62,798 research outputs found

    An independence theorem for NTP2 theories

    Full text link
    We establish several results regarding dividing and forking in NTP2 theories. We show that dividing is the same as array-dividing. Combining it with existence of strictly invariant sequences we deduce that forking satisfies the chain condition over extension bases (namely, the forking ideal is S1, in Hrushovski's terminology). Using it we prove an independence theorem over extension bases (which, in the case of simple theories, specializes to the ordinary independence theorem). As an application we show that Lascar strong type and compact strong type coincide over extension bases in an NTP2 theory. We also define the dividing order of a theory -- a generalization of Poizat's fundamental order from stable theories -- and give some equivalent characterizations under the assumption of NTP2. The last section is devoted to a refinement of the class of strong theories and its place in the classification hierarchy

    Extended Generalized DoF Optimality Regime of Treating Interference as Noise in the X Channel

    Full text link
    The simple scheme of treating interference as noise (TIN) is studied in this paper for the 3 x 2 X channel. A new sum-capacity upper bound is derived. This upper bound is transformed into a generalized degrees-of-freedom (GDoF) upper bound, and is shown to coincide with the achievable GDoF of scheme that combines TDMA and TIN for some conditions on the channel parameters. These conditions specify a noisy interference regime which extends noisy interference regimes available in literature. As a by-product, the sum-capacity of the 3 x 2 X channel is characterized within a constant gap in the given noisy interference regime.Comment: 5 pages, 2 figure

    Upper Bounds and Duality Relations of the Linear Deterministic Sum Capacity for Cellular Systems

    Full text link
    The MAC-BC duality of information theory and wireless communications is an intriguing concept for efficient algorithm design. However, no concept is known so far for the important cellular channel. To make progress on this front, we consider in this paper the linear deterministic cellular channel. In particular, we prove duality of a network with two interfering MACs in each cell and a network with two interfering BCs in each cell. The operational region is confined to the weak interference regime. First, achievable schemes as well as upper bounds will be provided. These bounds are the same for both channels. We will show, that for specific cases the upper bound corresponds to the achievable scheme and hence establishing a duality relationship between them.Comment: 6 pages, to appear in IEEE ICC 2014, Sydney, Australi
    corecore