234 research outputs found

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Spectra of Monadic Second-Order Formulas with One Unary Function

    Full text link
    We establish the eventual periodicity of the spectrum of any monadic second-order formula where: (i) all relation symbols, except equality, are unary, and (ii) there is only one function symbol and that symbol is unary

    How unprovable is Rabin's decidability theorem?

    Full text link
    We study the strength of set-theoretic axioms needed to prove Rabin's theorem on the decidability of the MSO theory of the infinite binary tree. We first show that the complementation theorem for tree automata, which forms the technical core of typical proofs of Rabin's theorem, is equivalent over the moderately strong second-order arithmetic theory ACA0\mathsf{ACA}_0 to a determinacy principle implied by the positional determinacy of all parity games and implying the determinacy of all Gale-Stewart games given by boolean combinations of Σ20{\bf \Sigma^0_2} sets. It follows that complementation for tree automata is provable from Π31\Pi^1_3- but not Δ31\Delta^1_3-comprehension. We then use results due to MedSalem-Tanaka, M\"ollerfeld and Heinatsch-M\"ollerfeld to prove that over Π21\Pi^1_2-comprehension, the complementation theorem for tree automata, decidability of the MSO theory of the infinite binary tree, positional determinacy of parity games and determinacy of Bool(Σ20)\mathrm{Bool}({\bf \Sigma^0_2}) Gale-Stewart games are all equivalent. Moreover, these statements are equivalent to the Π31\Pi^1_3-reflection principle for Π21\Pi^1_2-comprehension. It follows in particular that Rabin's decidability theorem is not provable in Δ31\Delta^1_3-comprehension.Comment: 21 page

    Monadic second order finite satisfiability and unbounded tree-width

    Get PDF
    The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order logic sentence α\alpha, and (ii) a sentence β\beta in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of α\alpha and β\beta may intersect. Output: Is there a finite structure which satisfies α∧β\alpha\land\beta such that the restriction of the structure to the vocabulary of α\alpha has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form ∣X1∣+⋯+∣Xr∣<∣Y1∣+⋯+∣Ys∣|X_{1}|+\cdots+|X_{r}|<|Y_{1}|+\cdots+|Y_{s}|, where the XiX_{i} and YjY_{j} are monadic second order variables. We prove the decidability of a similar extension of WS1S

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    The MSO+U theory of (N, <) is undecidable

    Get PDF
    We consider the logic MSO+U, which is monadic second-order logic extended with the unbounding quantifier. The unbounding quantifier is used to say that a property of finite sets holds for sets of arbitrarily large size. We prove that the logic is undecidable on infinite words, i.e. the MSO+U theory of (N,<) is undecidable. This settles an open problem about the logic, and improves a previous undecidability result, which used infinite trees and additional axioms from set theory.Comment: 9 pages, with 2 figure

    Strategy Logic with Imperfect Information

    Full text link
    We introduce an extension of Strategy Logic for the imperfect-information setting, called SLii, and study its model-checking problem. As this logic naturally captures multi-player games with imperfect information, the problem turns out to be undecidable. We introduce a syntactical class of "hierarchical instances" for which, intuitively, as one goes down the syntactic tree of the formula, strategy quantifications are concerned with finer observations of the model. We prove that model-checking SLii restricted to hierarchical instances is decidable. This result, because it allows for complex patterns of existential and universal quantification on strategies, greatly generalises previous ones, such as decidability of multi-player games with imperfect information and hierarchical observations, and decidability of distributed synthesis for hierarchical systems. To establish the decidability result, we introduce and study QCTL*ii, an extension of QCTL* (itself an extension of CTL* with second-order quantification over atomic propositions) by parameterising its quantifiers with observations. The simple syntax of QCTL* ii allows us to provide a conceptually neat reduction of SLii to QCTL*ii that separates concerns, allowing one to forget about strategies and players and focus solely on second-order quantification. While the model-checking problem of QCTL*ii is, in general, undecidable, we identify a syntactic fragment of hierarchical formulas and prove, using an automata-theoretic approach, that it is decidable. The decidability result for SLii follows since the reduction maps hierarchical instances of SLii to hierarchical formulas of QCTL*ii
    • …
    corecore