling between the vertical

displacement of the oscillator, y, and the reduced coordinate, r.3 Its coefficients, Bk,

are computed via regression analysis, as with fr(r) above.

The static solution dataset used to approximate the two unknown functions, fr(r)

and θ(r), is obtained by applying a static force F1 in the first mode, and extracting the

(a) (b)

Figure 6.2. The static solution dataset used to approximate (a) the function of
nonlinear restoring forces in the reduced space, and (b) the quasi-static coupling
function.

3Equation (6.4) can be obtained using the nonlinear mapping x = [x y]⊺ = [
r/
p

m θ(r)
]⊺, as

discussed in Chapter 4. Note that, using the notation that will later be introduced in section 6.3, this
is equivalent to x=Φrr+θ(r) with r= [r], Φr =

[
1/
p

m 0
]⊺ and θ(r)= [

0 θ(r)
]⊺, as the physical

coordinates of the oscillator are linearly uncoupled.



96 CHAPTER 6. NONCONSERVATIVE STRUCTURES

corresponding static displacement of the oscillator. Here, the dataset consists of 12

load cases where F1 is increased in equal intervals from 0 to +2.4, and 12 load cases

where F1 is decreased in equal intervals from 0 to −1.2. Then, fr(r) is approximated

using the {F1 −ω2
1rst, rst} dataset, as shown in figure 6.2 (a), where rst is the static

displacement of the first mode and ω2
1 = k1/m. Similarly, θ(r) is approximated using

the {yst, rst} dataset, as shown in figure 6.2 (b). The estimated parameters, for K = 9,

are listed in table 6.1.

Table 6.1. Estimated coefficients of the function of reduced nonlinear restoring
forces, fr(r), and the quasi-static coupling function, θ(r), for K = 9.

k 2 3 4 5
Ak +4.89×10−1 −6.53×10+1 +3.85×10+5 −1.14×10+7

Bk −5.00×10+1 +1.62×10+1 −1.29×10+4 +2.44×10+4

k 6 7 8 9
Ak +6.52×10+8 −2.63×10+10 +7.04×10+11 −3.17×10+12

Bk −8.39×10+6 +1.54×10+8 −3.21×10+9 −2.27×10+11

Figure 6.3 shows the backbone curves of the ninth-order, single-DOF ICE and

ICE-IC ROMs, which have been computed according to equations (6.3) and (6.4),

respectively. These are compared to the first backbone curve of the full-order sys-

tem. It can be seen that, due to the significant effect of the inertia of the statically

coupled second mode, a ROM that includes inertial compensation (Nicolaidou et al.,

Figure 6.3. Comparison between the first backbone curve of the 2-DOF oscillator,
and those of the single-DOF ICE and ICE-IC ROMs.
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2020a) is required in order to accurately capture the conservative dynamics of the

oscillator. This observation is in agreement with similar studies in the literature

based on the theory of invariant manifolds (Touzé et al., 2004a), which have found

that neglecting this effect can lead to not only quantitatively inaccurate results, but

even erroneous predictions of the type of nonlinearity (e.g. hardening rather than

softening behaviour).

6.2.2 Nonconservative dynamics

The focus of this chapter is on how the nonconservative forces in equations (6.1)

may be reduced. Traditionally, this is achieved via a linear projection onto the space

spanned by the reduced modeshapes (Mignolet et al., 2013; Van Damme et al., 2020).

The resulting terms are then appended onto the conservative ROM, equation (6.2),

i.e.

r̈+ k1

m
r+D(r, ṙ, r̈)= P1p

m
cos(Ωt)− c1

m
ṙ. (6.6)

This approach is employed here to compute the forced response of the oscillator in the

vicinity of Ω≈ω1, with α= 0, β= 10−3 s, P1 = 5×10−3 N and P2 = 0, based on both an

ICE ROM (equation (6.3)) and an ICE-IC ROM (equation (6.4)). These are compared

to the forced response of the full-order model in figure 6.4. It can be seen that, even

Figure 6.4. Comparison between the forced response curve of the 2-DOF oscillator
in the vicinity of Ω≈ω1, with α= 0, β= 10−3 s, P1 = 5×10−3 N and P2 = 0 (grey line),
and the corresponding forced response curves of the ICE(-IC) ROMs, obtained using
a linear projection of the nonconservative forces (blue lines).
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though the ICE-IC model is able to capture the conservative behaviour of the oscillator

very accurately (as shown in figure 6.3), both ROMs significantly overestimate the

amplitude of the nonconservative response of the oscillator. This is because the linear

mapping is inherently unable to capture the damping present in the second mode. In

the next section, it will be shown that any energy dissipated/gained by the statically

coupled modes can be accounted for using a nonlinear mapping of the nonconservative

forces.

6.3 Capturing the forces acting on the condensed modes

We start by considering the semi-discretised equations of motion of a nonconservative,

geometrically nonlinear structure, i.e.

Mẍ+Kx+ f(x)=F(t,x, ẋ). (6.7)

The conservative model on the left-hand side of equation (6.7) is typically obtained

through a finite element procedure, whilst the nonconservative forces on the right-

hand side are a result of any dissipative process and/or external excitation.

The dynamics of a structure are assumed to be governed by a small subset of

its linear normal modes. As such, the full-order model may be reduced using the

approximation

x=Φrr+θ(r), (6.8)

such that

ẋ=
(
Φr + ∂θ

∂r

)
ṙ

ẍ=
(
Φr + ∂θ

∂r

)
r̈+ ∂2θ

∂r2 ṙṙ,

(6.9a)

(6.9b)

where θ is a vector of quasi-static coupling functions in the physical space. The

reduced dynamics are then obtained by substituting equations (6.8) and (6.9) into

equation (6.7) and premultiplying by
(
∂x
∂r

)⊺
,4 i.e.

r̈+
(
∂θ

∂r

)⊺
M
∂θ

∂r
r̈+

(
∂θ

∂r

)⊺
M
∂2θ

∂r2 ṙṙ︸ ︷︷ ︸
inertial compensation

+Λrr+ fr(r)=Φ
⊺
r F+

(
∂θ

∂r

)⊺
F︸ ︷︷ ︸

force compensation

, (6.10)

4This ensures that the residual introduced by the projection approximation is orthogonal to the
kinematically admissible displacements δx (Rutzmoser et al., 2017).
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where Λr contains the linear reduced coefficients along its main diagonal, and fr(r) is

to be approximated via regression analysis, as discussed earlier in this thesis. Note

that the reduced conservative dynamics on the left-hand side of equation (6.10) are

equivalent to those obtained using the unforced/undamped ICE-IC method introduced

in Chapter 4. The above expression has been simplified by noting that, by definition,

θ(r) must satisfy
(
∂θ

∂r

)⊺
(Kθ+ fx (Φrr+θ)) = 0, as it is computed based on static

solution data where only the reduced modes are directly forced, as discussed in

Chapter 4.

Equation (6.10) can be contrasted with the reduced equations of motion obtained

using the standard ICE method, which relies on the linear mapping x=Φrr, i.e.

r̈+Λrr+ fr(r)=Φ
⊺
r F. (6.11)

The additional terms on the left-hand side of equation (6.10) relative to equa-

tion (6.11), which are collectively referred to as inertial compensation (IC), have

been shown to account for the kinetic energy in the statically condensed modes in

Chapter 4. Similarly, the additional terms on the right-hand side of equation (6.10),

capture any energy gained or dissipated by the statically condensed modes through

nonconservative forces; these are referred to as force compensation (FC).

The linear properties of the ROM, Φr and Λr, are directly computed using the

full-order linear mass and stiffness matrices, whilst the nonlinear functions, fr(r) and

θ(r), are approximated in a least-squares manner using a nonlinear static solution

dataset from the full-order model. It should be noted that the quasi-static coupling

functions are now approximated in the physical space, i.e. a function is computed

for each DOF, rather than for each relevant mode. Using the notation introduced

earlier in this thesis, this is equivalent to θ(r)≡Φs g(r). As such, the modes which

exhibit a strong quasi-static coupling to the reduced modes need not be explicitly

identified, and performing a full modal transform is not required. This development

is particularly advantageous when considering high-fidelity FE models with a very

large number of DOFs, where performing a full linear modal transform is infeasible.

It is worth highlighting that, since the quasi-static coupling function for each DOF

is computed independently, the size of the least-squares problem associated with

the function approximation does not increase. Instead, the number of least-squares

problems to be solved increases in accordance with the number of DOFs of the FE

model. Due to the efficiency of this procedure, the computational cost associated with

this remains negligible.
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6.4 Application to the 2-DOF oscillator

We now revisit the oscillator considered in section 6.2. A single-mode, nonconservative

ROM which includes both inertial and force compensation (ICE-IC-FC) is computed

according to equation (6.10). Its dynamics can be written as

r̈+m
(

dθ
dr

)2
r̈+m

dθ
dr

d2θ

dr2 ṙ2 + k1

m
r+ fr(r)

=
(

P1p
m

+P2
dθ
dr

)
cos(Ωt)−

(
c1

m
+ c2

(
dθ
dr

)2)
ṙ.

(6.12)

The forced response of this ROM is shown in 6.5 (a) (top), for the same forc-

ing/damping parameters as before. It can be seen that the proposed ROM (red line)

can now reproduce the response of the full-order model very accurately. Relative to

the baseline ICE-IC ROM considered in section 6.2 (equations (6.4) and (6.6)), and

noting that P2 = 0, the proposed ICE-IC-FC ROM (equation (6.12)) differs through the

addition of a displacement-dependent damping term which accounts for the energy

dissipated by the second mode. As such, the effective damping coefficient in the

proposed ROM is equal to the linear damping coefficient of the first mode (c1/m) at

zero displacement, but increases as the response amplitude increases. This is shown

in figure 6.5 (a) (bottom).

In the above example, the stiffness-proportional damping applied to the system

results in a relatively large damping ratio in the second mode (ζ1 = 0.5%, ζ2 = 5%), and

thus the correction term introduced by the force compensation method is significant.

Mass-proportional damping (α= 1 s−1, β= 0) is now applied, such that the damping

ratio in the second mode is much smaller (ζ1 = 5%, ζ2 = 0.5%). The forced response

curves, with P1 = 5×10−2 N and P2 = 0, are shown in the top panel in figure 6.5 (b),

and the corresponding effective damping coefficient in the ROMs is shown on the

bottom. It can be seen that, as expected, the error in the response prediction of the

baseline ROM is less significant, and the relative magnitude of the correction in the

effective damping coefficient introduced by the force compensation method is smaller.

These findings are supported by similar results reported in Touzé and Amabili (2006);

Vizzaccaro et al. (2021) using the damped/forced invariant manifold approach.

In both of the above examples, no external excitation was applied to the second

mode, such that the discrepancy between the response of the full-order model and

that of the traditional ROM, is solely due to the viscous dissipation in the second

mode, which the linear mapping fails to capture. The next section will show how, in
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(a) (b)

Figure 6.5. Top: forced response curves of the full-order model (grey line) and
the ICE-IC ROMs obtained based on the linear (blue line) and the nonlinear (red
line) mapping of the nonconservative forces. Bottom: the corresponding effective
damping coefficient as the response of the ROM varies, for a system with (a) stiffness-
proportional damping (α = 0, β = 10−3 s, P1 = 5× 10−3 N, P2 = 0), and (b) mass-
proportional damping (α= 1 s−1, β= 0 s, P1 = 5×10−2 N, P2 = 0).

a similar manner, the force compensation method can capture the forcing applied

to modes that are not directly included in the reduction basis, which the traditional

method would neglect.

6.5 Application to an axially-excited inclined cable

In this section, we consider a model of an inclined cable taut between two fixed end

points, as shown in figure 6.6. The dynamics of the cable model are obtained through
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a finite element discretisation, similar to the method in Nahon (1999). The FE model

was developed in MATLAB and its accuracy has previously been verified in Hong

et al. (2020), by comparing a reduced numerical model to the analytical model derived

in Warnitchai et al. (1995), for a highly stressed horizontal cable.

𝜃

𝜃

𝑥

𝑦

Figure 6.6. Schematic diagram of the axially-excited inclined cable model.

The cable is discretised into n identical, linearly elastic elements, connected in

series between n+1 nodes. The two end nodes are fixed, whilst the remaining nodes

are free to move in the x–y plane, resulting in a total of 2(n−1) DOFs. The inertia of

the cable is modelled using variational mass lumping, giving rise to a consistent mass

matrix (Felippa et al., 2015). The cable has an unstretched length of L0, uniform

density ρ, Young’s modulus E, a circular cross-section of diameter d, and its chord

line is inclined at an angle θ from the horizontal. Axial stress is assumed to be

uniformly distributed over the cross-sectional area, and a static axial pre-tension T
is applied at both cable ends.

The forces acting on the cable are due to: (a) elasticity, (b) gravity, with grav-

itational constant g, (c) external harmonic excitation in the form Fp = P cos(Ωt),
acting in the axial direction at a location xp along the chord length, as shown in

figure 6.6, where P and Ω are the amplitude and frequency of excitation, respectively,

and (d) viscous dissipation in the form of linear damping, with a constant damping

ratio ζ in all modes.

6.5.1 Simplified FE model

A model with the following parameters is considered: n = 6, θ = 25◦, L0 = 1.5 m,

ρ = 3000 kg m−3, E = 200 GPa, d = 5 mm, T = 280 N, g = 9.81 m s−2, and ζ= 5%. Here,

we are primarily interested in the effect of the axial external excitation on the dynam-

ics of the cable, and less so in the interactions between bending modes. As such, we
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first consider a simplified version of the full-order FE model described above, whereby

any bending-mode coupling terms in the underlying Lagrangian of the system are

neglected. In a Galerkin procedure, this is equivalent to intercepting a single bending

mode for analysis.

This simplified 10-DOF model may then be reduced to a single DOF, whereby

the axial dynamics are condensed using the quasi-static coupling approximation.

The first backbone curve of the simplified full-order model, as well as those of cubic

single-DOF ICE and ICE-IC ROMs based on the first mode, are shown in figure 6.7.

It can be seen that the response of both ROMs is practically identical to that of the

full-order model, irrespective of the inclusion of the inertial compensation terms. This

is because the effect of in-plane inertia is often negligible in cable models, such that

the more traditional ICE ROM is sufficient in accurately capturing the response of

the full-order model (Warnitchai et al., 1995; Hong et al., 2020).

Figure 6.7. Comparison between the first backbone curve of the inclined cable model,
and those of the single-DOF ICE and ICE-IC ROMs.

Figure 6.8 shows the forced response curve of the simplified FE model (grey line),

as well as those of the ICE ROMs without force compensation (figure 6.8 (a), blue line)

and with force compensation (figure 6.8 (b), red line), when a harmonic force with

amplitude P = 500 N and frequency Ω∼ 2ω1 is applied at the first free node of the

cable (xp = L0/6). It can be observed that the cable exhibits a 2:1 parametric resonance,

emanating from period-doubling bifurcation points (black crosses in figure 6.8) —

this is a known and commonly observed phenomenon (Pinto da Costa et al., 1996; Liu
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(a) (b)

Figure 6.8. Forced response curves of the simplified version of the cable FE model
(grey line) and the ICE ROMs obtained using (a) the linear (blue line) and (b) the
nonlinear (red line) mapping of the nonconservative forces, computed in the vicinity
of twice the first natural frequency with P = 500 N. The period-doubling bifurcation
points are marked with black crosses.

et al., 2020). Since the axial excitation is near-orthogonal to the reduced (bending)

mode, the linear mapping is unable to capture this behaviour. On the other hand,

the proposed ROM, which includes force compensation, can capture the parametric

resonance and shows perfect agreement with the full-order model.

6.5.2 Fully-coupled FE model

The fully-coupled 10-DOF FE model is now considered. Its forced response curve

for P = 400 N and Ω∼ 2ω1 is shown in figure 6.9 (grey lines). Two main differences

between the behaviour of the fully-coupled FE model and that of the simplified FE

model can be observed, caused by the dynamic interactions with higher bending

modes:

• the bifurcation points, marked with black crosses in figure 6.9 (a), are shifted

to lower frequencies;

• the primary resonance curve, from which the parametric resonance emanates,

has non-zero displacement amplitude.
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(a) (b)

Figure 6.9. Forced response curves of the fully-coupled FE model (grey line) and
the ICE ROMs obtained using the linear (blue line) and the nonlinear (red line)
mapping of the nonconservative forces, computed in the vicinity of twice the first
natural frequency with P = 400 N: (a) single-mode ROMs, (b) five-mode ROMs.

As can be seen in figure 6.9 (a), even though the single-mode ICE-FC ROM can

capture the fundamental behaviour of the cable (i.e. the existence of the parametric

resonance), it is unable to capture the abovementioned effects. This is because the

higher bending modes, whose natural frequencies are similar to that of the first

bending mode (ω2 ≈ 2ω1, ω3 ≈ 3ω1, etc.), cannot adequately be modelled based on a

static condensation procedure and must be directly included in the reduction basis.

As such, the corresponding forced response curves of 5-DOF ICE and ICE-FC

ROMs are computed, which include all five bending modes in the reduction basis,

whilst the axial dynamics are statically condensed — these are shown in figure 6.9 (b).

It can be seen that, without the inclusion of the force compensation terms, the

ICE ROM cannot accurately capture the primary resonance of the cable, whilst it

altogether neglects the existence of the parametric resonance. The proposed ICE-FC

ROM, however, can capture both solution branches with an extremely high level of

accuracy.

In the next section, the proposed method is applied to a larger FE model of a

cantilever beam, modelled using commercial FE software, which demonstrates its

non-intrusive nature and suitability for industrial applications.
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6.6 Application to FE model of a cantilever beam

This section considers the large-amplitude vibrations of a forced and damped

cantilever beam, modelled using the commercial finite element software Abaqus.

A schematic diagram of the beam is shown in figure 6.10, where a clamped bound-

ary condition is imposed at x = 0. The beam has a length of ℓ = 300 mm, width of

w = 25 mm and thickness of h = 1 mm, and is made of isotropic steel with a Young’s

modulus of 205 GPa, density of 7800 kg m−3 and Poisson’s ratio of 0.3. The model

is meshed with 120 shear deformable, three-node quadratic beam elements (B32),

resulting in N = 1440 DOFs. The dissipation in the beam is due to mass-proportional

viscous damping, with coefficient α= 4 s−1, resulting in a damping ratio of ζ1 = 3.5%

in the first mode.

ℓ
𝑤

𝑥

𝑦

𝑧

ℎ

Figure 6.10. Schematic diagram of the cantilever beam.

Two different loading scenarios are considered, both of which involve a harmonic

external excitation acting at the free end of the beam. In the first example, the

external excitation acts along the y-direction, i.e. perpendicular to the axis of the

beam in the original, undeformed configuration. The nonconservative forces acting

on the beam can then be written as

Fx(t, ẋ)= P ei cos(Ωt)−αMẋ, (6.13)

where P and Ω are the amplitude and frequency of excitation, respectively, ei is the

N ×1 unit vector with a single non-zero element in its ith position, and i is the index

of the DOF corresponding to a translation of the tip node along the y-axis. In the

second loading scenario, the external force remains perpendicular to the axis of the

beam as the beam deforms, i.e.

Fx(t,x, ẋ)= P
[
ei cos

(
e⊺kx

)−e j sin
(
e⊺kx

)]
cos(Ωt)−αMẋ, (6.14)
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where j and k are the indices of the DOFs corresponding to a translation of the tip

node along the x-axis, and a rotation of the tip node about the z-axis, respectively.

Schematic diagrams of the two loadings scenarios are shown in figure 6.11.

(a)

𝑥

𝑦

90∘

(b)

𝑥

𝑦

90∘

Figure 6.11. Schematic diagram of the two different loading scenarios: (a) force
acting along the y-direction, (b) follower force which remains perpendicular to the
beam axis as the beam deforms.

Here, the forced response of the cantilever beam in the vicinity of the first

nonlinear normal mode is of interest, which has a linearised natural frequency

of ω1 = 57.8 rad s−1. As discussed and demonstrated in Chapter 4, the conservative
dynamics in this region can be captured with a very high degree of accuracy and up

to large vibration amplitudes, by a fifth-order, single-DOF ROM using the ICE-IC

(a) (b)

Figure 6.12. The static solution dataset used to approximate (a) the function of
nonlinear restoring forces in the reduced space, and (b) the quasi-static coupling
function associated with the 715th DOF; similarly a quasi-static coupling function is
approximated for each DOF.
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method. As such, the same reduction basis (Φr =
[
ϕ1

]
) and truncation order (K = 5)

are used here. The static solution dataset used to compute the reduced parameters is

obtained by applying a static force F1 ∈ [−45,+45] in the first mode, and extracting

the corresponding displacement of the beam. The function of nonlinear restoring

forces in the ROM, fr(r), is approximated using the {F1 −ω2
1r, r} dataset, as shown

in figure 6.12 (a), where r is the displacement of the first mode. Similarly, the quasi-

static coupling functions, θ(r), are approximated using the {x−ϕ1 r, r} dataset. It

should be highlighted that each quasi-static coupling function is approximated inde-

pendently; an example is shown in figure 6.12 (b) for the 715th element in θ, which is

the DOF corresponding to a translation of the tip node along the x-axis.

Figure 6.13 (a) shows the forced response curve of the FE model (black crosses) and

ICE-IC ROMs using both a linear (blue lines) and a nonlinear (red lines) projection

of the nonconservative forces, when a constant-direction sinusoidal force is applied at

the free end of the beam (first loading scenario) with P = 0.9 N and Ω/ω1 ∈ (0.8,1.2).

It can be seen that the proposed ROM remains highly accurate up to very large

amplitudes (Ytip ∼ 2ℓ/3), whilst the ROM obtained using the traditional approach

overestimates the response of the FE model. This behaviour is similar to the example

considered previously in figure 6.5 (b), whereby the traditional ROM is unable to

account for the energy dissipated by the statically coupled modes. At the same

(a) (b)

Figure 6.13. (a) Forced response curves of the FE model and the ICE-IC ROMs
obtained based on the linear (blue line) and the nonlinear (red line) mapping of the
nonconservative forces, for the first loading scenario (force along y-direction) with
P = 0.9 N. (b) Snapshots of the beam at its maximum deflection when Ω= 1.02ω1.
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time, the energy transferred into the statically coupled modes is negligible since

the external forcing, which acts along the y-direction, is orthogonal to the axial

modeshapes. Snapshots of the beam at its maximum deflection, as predicted by the

two ROMs as well as the full-order FE model for P = 0.9 N and Ω= 1.02ω1, are shown

in figure 6.13 (b).

The situation changes in the second loading scenario (figure 6.14), where a fol-

lower force with P = 0.9 N and Ω/ω1 ∈ (0.8,1.2) is considered. In this case, the axial

component of the external excitation is significant, as the rotation of the cantilever

beam about the z-axis is as large as ∼ 70◦ at its free end, when Ytip ∼ 218 mm. As a

result, the uncaptured energy gained by the statically coupled axial modes is greater

than the uncaptured energy dissipated due to damping, and the traditional ROM

now underestimates the response of the FE model. On the other hand, the proposed

ROM is able to capture the competing effect of both types of nonconservative forces,

and accurately predict the forced response of the FE model.

(a) (b)

Figure 6.14. (a) Forced response curves of the FE model and the ICE-IC ROMs
obtained based on the linear (blue line) and the nonlinear (red line) mapping of the
nonconservative forces, for the second loading scenario (follower force) with P = 0.9 N.
(b) Snapshots of the beam at its maximum deflection when Ω= 1.02ω1.

6.7 Summary

This chapter has focussed on how force-based indirect reduced-order modelling meth-

ods, such as the ICE, can be appropriately extended to nonconservative structures,
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enabling forced response curves to be computed directly in an accurate and efficient

manner. The traditional approach of incorporating nonconservative forces in the

ROM relies on a linear projection of these onto the reduced subspace. As such, only

the nonconservative forces acting directly on the reduced modes can be captured,

whilst any energy gained or dissipated by the statically condensed modes is neglected.

Using a simple 2-DOF oscillator, it was shown that this can lead to a significant

overestimation of the oscillation amplitude when the condensed modes dissipate

non-negligible amounts of energy. Similarly, an FE model of an axially-excited cable

was used to show that the traditional method not only underestimates the vibration

amplitude on the primary resonance curve, but is also unable to capture fundamental

behaviours of the cable, such as a 2:1 parametric resonance. This is because the

traditional ROM is inherently unable to capture the external energy transferred to

the axial modes, without including those directly in the reduction basis. This effect

was also demonstrated using an FE model of a cantilever beam under two different

loading scenarios: one where a constant-direction force and one where a follower force

is applied at the free end of the beam.

Here, a nonlinear mapping of the physical coordinates into the reduced coordinates

was used to show how the nonconservative forces acting on both the reduced, as well

as the statically condensed modes, can be accounted for. This nonlinear mapping

gives rise to some additional terms in the nonconservative reduced dynamics, which

are referred to as force compensation. When these were taken into account, the ROM

has shown excellent agreement with the full-order model, for all three structures

considered.

The force compensation method proposed in this chapter, may be considered as

an extension to existing indirect reduced-order modelling techniques, whereby the

nonconservative forces are appended to the reduced conservative dynamics obtained

using, for example, the ICE(-IC) method, resulting in dramatically improved accuracy.

These additional terms are computed based on existing knowledge of the structure,

i.e. the quasi-static coupling functions, and require no additional information from the

FE model. In addition, the proposed formulation, whereby the physical coordinates

are directly mapped into the reduced coordinates, circumvents the need for a full

modal transform, which could otherwise be a bottleneck when considering large FE

models. Whilst this chapter has focussed on nonconservative forces arising from

harmonic external excitation and viscous damping, it should be highlighted that

there is no restriction on the form that the function of nonconservative forces can take.
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It is theorised that the force compensation approach can work well with other types

of nonconservative forces, including friction. Limitations are likely to be encountered

when the nonconservative forces cause the quasi-static coupling approximation to

break down – this remains a topic for future work.





Chapter 7

Conclusions and future work

This aim of this thesis has been to further the current state-of-the-art of reduced-

order modelling methods applicable to geometrically nonlinear engineering structures

modelled using commercial FE software. In this final chapter, the findings of this

thesis are summarised, and potential avenues for future research are outlined.

7.1 Conclusions

This thesis has focussed on non-intrusive, or indirect, reduced-order modelling meth-

ods, which can be employed in conjunction with commercial FE software, and are thus

well-suited to industrial applications. As discussed in Chapter 2, such methods do not

require access to the inner workings of the FE code or knowledge of the parameters

characterising the underlying full-order equations of motion. Instead, reduced-order

models are computed based on data extracted from the FE model, typically in the

form of nonlinear static solutions, which are computationally inexpensive to obtain.

The static solutions of the FE model may be obtained either by enforcing the structure

into a prescribed static displacement and extracting the resulting reaction forces

(STEP method), or by applying a static force to the structure and extracting the

resulting displacement (ICE method). The latter approach has the advantage of

implicitly capturing the response of the high-frequency in-plane modes within the

stress manifold, even when the reduction basis consists only of transverse modes. As

a result, ROMs obtained using the ICE method often require significantly fewer DOFs

compared to their displacement-based counterparts, leading to larger computational

savings.

113



114 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Chapter 3: Accounting for quasi-static coupling

Nevertheless, the ICE method has traditionally suffered from issues related to the

lack of invariance of the reduced subspace. Specifically, one of its major drawbacks

is that the computed ROM parameters are greatly dependent on the scaling of the

static forces used to obtain the calibration dataset, which may introduce significant

errors if the relevant scale factors are not carefully tuned. In Chapter 3, this feature

of the ICE method was investigated using a simple oscillator which exhibits quasi-

static coupling between its two modes. It was demonstrated mathematically that, in

general, quasi-static coupling introduces higher orders of nonlinearity in the reduced

dynamics, beyond the order of nonlinearity present in the full-order model. It was

shown that the traditional ICE ROM, which contains nonlinearities only up to the

cubic order, was extremely sensitive to the force scale factor, both in terms of the

estimated parameters as well as the corresponding backbone curves. On the other

hand, ROMs which contain higher-order nonlinear terms were found to be not only

more accurate, but also significantly more robust with respect to the force scale factor.

These findings were also validated by computing ROMs of a clamped-clamped beam,

modelled using commercial FE software.

In conclusion:

• Due to quasi-static coupling, ROMs obtained using the ICE method should, in

general, include higher orders of nonlinearity than the full-order model.

• Even though ROMs with higher orders of nonlinearity require a larger number

of parameters to be estimated, their invariance to force scale factor renders

them more robust and more accurate for a wider range of operating conditions,

and removes the need for any tuning of the force scale factor.

Chapter 4: Capturing in-plane inertia

Another drawback of the ICE method is that its applicability is limited to struc-

tures in which in-plane displacement is limited. This requirement arises from the

fact that in-plane inertia/kinetic energy is assumed to be negligible. This approx-

imation is often reasonable for structures such as thin plates and slender beams

with fixed/pinned boundary conditions, however, this assumption is violated when

considering structures with free boundary conditions (e.g. cantilever beams). In

Chapter 4, this limitation of the ICE method was addressed by using a Lagrangian

approach to demonstrate how in-plane kinetic energy can be accounted for in the



7.1. CONCLUSIONS 115

reduced dynamics. It was shown that this introduces some additional velocity- and

acceleration-dependent terms in the reduced equations of motion relative to the

traditional ICE method, which are referred to as inertial compensation. The proposed

method was demonstrated using ICE ROMs with and without inertial compensation

for an FE model of a cantilever beam. It was shown that the traditional ICE ROM

severely overestimates the response frequency of the beam, as it is unable to capture

the softening effect caused by in-plane inertia. On the other hand, excellent accuracy

was observed when inertial compensation was included in the reduced dynamics.

In conclusion:

• In-plane kinetic energy can be accounted for in the reduced dynamics through

some additional velocity- and acceleration-dependent terms. These can be

computed using the existing static solution dataset, and do not require any

additional information from the FE model.

• This additional treatment enables force-based indirect reduction methods to

be applied to a far wider range of structures whilst maintaining accuracy to

higher deflection amplitudes.

Chapter 5: Detecting internal resonances

Chapter 5 addressed the challenge of selecting an appropriate reduction basis without

a priori knowledge of the full-order dynamics. Retaining redundant modes will lead

to computationally suboptimal ROMs, whilst omitting dynamically significant modes

will lead to inaccurate results, and important features such as internal resonances

may not be captured. In this chapter, it was demonstrated how the error associated

with static condensation can be efficiently approximated during model order reduc-

tion, in order to predict when dynamic modal interactions will occur. Specifically, it

was proposed that each modal coordinate in a nonlinear system may be represented

as the sum of a component that is quasi-statically coupled to the reduced modes, and

a component that is dynamically independent of them — the latter part may be con-

sidered as the error arising from static condensation. The harmonic balance method

was used to approximate the error dynamics independently of the reduced dynamics,

thus enabling any dynamic interaction between the reduced and condensed modes

to be identified. This can be achieved in a very computationally efficient manner, as

a linear approximation of the error dynamics is considered. The proposed method

was demonstrated using the simple oscillator, as well as a finite element model of
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a clamped-clamped beam, and it was shown how the existence of a 1:3 and a 1:5

internal resonance, respectively, could be predicted based on single-mode ROMs.

In conclusion:

• The error associated with static condensation may be efficiently approximated

during model order reduction using the harmonic balance method. This may

serve as a tool for guiding the reduction basis selection process, as well as a

computationally cheap method for validating the accuracy of ROMs, without

the need for full-order simulations.

• This development removes the need for cumbersome trial-and-error processes

and case-by-case treatment guided by empirical rules, and is a key step towards

developing reduced-order modelling methods which can be applied systemati-

cally to a broad range of structures.

Chapter 6: Nonconservative structures

Chapter 6 considered the reduction of nonconservative structures, which enables

the assessment of ROMs based on forced response curves, rather than just backbone

curves. It was demonstrated how nonconservative forces acting on a structure may be

reduced using a nonlinear mapping of the physical DOFs into the reduced coordinates.

This was contrasted with the traditional approach, which relies on a linear mapping;

as a result, only the forces acting directly on the reduced modes can be captured,

whilst any energy gained or dissipated by the statically condensed modes is neglected.

Using a 2-DOF oscillator, it was shown that this can lead to a significant overestima-

tion of the oscillation amplitude when the condensed modes dissipate non-negligible

amounts of energy. Equivalently, an FE model of an axially-excited inclined cable

was used to show that the traditional method not only underestimates the vibration

amplitude on the primary resonance curve, but is also unable to capture fundamental

behaviours of the cable, such as a 2:1 parametric resonance. Similar results were

observed for the large-amplitude vibrations of a cantilever beam modelled using

commercial FE software under different excitation scenarios, including a follower

force. The proposed method, which is referred to as force compensation, enables the

nonconservative forces acting on the statically condensed modes to be accounted

for in the reduced dynamics. Excellent agreement was observed between the forced

response curves of the full-order models and those of the proposed ROMs, for all three

structures.
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In conclusion:

• The concept of reduction through projection onto a nonlinear manifold may

be extended to nonconservative structures, such that any energy gained or

dissipated by the statically condensed modes can be accounted for in the reduced

dynamics, leading to highly accurate response predictions.

• The proposed formulation, whereby the physical coordinates are directly

mapped into the reduced coordinates, circumvents the need for a full modal

transform, which could otherwise be a bottleneck when considering large FE

models.

7.2 Future work

Despite the recent advances in nonlinear reduced-order modelling, many potential

avenues for future work are available. Some recommendations for interesting and

potentially impactful research topics are outlined below:

• Throughout this thesis, reduction has been achieved based on a static conden-

sation procedure. This requires that the natural frequencies of the reduced and

condensed modes are well-separated, as is the case with low-frequency bend-

ing modes and high-frequency in-plane modes in plates and beams. However,

when the slow/fast assumption does not hold, the unmodelled modes are better

approximated as functions of not only the reduced displacements, but also the

reduced velocities, as in the invariant manifold approach. The identification of

such manifolds in a truly non-intrusive manner, for example via regression anal-

ysis and using sets of nonlinear dynamic solutions of the full-order model, could

revolutionise indirect reduction methodologies and extend their applicability to

a vast range of nonlinear systems.

• This thesis, as well as the vast majority of the literature on nonlinear reduced-

order modelling, is concerned with the reduction of the dynamics of a structure

about a single stable equilibrium. Future work could investigate reduced-

order modelling of bistable or even multistable structures, and aim to address

questions such as: How can multiple ROMs be combined in order to model a

multistable structure? Can a single ROM capture the dynamics of a structure

about multiple equilibria? What effect, if any, does symmetry have?
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• In practical design applications in the engineering industry, the development cy-

cle of structures often involves optimisation procedures and parametric studies.

In this context, developing parametric ROMs, whose coefficients are functions

of a set of physical properties of the structure, may dramatically reduce the

upfront computational cost associated with reduced-order modelling. Research

into how this may be achieved, whether it be in a black-box fashion or informed

by underlying physical processes, could be of great value.

• This thesis has focussed on the reduction of nonlinear structural dynamics in

isolation. However, in practical applications, problems from different domains

are often coupled. Therefore, future work could be devoted to investigating the

feasibility of the methods proposed herein, for the reduction of models which

may include, for example, pizeoelectric or electrostatic couplings, thermal or

aeroelastic effects, or fluid-structure interaction.
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