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Abstract
The finite satisfiability problem of monadic second order logic is decidable only on classes of
structures of bounded tree-width by the classic result of Seese [25]. We prove that the following
problem is decidable:

Input: (i) A monadic second order logic sentence α, and (ii) a sentence β in the two-
variable fragment of first order logic extended with counting quantifiers. The vocabularies
of α and β may intersect.
Output: Is there a finite structure which satisfies α ∧ β such that the restriction of the
structure to the vocabulary of α has bounded tree-width? (The tree-width of the desired
structure is not bounded.)

As a consequence, we prove the decidability of the satisfiability problem by a finite structure
of bounded tree-width of a logic MSO∃card extending monadic second order logic with linear
cardinality constraints of the form |X1|+ · · ·+ |Xr| < |Y1|+ · · ·+ |Ys| on the variables Xi, Yj of
the outer-most quantifier block. We prove the decidability of a similar extension of WS1S.
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1 Introduction

Monadic second order logic (MSO) is among the most expressive logics with good algorithmic
properties. It has found countless applications in computer science in diverse areas ranging
from verification and automata theory [13, 19, 26] to combinatorics [16, 18], and parameterized
complexity theory [8, 6].

The power of MSO is most visible over graphs of bounded tree-width, and with second
order quantifiers ranging over sets of edges1: (1) Courcelle’s famous theorem shows that
MSO model checking is decidable over graphs of bounded tree-width in linear time [5, 1].
(2) Finite satisfiability by graphs of bounded tree-width is decidable [5] (with non-elementary
complexity) – thus contrasting Trakhtenbrot’s undecidability result of first order logic.
(3) Seese proved [25] that for each class K of graphs with unbounded tree-width, finite
satisfiability of MSO by graphs in K is undecidable. Together, (2) and (3) give a fairly clear

∗ The tragic death of Helmut Veith prevented him from approving the final version. All faults and
inaccuracies belong to his co-authors.

1 The logic we denote by MSO is denoted MS2 by Courcelle and Engelfriet [6].
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13:2 MSO Finite Satisfiability and Unbounded Tree-Width

picture of the decidability of finite satisfiability of MSO. It appeared that (3) gives a natural
limit for decidability of MSO on graph classes. For instance, finite satisfiability on planar
graphs is undecidable because their tree-width is unbounded.

While Courcelle and Seese circumvent Trakhtenbrot’s undecidability result by restricting
the classes of graphs (or relational structures), several other research communities have studied
syntactic restrictions of first order logic. Modal logic [27], many temporal logics [22], [24,
Chapter 24], the guarded fragment [9], many description logics [2], and the two-variable
fragment [10] are restricted first order logics with decidable finite satisfiability, and hundreds
of papers on these topics have explored the border between decidability and undecidability.
While many of the earlier papers exploited variations of the tree model property to show
decidability, recent research has also focused on logics such as the two-variable fragment
with counting C2 [11, 23], where finite satisfiability is decidable despite the absence of the
tree model property. In a recent breakthrough result, Charatonik and Witkowski [4] have
extended this result to structures with built-in binary trees. Note that this logic is not a
fragment of first order logic, but more naturally understood as a very weak second order
logic which can express one specific second order property – the property of being a tree.

Our main result is a powerful generalization of the seminal result on decidability of the
satisfiability problem of MSO over bounded tree-width and the recent theorem by [4]: We
show decidability of finite satisfiability of conjunctions α ∧ β where α is in MSO and β is in
C2 by a finite structure M whose restriction to the vocabulary of α has bounded tree-width.
(Theorem 3.1 in Section 3)

Let us put this result into perspective:
The MSO decidability problem is a trivial consequence by setting β to true; Charatonik
and Witkowski’s result follows by choosing α to be an MSO formula which axiomatizes a
d-ary tree, which is a standard construction [6].
The decidability of model checking α∧β over a finite structure is a much simpler problem
than ours: We just have to model check α and β one after the other. In contrast,
satisfiability is not obvious because α and β can share relational variables. running two
finite satisfiability algorithms for the two formulas independently may yield two models
which disagree on the shared vocabulary. Thus, the problem we consider is similar in
spirit to (but technically very different from) Nelson-Oppen [21] combinations of theories.
Our result trivially generalizes to Boolean combinations of sentences in the two logics.

Proof Technique

We show how to reduce our satisfiability problem for α ∧ β to the finite satisfiability of a
C2-sentence with a built-in tree, which is decidable by [4]. The most significant technical
challenge is to eliminate shared binary relation symbols between the two conjuncts. Our
Separation Theorem overcomes this challenge by a construction based on local types of
universe elements and a coloring argument for directed graphs. The second technical challenge
is to replace the MSO-sentence α with an equi-satisfiable C2-sentence α′. To do so, we apply
tools including the Feferman-Vaught theorem for MSO and translation schemes.

Monadic Second Order Logic with Cardinalities

Our main theorem implies new decidability results for monadic second order logic with
cardinality constraints, i.e., expressions of the form |X1|+ . . . |Xr| < |Y1|+ . . . |Yt| where Xi

and Yi are monadic second order variables. Klaedtke and Rueß [15] showed that the decision
problem for the theory of weak monadic second order logic with cardinality constraints of one
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Figure 2

successor (WS1Scard) is undecidable; they described a decidable fragment where the second
order quantifiers have no alternation and appear after the first order quantifiers in the prefix.
Our main theorem implies decidability of a different fragment of WS1S with cardinalities:
The fragment MSO∃card consists of formulas ∃X̄ψ where the cardinality constraints in ψ

involve only the monadic second order variables from X̄, cf. Theorem 7.1 in Section 7. Note
that in contrast to [15], our fragment is a strict superset of WS1S.

For WS2S, we are not aware of results about decidable fragments with cardinalities. We
describe a strict superset of MSO whose satisfiability problem over finite graphs of bounded
tree-width is decidable, and which is syntactically similar to the WS1S extension above.

Expressive Power over Structures

Our main result extends the existing body of results on finite satisfiability by structures of
bounded tree-width to a significantly richer set of structures. The structures we consider are
C2-axiomatizable extensions of structures of bounded tree-width. For instance, we can have
interconnected doubly-linked lists as in Fig. 1(a), or a tree whose leaves are connected in
a chain and have edges pointing to any of the nodes of a cyclic list as in Fig. 1(b). Such
structures occur very naturally as shapes of dynamic data structures in programming – where
cycles and trees are containers for data, and additional edges express relational information
between the data. The analysis of semantic relations between data structures served as a
motivation for us to investigate the logics in the current paper [3].

Being a cyclic list or a tree whose leaves are chained can be expressed in MSO and both
of these data structures have tree-width at most 3. We can compel the edges between the
tree and the cyclic list to obey C2-expressible constraints such as:

every leaf of the tree has a single edge to the cyclic list;
every node of the cyclic list has an incoming edge from at least one leaf of the tree; or
any two leaves pointing to the same node of the cyclic list agree on membership in some
unary relation.

Note that while the structures we consider may contain grids of unbounded sizes as subgraphs,
the logic cannot axiomatize them.

2 Background

This section introduces basic definitions and results in model theory and graph theory. We
follow [20] and [6].

CSL 2016



13:4 MSO Finite Satisfiability and Unbounded Tree-Width

The two-variable fragment with counting C2 is the extension of the two-variable
fragment of first order logic with first order counting quantifiers ∃≤n, ∃≥n, ∃=n, for every
n ∈ N. Note that C2 remains a fragment of first order logic. Monadic Second order
logic MSO is the extension of first order logic with set quantifiers which can range over
elements of the universe or subsets of relations2. Throughout the paper all structures consist
of unary and binary relations only. Structures are finite unless explicitly stated otherwise
(in the discussion of WS1S). Let C be a vocabulary (signature). The arity of a relation
symbol C ∈ C is denoted by arity(C). The set of unary (binary) relation symbols in C are
un(C) (bin(C)). We write MSO(C) for the set of MSO-formulas on the vocabulary C. The
quantifier rank of a formula ϕ ∈ MSO, i.e. the maximal depth of nested quantifiers in ϕ is
denoted qr(ϕ). We denote by A1 t A2 the disjoint union of two C-structures A1 and A2.
Given vocabularies C1 ⊆ C2, a C2-structure A2 is an expansion of a C1-structure A1 if A1
and A2 agree on the symbols in C1; in this case A1 is the reduct of A2 to C1, i.e. A1 is the
C1-reduct of A2. We denote the reduct of A2 to C1 by A2|C1 . A C-structure A0 with universe
A0 is a substructure of a C-structure A1 with universe A1 if A0 ⊆ A1 and for every R ∈ C,
RA0 = RA1 ∩Aarity(R)

0 . We say that A0 is the substructure of A1 generated by A0.
Graphs are structures of the vocabulary3 CG = 〈s〉 consisting of a single binary relation

symbol s. Graphs are undirected without multiple edges but possibly with self-loops unless
explicitly stated otherwise. Tree-width tw(G) is a graph parameter indicating how close
a simple undirected graph G is to being a tree, cf. [6]. It is well-known that a graph has
tree-width at most k iff it is a partial k-tree. A partial k-tree is a subgraph of a k-tree.
k-trees are built inductively from the (k+ 1)-clique by repeated addition of vertices, each of
which is connected with k edges to a k-clique. The Gaifman graph Gaif(A) of a C-structure
A is the graph whose vertex set is the universe of A and whose edge set is the union of the
symmetric closures of CA for every C ∈ bin(C). Note the unary relations of A play no role
in Gaif(A). The tree-width tw(A) of a C-structure A is the tree-width of its Gaifman
graph. In this paper, tree-width is a parameter of finite structures only. Fix k ∈ N for the
rest of the paper. k will denote the tree-width bound we consider.

We introduce the notion of oriented k-trees which refines the notion of k-trees. Let
R = {R1, . . . , Rk} be a vocabulary consisting of binary relation symbols. An oriented k-tree
is an R-structure R in which all RR

i are total functions and whose Gaifman graph Gaif(R)
is a partial k-tree.

I Lemma 2.1. Every C-structure M of tree-width k can be expanded into a (C ∪R)-structure
N such that:
(i) N|R is an oriented k-tree,
(ii) Gaif(N) is a subgraph of Gaif(N|R), and
(iii) the tree-width of N is k.

The oriented 2-tree in Fig. 2(b) is an expansion of the directed graph in Fig. 2(a) as
guaranteed in Lemma 2.1. In Fig. 2(b), R1 and R2 are denoted by the dashed arrows and the
dotted arrows, respectively. There are several other oriented k-trees which expand Fig. 2(a)
and fulfill the requirements in Lemma 2.1,

To see that Lemma 2.1 holds, we describe a construction of N echoing the process of
constructing k-trees above. For each vertex u of the initial (k + 1)-clique, we can set the

2 On relational structures, MSO is also known as Guarded Second Order logic GSO. The results of this
paper extend to CMSO, the extension of MSO with modular counting quantifiers.

3 Since we explicitly allowed quantification over subsets of relations for MSO, we do not view graphs and
structures as incidence structures, in contrast to [6, Sections 1.8.1 and 1.9.1].



T. Kotek, H. Veith, and F. Zuleger 13:5

values of RN
1 (u), . . . , RN

k (u) to be the other k vertices of the clique. When a new vertex u is
added to the k-tree, k edges incident to it are added. We set RN

1 (u), . . . , RN
k (u) to be the

set of vertices incident to u. For oriented k-trees whose Gaifman graph is not a k-tree the
construction of an oriented k-tree is augmented by changing the value of RN

i (u) to RN
i (u) = u

whenever RN
i (u) is not well-defined. This can happen when the target of u under RN

i is a
vertex which was eliminated by taking the subgraph of a k-tree to obtain the partial k-tree.

3 Overview of the Main Theorem and its Proof

The precise statement of the main theorem is as follows:

I Theorem 3.1 (Main Theorem). Let Cbnd and Cunb be vocabularies. Let s be a binary
relation symbol not in Cbnd ∪ Cunb. Let α ∈ MSO(Cbnd) and β ∈ C2(Cunb). There is an
effectively computable sentence δ ∈ C2(D) over a vocabulary D ⊇ {s} such that the following
are equivalent:
(i) There is a (Cbnd ∪ Cunb)-structure M such that M |= α ∧ β and tw(M|Cbnd ) ≤ k.
(ii) There is a D-structure N such that N |= δ and sN is a binary tree.

The first step towards proving Theorem 3.1 is the Separation Theorem:

I Theorem 3.2 (Separation Theorem). Let Cbnd and Cunb be vocabularies. Let α ∈ MSO(Cbnd)
and β ∈ C2(Cunb). There are effectively computable sentences α′ ∈ MSO(Dbnd) and β′ ∈
C2(Dunb) over vocabularies Dbnd and Dunb such that Dbnd∩Dunb only contains unary relation
symbols and the following are equivalent:
(i) There is a (Cbnd ∪ Cunb)-structure M with M |= α ∧ β and tw(M|Cbnd ) ≤ k
(ii) There is a (Dbnd ∪ Dunb)-structure N with N |= α′ ∧ β′ and tw(N|Dbnd ) ≤ k.

In conjunction with Theorem 3.2, we only need to prove Theorem 3.1 in the case that the
MSO-formula α and the C2-formula β only share unary relation symbols. The significance of
Theorem 3.2 is that it allows us to use tools designed for MSO in our more involved setting.
The proof of Theorem 3.2 uses notions of types for C2-sentences in Scott normal form,
coloring arguments, and an induction on ranks of structures. Theorem 3.2 is discussed in
Section 4. The next step is to move from structures whose reducts have bounded tree-width
to structures which contain a binary tree.

I Lemma 3.3. Let Cbnd and Cunb be vocabularies such that Cbnd ∩ Cunb contains only unary
relation symbols. Let s be a binary relation symbol. There is a vocabulary Dbnd consisting of
s and unary relation symbols only as follows. For every α ∈ MSO(Cbnd) and β ∈ C2(Cunb),
there are effectively computable sentences α′ ∈ MSO(Dbnd) and β′ ∈ C2(Dbnd ∪ Cunb) such
that the following are equivalent:
(i) There is a (Cbnd ∪ Cunb)-structure M such that M |= α ∧ β and tw(M|Cbnd ) ≤ k.
(ii) There is a (Dbnd ∪ Cunb)-structure N such that N |= α′ ∧ β′ and sN is a binary tree.

Technically, Lemma 3.3 is proved using a translation scheme which maps structures with a
binary tree into structures whose Cbnd-reducts have tree-width at most k, and conversely, each
of the latter structures is the image of a structure with a binary tree under the translation
scheme. Translation schemes capturing the graphs of tree-width at most k as the image of
labeled trees were studied in the context of decidability and model checking of MSO [1]. We
need a more refined construction to ensure that the translation scheme also behaves correctly
on C2-sentences, i.e. that it maps C2-sentences to C2-sentences, see Lemma 3.3 in Section 5.

Now that we have reduced our attention to the case that our structures contain a binary
tree, we can replace MSO-sentences with equi-satisfiable C2-sentences.

CSL 2016



13:6 MSO Finite Satisfiability and Unbounded Tree-Width

I Lemma 3.4. Let C be a vocabulary which consists only of a binary relation symbol s and
unary relation symbols. Let α be an MSO(C)-sentence. There is an effectively computable
C2(D)-sentence γ over a vocabulary D ⊇ C such that for every C-structure M in which sM
is a binary tree the following are equivalent:
(i) M |= α.
(ii) There is a D-structure N expanding M such that N |= γ.

For the proof of Lemma 3.4 we use a Feferman-Vaught type theorem which states that
the Hintikka type (i.e. MSO types) of a binary tree labeled with unary relation symbols
depends only on the Hintikka types of its children. We can therefore axiomatize in C2 that
the Hintikka type of the labeled binary tree implies a given MSO-sentence.

Having replaced the MSO-sentence in statement (ii) of Lemma 3.3 with a C2-sentence,
we are left with the problem of deciding whether a C2-sentence is satisfiable by a structure
in which a specified relation is a binary tree, which has recently been shown to be decidable:

I Theorem 3.5 (Charatonik and Witkowski [4]). Let C be a vocabulary which contains a
binary relation symbol s. Given a C2(C)-sentence ϕ, it is decidable whether ϕ is satisfiable
by a structure M in which sM is a binary tree.

4 Separation Theorem

4.1 Basic Definitions and Results

1-types and 2-types

We begin with some notation and definitions in the spirit of the literature on decidability of
C2, cf. e.g. [23, 4]. Let A be a vocabulary of unary and binary relations.

A 1-type π is a maximal consistent set of atomic A-formulas or negations of atomic
A-formulas with free variable x, i.e., exactly one of A(x) and ¬A(x) belongs to π for every
unary relation symbol A ∈ A, and exactly one of B(x, x) and ¬B(x, x) belongs to π for
every binary relation symbol B ∈ A. We denote by charπ(x) =

∧
ι∈π ι the formula that

characterizes the 1-type π. We denote by 1-Types(A) the set of 1-types over A.
A 2-type λ is a maximal consistent set of atomic A-formulas or negations of atomic

A-formulas with free variables x and y and x 6≈ y ∈ λ, i.e., for every z ∈ {x, y} and
unary relation symbol A ∈ A, exactly one of A(z) and ¬A(z) belongs to λ, and for every
z1, z2 ∈ {x, y} and binary relation symbol B ∈ A, exactly one of B(z1, z2) and ¬B(z1, z2)
belongs to λ. We write λ−1 for the 2-type obtained from λ by substituting all occurrences of
x resp. y with y resp. x. We write λx for the 1-type obtained from λ by restricting λ to
formulas with free variable x. We write λy for the 1-type obtained from λ by restricting λ to
formulas with free variable y and substituting y with x. We denote by charλ(x, y) =

∧
ι∈λ ι

the formula that characterizes the 2-type λ. We denote by 2-Types(A) the set of 2-types
over A.

Let M be an A-structure. We denote by 1-tpM(u) the unique 1-type π such that
M |= charπ(u). For elements u, v of M, we denote by 2-tpM(u, v) the unique 2-type λ such
that M |= charλ(u, v). We denote by 2-tp(M) = {2-tpM(u, v) | u, v elements of M} the set
of 2-types realized by M. The following lemma is easy to see:

I Lemma 4.1. Let M1,M2 be two A-structures over the same universe M and let φ =
∀x, y. χ ∈ C2(A) with χ quantifier-free. If 2-tp(M1) = 2-tp(M2), then M1 |= φ iff M2 |= φ.
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Scott Normal Form and T -functionality

C2-sentences have a Scott-Normal Form, cf. [12], which can be obtained by iteratively applying
Skolemization and introducing new predicates for subformulas, together with predicates
ensuring the soundness of this transformation:

I Lemma 4.2 (Scott Normal Form, [12]). For every C2-sentence β there is a C2-sentence β′
of the form

∀x, y. χ ∧
∧
i∈[l]

∀x.∃=1y. Si(x, y), (1)

with χ quantifier-free, over an expanded vocabulary such that β and β′ are equi-satisfiable.
Moreover, β′ is computable. The expanded vocabulary contains in particular the fresh binary
relation symbols S = {S1, . . . , Sl}.

Let T be a set of binary relation symbols. We say a structure M is T -functional, if
for every T ∈ T , TM is a total function on the universe of M. Observe the following are
equivalent for every structure M:
(i) M satisfies Eq. (1), and
(ii) M |= ∀x, y. χ and M is S-functional.

Message Types and Chromaticity

Let T ⊆ bin(A) be a subset of the binary relation symbols ofA. We write λ ∈ T -MsgTypes(A)
and say λ is a T -message type, if λ ∈ 2-Types(A) and T (x, y) ∈ λ for some T ∈ T .
Let M be a A-structure with universe M . We define E = {(u, v) ∈ M2 | there is a T ∈
T with M |= T (u, v)}. The T -message-graph is the directed graph G = (M,F ), where F =
{(u, v) ∈ M2 | u 6= v and (u, v) ∈ E ◦ E}, where R ◦ S = {(a, b) | there is a c with (a, c) ∈
R and (c, b) ∈ S} denotes the usual composition of relations. We say M is T -chromatic, if
1-tpM(u) 6= 1-tpM(v) for all (u, v) ∈ F .

We note that if M is T -functional, then G has out-degree deg+(u) ≤ |T |2 for all u ∈M .
This allows us to prove Lemma 4.3 based on Lemma 4.4.

I Lemma 4.3. There is a finite set of unary relations symbols colors(T ) such that every
T -functional A-structure can be expanded to a T -chromatic (A ∪ colors(T ))-structure.

I Lemma 4.4. Let G = (V,E) be a directed graph with out-degree deg+(v) ≤ k for all v ∈ V .
Then, the underlying undirected graph has a proper (2k + 1)-coloring.

4.2 Separation Theorem
Let G = (V,E) be an (undirected) graph. We say G is k-bounded, if the edges of G can
be oriented such that every node of G has out-degree less than k. We say a structure M is
k-bounded if its Gaifman graph is k-bounded. We note that the formulation of separation
theorem below is slightly more general than the formulation in Section 3 because it is stated
in terms of k-bounded graphs (graphs with tree-width k are clearly k-bounded, see the
discussion on oriented k-trees in Section 2).

I Theorem 3.2 (Separation Theorem). Let k be a natural number. Let Cbnd and Cunb be
vocabularies. Let α ∈ MSO(Cbnd) and4 β ∈ C2(Cunb). There are effectively computable

4 The Separation Theorem remains correct if we replace C2 with any logic containing C2 which is closed
under conjunction.

CSL 2016



13:8 MSO Finite Satisfiability and Unbounded Tree-Width

sentences α′ ∈ MSO(Dbnd) and β′ ∈ C2(Dunb) over vocabularies Dbnd and Dunb such that
Dbnd ∩Dunb only contains unary relation symbols such that for every k-bounded graph G the
following are equivalent:
(i) There is a (Cbnd ∪ Cunb)-structure M with M |= α ∧ β and Gaif(M|Cbnd ) = G.
(ii) There is a (Dbnd ∪ Dunb)-structure N with N |= α′ ∧ β′ and Gaif(N|Dbnd ) = G.

We assume that β is in the form given in Eq. (1) for some set of binary relation symbols
S = {S1, . . . , Sl} ⊆ Cunb and quantifier-free C2-formula χ. Let R = {R1, . . . , Rk} be a set of
fresh binary relation symbols. We set T = S ∪R. We begin by giving an intuition for the
proof of the Separation Theorem in three stages.

4.2.1 Syntactic separation coupled with semantic constraints
For a binary relation symbol B, we define its copy as the relation symbol B. For every
vocabulary A, we define its copy A = un(A)∪ {B | B ∈ A} to be the unary relation symbols
of A plus the copies of its binary relations symbols. We assume that copied relation symbols
are distinct from non-copied symbols, i.e., bin(A) ∩ bin(A) = ∅. For a formula ϕ over
vocabulary A, we define its copy ϕ over vocabulary A as the formula obtained from ϕ by
substituting every occurrence of a binary relation symbol B ∈ A with B.

The sentences α (the copy of α) and β do not share any binary relation symbols. Clearly,
(i) from Theorem 3.2 holds iff
(I) α ∧ β is satisfied by a ((Cbnd ∪ Cunb) ∪ (Cbnd ∪ Cunb))-structure N with BN = B

N for all
B ∈ bin(Cbnd) and Gaif(M|Cbnd ) = G.

In the next two stages we will construct α′ and β′ so that (I) is equivalent to (ii)
from Theorem 3.2. More precisely, we will construct sentences µbnd , µunb ∈ C2(Dunb) with
Dunb ⊇ Cbnd ∪ Cunb and Dbnd = Dunb such that (I) is equivalent (II):
(II) (α∧µbnd)∧ (β∧µunb) is satisfied by a (Dbnd ∪Dunb)-structure N with Gaif(N|Dbnd ) = G.

4.2.2 Representation of k-bounded structures using functions and
unary relations

k-bounded A-structures A can be represented by introducing new binary relation symbols
interpreted as functions and new unary relation symbols as follows.
(a) We add k fresh relation symbols R = {R1, . . . , Rk} and axiomatize that these relations

are interpreted as total functions.
(b) We add fresh unary relations Pλ for each R-message type and axiomatize that every

element labeled by Pλ has an outgoing edge with 2-type λ. The symbols Pλ are called
unary 2-type annotations.

(c) We axiomatize that Gaif(A|bin(A)) = Gaif(A|R).
In other words, the functions interpreting R1, . . . , Rk witness that A can be oriented so

that every node in the Gaifman graph of A has outdegree at most k. The 2-type of each
edge (u, v) in A is encoded by putting the unary relation symbol Pλ of the 2-type of (u, v)
on the source u in the orientation.

Theorem 3.2 as well as (I) and (II) involve reducts which are k-bounded structures. Given
a ((Cbnd ∪ Cunb) ∪ (Cbnd ∪ Cunb))-structure N, we will use the above representation twice, on
N|Cbnd and N|Cbnd

, by axiomatizing that every element labeled by Pλ has an outgoing edge
with 2-type λ and an outgoing edges with 2-type λ. This allows us to replace the condition
from (I) that BN = B

N for all B ∈ bin(Cbnd) with the condition that RN
i = Ri

N for all
Ri ∈ R.
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4.2.3 Establishing the semantic condition of (I) by swapping edges

Here we discuss how to show the implication from (II) to (I). Let N be a (Dbnd ∪ Dunb)-
structure with N |= (α∧µbnd)∧(β∧µunb). It simplifies the discussion to split a (Dbnd∪Dunb)-
structure N into two Dunb-structures. The Dunb-structure L is N|Dunb . The Dunb-structure
L′ is obtained from N|Dbnd by renaming copies of relation symbols B to B — i.e., we define
the Dunb-structure L′ by setting 1-tpL′(u) = 1-tpN(u) for all u ∈M and setting L′ |= B(u, v)
iff N |= B(u, v) for all u, v ∈M and B ∈ bin(Dbnd). The interpretations of the relations Ri
might differ in L and L′. Observe that we have L′ |= α and L |= β. The key idea of the
proof is to show the existence of a sequence of structures L = L0, . . . ,Lp, where each Ni+1
is obtained from Ni by swapping edges, until the interpretations of the relations Ri agree in
Lp and L′. The edge swapping operation is a local operation which involves changing the
2-types of at most 4 edges.

The edge swapping operation satisfies two crucial preservation requirements: edge swap-
ping preserves (PR-1) the truth value of β, i.e. Lp |= β, and (PR-2) R-functionality. The
universal constraint ∀x, y. χ in β is maintained under edge swapping because this operation
does not change the set of 2-types (see Lemma 4.1). To satisfy the preservation requirements
(PR-1) and (PR-2), all that remains is to guarantee the existence of a sequence of edge
swapping preserving S-functionality and R-functionality (which amounts to T -functionality
because of T = S ∪R). We use two main techniques that guarantee the existence of edges for
which edge swapping preserves T -functionality: chromaticity and unary 2-type annotations.
We will axiomatize that the structures L and L′ are chromatic; we will take care that
chromaticity is maintained during edge swaps. We will add fresh unary relation symbols Pλ
for every T -message type λ and axiomatize that every element of N labeled by Pλ has an
outgoing edge with 2-type λ and an outgoing edge with 2-type λ; we will take care that such
outgoing edges are maintained during edge swaps.

4.2.4 Proof of the Separation Theorem

We now start the formal proof of the Separation Theorem. Let colors(T ) be the vocabulary
from Lemma 4.3. We set E = Cbnd∪Cunb∪R∪colors(T ) and P = {Pλ | λ ∈ T -MsgTypes(E)}.
We set Dunb = E ∪ P and Dbnd = Dunb. Next we will define formulas α◦ ∈ MSO(Dunb) and
β′ ∈ C2(Dunb), and set α′ = α◦ ∈ MSO(Dbnd). We set
µbnd = ψfunctionality ∧ ψgaifmann ∧ ψtypesBnd ∧ ψchromaticity ∧ ψsubgraph, α◦ = α ∧ µbnd ,
µunb = ψfunctionality ∧ ψgaifmann ∧ ψtypesUnb ∧ ψchromaticity and β′ = β ∧ µunb, where:

ψfunctionality =
∧
i∈[k] ∀x.∃=1y.Ri(x, y)

The formula ψfunctionality expresses that each Ri is interpreted as a total function.

ψgaifmann = ∀x, y. x 6≈ y →
(∨

i∈[k] Ri(x, y) ∨Ri(y, x)↔
∨
B∈bin(Cbnd) B(x, y) ∨B(y, x)

)
The formula ψgaifmann expresses that for every Dunb-structure L with L |= ψgaifmann we
have that Gaif(L|R) = Gaif(L|Cbnd ).
ψsubgraph =

∧
B∈bin(Cunb) ∀x, y. x 6≈ y →

(
B(x, y)→

∨
i∈[k] Ri(x, y) ∨Ri(y, x)

)
The formula ψsubgraph expresses that for every Dunb-structure L with L |= ψsubgraph we
have that Gaif(L|Cunb) is a subgraph of Gaif(L|R).
ψtypesUnb =

∧
λ ∈ T -MsgTypes(E)

∀x. Pλ(x)↔ ∃y.charλ(x, y)

The formula ψtypesUnb expresses that for every T -message type λ a node u satisfies the
predicate Pλ iff u has an outgoing edge with 2-type λ.
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ψtypesBnd =
∧

λ ∈ T -MsgTypes(E), i ∈ [k] :
Ri(x, y) ∈ λ or Ri(y, x) ∈ λ

∀x. Pλ(x)↔ ∃y.charλ(x, y)

The formula ψtypesBnd expresses that for every T -message type λ, where λ contains the
predicate Ri(x, y) or Ri(y, x) for some i ∈ [k], a node u satisfies the predicate Pλ iff u

has an outgoing edge with 2-type λ.
ψchromaticity =

∧
λ ∈ T -MsgTypes(E), T ∈ T :
¬T (y, x) ∈ λ

∀x, y. Pλ(x) ∧ T (y, x)→ ¬charλy
(y)

The formula ψchromaticity expresses that for every Dunb-structure L with L |= ψtypesUnb,
L is chromatic iff L |= ψchromaticity.

The direction “(i) implies (ii)” of the Separation Theorem is straightforward to show by
appropriately expanding the model of (i) to a model of (ii):

I Lemma 4.5. Let G be a k-bounded graph. Let M be a (Cbnd∪Cunb)-structure with M |= α∧β
and Gaif(M|Cbnd ) = G. M can be expanded to a (Dbnd ∪Dunb)-structure N with N |= α′ ∧ β′
and Gaif(N|Dbnd ) = G.

Proof. Because of Gaif(M|Cbnd ) = G and G is k-bounded, we can expand M to a (Cbnd ∪
Cunb ∪R)-structure M̂ such that Gaif(L|R) = Gaif(L|Cbnd ) and RM̂

i is a total function for all
i ∈ [k] (possibly adding self-loops for the relations Ri). Thus, M̂ |= ψfunctionality ∧ ψgaifmann .
According to Lemma 4.3, M̂ can be expanded to a chromatic structure M̃ over vocabulary
E with M̃ |= ψchromaticity. We expand M̃ to a Dunb-structure L such that for all u ∈ M
and λ ∈ T -MsgTypes(E) we have L |= Pλ(u) iff there is an element v of L such that
2-tpL|E (u, v) = λ. This definition gives us L |= ψtypesUnb, and thus L |= β′. We expand
L to a (Dbnd ∪ Dunb)-structure N such that for all u, v ∈ M and B ∈ bin(Dunb) we have
N |= B(u, v) iff N |= B(u, v) and N |= Ri(u, v) or N |= Ri(v, u) for some i ∈ [k]. We note
that N |= α′. J

Now we turn to the direction “(ii) implies (i)”. Let G be a k-bounded graph. Let N be a
(Dbnd ∪Dunb)-structure with N |= α′∧β′ and Gaif(N|Dbnd ) = G. Let M be the universe of N.
We define the Dunb-structure L′ by setting 1-tpL′(u) = 1-tpN(u) for all u ∈M and setting
L′ |= B(u, v) iff N |= B(u, v) for all u, v ∈M and B ∈ bin(Dbnd). We note that L′ |= α◦ and
Gaif(L′) = G. We define the Dunb-structure L by setting L = N|Dunb . We note that L |= β′.

We make the following definition: For u ∈ M and i ∈ [k] we set rankiu(L,L′) = 1, if
there are v, w ∈ M with L |= Ri(u, v), L′ |= Ri(u,w) and v 6= w; we set rankiu(L,L′) = 0,
otherwise. We set ranku(L,L′) =

∑
i∈[k] rankiu(L,L′) and rank(L,L′) =

∑
u∈M ranku(L,L′).

rank measures the deviation of the relations R in L and L′ (we note that there always are
unique v, w ∈ M for u ∈ M with L |= Ri(u, v), L′ |= Ri(u,w) because of L |= ψfunctionality
and L′ |= ψfunctionality). rank has the following important property that relates the relations
Ri with the 2-types of L and L′:

I Lemma 4.6. Let u ∈M be an element with rankiu(L,L′) = 0 and let λ ∈ 2-Types(E) with
Ri ∈ λ for some i ∈ [k]. For all v ∈M we have 2-tpL|E (u, v) = λ iff 2-tpL′|E (u, v) = λ.

Proof. Let v ∈ M be an element with 2-tpL|E (u, v) = λ. We get L |= Pλ(u) because
of L |= ψtypesUnb. Because of 1-tpL(u) = 1-tpL′(u) we have L′ |= Pλ(u). Because of
L′ |= ψtypesBnd we have λ = 2-tpL′|E (u,w) for some w ∈ M . rankiu(L,L′) = 0 implies that
L′ |= Ri(u, v). Because of L′ |= ψfunctionality we get v = w. In the same way one can show
that 2-tpL′|E (u, v) = λ implies 2-tpL|E (u, v) = λ. J
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If there is no deviation of the relations R in L and L′, i.e., if rank(L,L′) = 0, then we
have established the direction “(ii) implies (i)”:

I Lemma 4.7. If rank(L,L′) = 0, then L|Cbnd∪Cunb |= α ∧ β and Gaif(LCbnd ) = G.

Proof. We show L|Cbnd = L′|Cbnd . Let u, v ∈ M with L |= B(u, v) for some B ∈ bin(Cbnd).
If u = v we get L′ |= B(u, v) because u has the same 1-type in L and L′. We assume
u 6= v in the following. Because of L |= ψgaifmann we have L |= Ri(u, v) or L |= Ri(v, u)
for some i ∈ [k]. Because of rank(L,L′) = 0 we have rankiu(L,L′) = 0. By Lemma 4.6 we
have 2-tpL|E (u, v) = 2-tpL′|E (u, v). Thus, L′ |= B(u, v). In the same way one can show that
L′ |= B(u, v) implies L |= B(u, v). Thus, L|Cbnd = L′|Cbnd .

We show Gaif(L|Cbnd ) = Gaif(L′): We have that Gaif(L′) = Gaif(L′|R) because of L′ |=
ψgaifmann and L′ |= ψsubgraph. We have Gaif(L|Cbnd ) = Gaif(L|R) because of L |= ψgaifmann.
We have Gaif(L′|R) = Gaif(L|R) because of rank(L,L′) = 0. Thus, the claim follows. J

Finally, we show that there always is a sequence of models L0, . . . ,Lp with L = L0,
Li |= α◦ for each 0 ≤ i ≤ p and rank(Lp,L′) = 0. We obtain each Li+1 from Li by swapping
edges, which has the consequence that the universe does not change, every each node u keeps
its 1-type and the set of realized 2-types remains invariant throughout the construction of
the sequence.

I Lemma 4.8. There is a sequence of Dunb-structures L0, . . . ,Lp, with universe M and
L = L0, such that:
(1) 1-tpLi(u) = 1-tpL′(u) for all u ∈M ,
(2) 2-tp(Li|E) = 2-tp(Li+1|E) for all 0 ≤ i < p,
(3) Li |= α◦, (in particular Li is T -functional and chromatic),
(4) rank(Li,L′) > rank(Li+1,L

′) for all 0 ≤ i < p, and rank(Lp,L′) = 0.

Proof. Assume we have already defined Li and rank(Li,L′) > 0. In the following we will
define Li+1. Because of rank(Li,L′) > 0 we can choose some elements u, v, w ∈M and j ∈ [k]
such that Li |= Rj(u, v), L′ |= Rj(u,w) and v 6= w. Let λ = 2-tpLi|E (u, v). We have λ ∈
T -MsgTypes(E) because of Rj ∈ R. We have Li |= Pλ(u) because of Li |= ψtypesUnb. Because
1-tp(u)Li = 1-tp(u)L′ we have L′ |= Pλ(u). Thus, Li |= charλy

(v) and L′ |= charλy
(w). With

1-tpLi(w) = 1-tpL′(w) we get Li |= charλy
(w), and thus 1-tpLi|E (v) = 1-tpLi|E (w). We

proceed by a case distinction:

Case 1: λ−1 is a T -message type

We have L′ |= Pλ−1(w) because of L′ |= ψtypesBnd. We get Li |= Pλ−1(w) because of
1-tpLi(w) = 1-tpL′(w). With Li |= ψtypesUnb, there is an element a ∈ M such that λ =
2-tpLi|E (a,w) and Li |= Pλ(a). We note that u 6= a because of Li |= Rj(a,w), v 6= w and
v is the unique element with Li |= Rj(u, v) (using Li |= ψfunctionality). Moreover, Li |=
char(λ−1)y

(a) and L′ |= char(λ−1)y
(u). With 1-tpLi(u) = 1-tpL′(u) we get Li |= char(λ−1)y

(u),
and thus 1-tpLi|E (u) = 1-tpLi|E (a).

We note that the edges (u,w), (w, u), (a, v) and (v, a) do not have T -message types (*)
because Li is chromatic, u 6= a, v 6= w, 1-tpLi|E (v) = 1-tpLi|E (w), 1-tpLi|E (u) = 1-tpLi|E (a)
and the edges (u, v), (v, u), (a,w) and (w, a) have T -message types. Similarly, we get
λ 6= 2-tpL′|E (u, v) and λ 6= 2-tpL′|E (a,w) (**) because L′ is chromatic, λ = 2-tpL′|E (u,w) and
λ and λ−1 are T -message types.

We define Li+1 as follows: The unary relations of Li+1 are defined such that we have
1-tp(u)Li+1 = 1-tpLi(u) for all elements u ∈ M . We obtain the binary relations of Li+1 by
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swapping the edges (u,w) and (u, v) as well as (a,w) and (a, v) in Li: we set 2-tpLi+1|E (u,w) =
λ, 2-tpLi+1|E (a, v) = λ, 2-tpLi+1|E (a,w) = 2-tpLi|E (a, v) and 2-tpLi+1|E (u, v) = 2-tpLi|E (u,w);
these 2-types are well-defined because of 1-tpLi|E (v) = 1-tpLi|E (w). All other 2-types in
Li+1|E are the same as in Li|E . This completes the definition of Li+1.

We now argue that Li+1 satisfies properties (1)-(4). Clearly, Li+1 satisfies (1) by definition.
Because we only swapped edges from Li to Li+1 we have (2). Because we only swapped
swapped edges from Li to Li+1 we get Li+1 |= ψgaifmann and Li+1 |= ψsubgraph from Li |=
ψgaifmann and Li |= ψsubgraph. Because of (*) and 2-tpLi|E (u, v) = λ = 2-tpLi|E (a,w) we get
Li+1 |= ψtypesUnb from Li |= ψtypesUnb, that Li+1 is T -functional because Li is T -functional
and Li+1 |= ψchromaticity from Li |= ψchromaticity (using that 1-tpLi|E (v) = 1-tpLi|E (w) and
1-tpLi|E (u) = 1-tpLi|E (a)). With Li |= α◦ and Lemma 4.1 we get Li+1 |= α◦. Thus, Li+1
satisfies property (3).

It remains to show property (4). Using (*), (**) and Lemma 4.6 we get ranku(Li+1,L
′) <

ranku(Li,L′) and rankz(Li+1,L
′) ≤ rankz(Li,L′) for z ∈ {v, w, a}. Moreover,

rankz(Li+1,L
′) = rankz(Li,L′) for z ∈M \ {u, v, w, a}. Thus, rank(Li,L′) > rank(Li+1,L

′).

Case 2: λ−1 is not a T -message type

We note that the edge (w, u) does not have a T -message type because Li is chromatic, v 6= w,
1-tpLi|E (v) = 1-tpLi|E (w) and the edge (u, v) has a T -message type.

We define Li+1 as follows: The unary relations of Li+1 are defined such that we have
1-tp(u)Li+1 = 1-tp(u)Li for all elements u ∈ M . We obtain the binary relations of Li+1
by swapping edges in Li: 2-tpLi+1|E (u,w) = λ, and 2-tpLi+1|E (u, v) = 2-tpLi|E (u,w). These
2-types are well-defined because of 1-tpLi|E (v) = 1-tpLi|E (w). All other 2-types in Li+1|E are
the same as in Li|E . This completes the definition of Li+1.

We now argue that Li+1 satisfies properties (1)-(4). As in the previous case, one can
argue that Li+1 satisfies (1) and (2), Li+1 |= ψgaifmann and Li+1 |= ψsubgraph. Because
(v, u) and (w, u) do not have T -message types we get Li+1 |= ψtypesUnb from Li |= ψtypesUnb
and that Li+1 is T -functional because Li is T -functional. We get Li+1 |= ψchromaticity
from Li |= ψchromaticity, L′ |= ψchromaticity and 1-tpLi(w) = 1-tpL′(w). With Li |= α◦ and
Lemma 4.1 we get Li+1 |= α◦. Thus, Li+1 satisfies property (3).

It remains to show property (4). From Lemma 4.6 we get 2-tpLi|E (u,w) 6= λ and
2-tpL′|E (u, v) 6= λ. Again applying Lemma 4.6 we get ranku(Li+1,L

′) < ranku(Li,L′). Be-
cause 2-tpLi|E (v, u) and 2-tpLi|E (w, u) are not T -message types, we get rankv(Li+1,L

′) =
rankv(Li,L′) and rankw(Li+1,L

′) = rankw(Li,L′). Moreover, we have that
rankz(Li+1,L

′) = rankz(Li,L′) for all z ∈M \{u, v, w}. Thus, rank(Li,L′) > rank(Li+1,L
′).
J

5 From Bounded Tree-width to Binary Trees

This section is devoted to a discussion of the proof of Lemma 3.3. It is well-known that
graphs of tree-width k can be encoded as trees whose vertices are labeled with a finite number
of labels. The popular definition of tree-width based on tree decompositions can be used as
the basis of such an encoding. Moreover, the class of graphs of tree-width k can be obtained
as the image of a translation scheme on the class of trees [1]. A translation scheme is a
tuple of formulas which induces an operation mapping structures to structures. Our proof of
Lemma 3.3 relies on an encoding of structures of bounded tree-width into trees in terms of a
translation scheme with some special properties.
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A translation scheme for C2 over C1 is a tuple t = 〈φ, ψC : C ∈ C2〉 of MSO(C1)-
formulas such that φ has exactly one free first order variable and the number of free first
order variables in each ψC is arity(C). The formulas φ and ψC , C ∈ C2, do not have any free
second order variables.5 The quantifier rank qr(t) of t is the maximum of the quantifier
ranks of φ and the ψC . t is quantifier-free if qr(t) = 0. The induced transduction t?

is a partial function from C1-structures to C2-structures which assigns a C2-structure t?(A)
to a C1-structure A as follows. The universe of t?(A) is At = {a ∈ A : A |= φ(a)}. The
interpretation of C ∈ C2 in t?(A) is Ct?(A) =

{
ā ∈ At

arity(C) : A |= ψC(ā)
}
. Due to the

convention that structures do not have an empty universe, t?(A) is defined iff A |= ∃xφ(x).

I Example 5.1 (k-bounded structures). Let A be a vocabulary. Recall from Section 4.2.2
that k-bounded A-structures A can be encoded in terms of R-functional structures enriched
with unary predicates encoding 2-types. For simplicity we assume A consists of binary
relation symbols only. Let R = {R1, . . . , Rk} and let X = {Pλ | λ ∈ R-MsgTypes(A)}. Let
tk−b.s. = 〈φ, ψC : C ∈ A〉 be the translation scheme for A ∪R over X ∪R given as follows:
φ(x0) = true; for every Rj ∈ R, ψRj (x0, x1) = Rj(x0, x1); and for every C ∈ A, ψC(x0, x1) =∨k
i=1(dir1,i∨dir2,i), where dirj,i =

∨
λ∈Rangej

Ri(x0, x1)∧Pλ(xj−1) for j ∈ {1, 2}. The inner
disjunction

∨
λ∈Range1

in dir1,i ranges over message types λ ∈ R-MsgTypes(A) such that
both C(x, y) and Ri(x, y) belong to λ. The disjunction over Range2 in dir2,i is similar except
that here we require C(y, x) and Ri(x, y) to belong to λ.

The induced transduction t?k−b.s. is the operation which takes encodings given as (X ∪R)-
structures to their corresponding k-bounded (A ∪R)-structures. Given a (X ∪R)-structure
B, t?k−b.s.(B) has the same universe as B since φ = true. The reducts of t?k−b.s.(B) and B

to R are equal. There is a C-edge from an element a to an element b in t?k−b.s.(B) if there is
e ∈ {(a, b), (b, a)} whose 2-type is a R-message type and the source of e is annotated with a
predicate Pλ such that λ contains C in the relevant direction (i.e., C(x, y) ∈ λ if the source
of e is a, and C(y, x) ∈ λ otherwise).

I Lemma 5.2 (Fundamental property of translation schemes). Let t be a translation scheme for
C2 over C1. There is a computable function t] from MSO(C2)-sentences to MSO(C1)-sentences
such that for every C1-structure A for which t?(A) is defined and for every MSO(C2)-sentence
θ, A |= t](θ) if and only if t?(A) |= θ. We call t] the induced translation.

For an MSO(C2)-sentence ζ, t] substitutes the relation symbols C ∈ C2 in ζ with
the formulas ψC , requires that each of the free variables satisfies φ, and relativizes the
quantification to φ. An inductive definition of t] is given in Definition 3.2 of [20]. It is
not difficult to extend the inductive definition of t] with the counting quantifiers (See
Appendix C).

I Example 5.3. Let E be a vocabulary consisting of a single binary relation symbol E. The
translation scheme tsym = 〈φ, ψE〉 for E over E is given by φ(x) = E(x, x) and φE(x, y) =
E(x, y) ∨E(y, x). The induced transduction t?sym maps an E-structure E to the symmetric
closure of the substructure of E consisting of elements with self-loops. For example, for the
structure En with universe [n] in which E is interpreted as the natural linear order ≤ of
[n], t?sym(En) is 〈[n], [n]× [n]〉. Let full = ∀x∀y E(x, y). By Lemma 5.2, t?sym(En) |= full iff
En |= t]sym(full) = ∀x (E(x, x)→ (∀ y (E(y, y)→ (E(x, y) ∨ E(y, x))))).

5 All translation schemes in this paper are scalar (i.e. non-vectorized). In the notation of [6], a translation
scheme is a parameterless non-copying MSO-definition scheme with precondition formula (x ≈ x).
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I Lemma 5.4 (Quantifier-free translation schemes and C2). Let t be a quantifier-free trans-
lation scheme for C2 over C1. The induced translation t] maps C2(C2)-formulas to C2(C1)-
formulas.

For the proof of Lemma 3.3 we need a translation scheme for (Cbnd ∪ Cunb)-structures
M whose reducts M|Cbnd have tree-width at most k. In order that α and β be mapped to
an MSO(Dbnd)-sentence and a C2(Cunb)-sentence respectively, we need that the translation
scheme satisfy some additional properties.

I Lemma 5.5. Let Cbnd and Cunb be vocabularies such that Cbnd ∩ Cunb only contains unary
relation symbols. There exist the following effectively computable objects: (1) a vocabulary
Dbnd consisting of the binary relation symbol s and unary relation symbols only, (2) a
translation scheme tr = 〈φ, ψC : C ∈ Cbnd ∪ Cunb〉 for Cbnd ∪ Cunb over Dbnd ∪ Cunb, and
(3) an MSO(Dbnd)-sentence dom, such that:
(a) φ is quantifier-free over Dbnd,
(b) For every relation symbol C ∈ Cunb, ψC is quantifier-free.
(c) For every relation symbol C ∈ Cbnd, ψC is an MSO(Dbnd)-formula.
(d) Let K be the class of (Dbnd ∪ Cunb)-structures in which s is interpreted as a binary tree

and which satisfy dom. The image of K under tr? is exactly the class of (Cbnd ∪ Cunb)-
structures M such that M|Cbnd has tree-width at most k.

We use the translation scheme from Example 5.1 to encode k-bounded structures using
R-functional structures. (Note that structures of tree-width k are k-bounded.) We encode
R-functional structures as annotated trees using the inductive construction of k-trees in
Section 2. The proof of Lemma 5.5 bears technical similarities to the discussion in [7] of
graphs of bounded tree-width.

We are now ready to prove Lemma 3.3. By Lemma 5.5(d) and Lemma 5.2, statement (i)
in Lemma 3.3 holds iff there is a (Dbnd ∪ Cunb)-structure N such that sN is a binary tree and
N |= dom ∧ tr](α) ∧ tr](β). Let α′ = dom ∧ tr](α) and β′ = tr](β). By Lemma 5.5(c) and
the definition of tr], α′ ∈ MSO(Dbnd). Let tr|Cunb be the translation scheme for Cunb over
Dbnd ∪Cunb which agrees with tr on all formulas, i.e. tr|Cunb = 〈φ, ψC : C ∈ Cunb〉. The image
of tr|?Cunb

on a structure M is the Cunb-reduct of the image of tr? on M. Since β ∈ C2(Cunb),
tr|Cunb

](β) is well-defined and tr|Cunb
](β) = β′. By Lemma 5.5(a,b), tr|Cunb is a quantifier-free

translation scheme, implying that β′ ∈ C2(Dbnd ∪ Cunb) by Lemma 5.4.

6 From MSO to C2 on Binary Trees

The purpose of this section is to show that, on structures consisting only of a binary tree and
additional unary relations, every MSO-sentence can be rewritten to a C2-sentence which is
equi-satisfiable and whose length is linear in the length of the input MSO-sentence. We start
by introducing some tools from the literature.

I Theorem 6.1 (Hintikka sentences). Let C be a vocabulary. For every q ∈ N there is a finite
set HINC,q of MSO(C) sentences of quantifier rank q such that:
1. every ε ∈ HINC,q has a model;
2. the conjunction of any two distinct sentences ε1, ε2 ∈ HINC,q is not satisfiable;
3. every MSO(C)-sentence α of quantifier rank at most q is equivalent to exactly one finite

disjunction of sentences HINC,q;
4. every C-structure A satisfies exactly one sentence hinC,q(A) of HINC,q.
We may omit C or q from the subscript when they are clear from the context.
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For a class of C-structures K an n-ary operation Op over C-structures is called smooth
over K, if for all A1, . . . ,An ∈ K, hinC,q(Op(A1, . . . ,An)) depends only on hinC,q(Ai): i ∈ [n]
and this dependence is computable6. We omit “over K” when K consists of all C-structures.

I Theorem 6.2 (Smoothness).
1. The disjoint union is smooth.
2. For every quantifier-free translation scheme t, the operation t? is smooth.
3. Let T1

→◦ T2 denote the tree obtained by adding T2 as the child of T1. That is, T1
→◦ T2

is obtained from the disjoint union of T1 and T2 by adding an edge from the root of tree
T1 to the root of tree T2. The operation →◦ is smooth on labeled trees.7

For an in-depth introduction to Hintikka sentences and smoothness and references to
proofs see [14, Chapter 3, Theorem 3.3.2] and [20] respectively.

We are now ready for the main lemma of this section.
Let rt(x) be the sentence ∀y ¬s(y, x). This sentence defines the root of the binary tree s.

I Lemma 6.3. Let q ∈ N and let C be a vocabulary which consists only of the binary
relation symbol s and (possibly) additional unary relation symbols. For every ε ∈ HINC,q,
let Cε be a new unary relation symbol. Let hin(C, q) be the vocabulary which extends C
with {Cε : ε ∈ HINC,q}. There is a computable C2(hin(C, q))-sentence Θhin

C,q, and for every
ω ∈ MSO(C) with qr(ω) = q, there exists a computable C2-sentence ωhin such that:
(i) Every C-structure T0 in which sT0 is a binary tree has a unique expansion T1 to the

vocabulary hin(C, q) satisfying T1 |= Θhin
C,q.

(ii) Moreover, for T0 and T1 as in (i), T0 |= ω iff T1 |= ωhin.
The C2-sentence ωhin is

∀x

rt(x)→
∨

ε∈HINC,q : ε|=ω

Cε(x)


The sentence Θhin

C,q is defined so that for every T0 there is a unique expansion T1 such that
T1 |= Θhin

C,q . For every u in the universe T1 of T1, we will have u ∈ CT1
ε iff the subtree Tu of

T0 whose root is u satisfies Tu |= ε. Using the smoothness of →◦ , whether an element of T1
belongs to CT1

ε depends only on its children. This can be axiomatized in C2. Lemma 3.4
follows from Lemma 6.3 with q = qr(α), D = hin(C, q), and ωhin = γ.

Appendix B spells out the proof of Lemma 6.3.

7 MSO with Cardinality Constraints

MSOcard denotes the extension of MSO with atomic formulas called cardinality constraints∑r
i=1 |Xi| <

∑t
i=1 |Yi|, where the Xi and Yi are MSO variables, and |X| denotes the

cardinality of X. Let WS1S (WS1Scard) be the weak monadic second order theory (with
cardinality constraints) of the structure 〈N,+1, <〉. Let MSO∃card ⊆ MSOcard be the set of
sentences ρ such that (1) ρ is of the form ρ = ∃X1 · · · ∃Xmω, and (2) only the X1, . . . , Xm

participate in cardinality constraints.

I Theorem 7.1. Given a sentence ρ ∈ MSO∃card, it is decidable

6 Smooth operations here are called effectively smooth in [20].
7 The smoothness of →

◦ can be shown using the smoothness of the fusion operation, see the discussion in
Sections 3 and 4 of [20].
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(A) whether 〈N,+1, <〉 |= ρ, and
(B) whether ρ is satisfiable by a finite structure of bounded tree-width.

We present the proof idea here, and the proof of Theorem 7.1(B) below. The proof of
Theorem 7.1(A) is in Appendix A.

The proof of Theorem 7.1 follows from Theorem 3.1. The main observation needed for
(B) is that cardinality constraints can be expressed in terms of injective functions, which are
axiomatizable in C2. (A) is reducible to (B). The main observations for (A) are:
1. thatX1, . . . , Xm are contained in the substructure A1 of 〈N,+1, <〉 generated by {0, . . . , `}

for some ` ∈ N,
2. that substructure A2 of 〈N,+1, <〉 generated by N−{0, . . . , `} is isomorphic to 〈N,+1, <〉,

and therefore A2 and 〈N,+1, <〉 have the same weak monadic second order theory,
3. that the weak monadic second order theory of 〈N,+1, <〉 is decidable,
4. and that 〈N,+1, <〉 is a transduction t of A1 t A2.
It remains to use that the disjoint union t is smooth.

Proof of Theorem 7.1(B). Let ρ be a MSO∃card sentence, i.e. the outermost block of
quantifiers in ρ is existential and only variables from the outermost blocks may appear in
cardinality constraints. For simplicity we consider ρ = ∃X1∃X2ω with only two quantifiers in
the outermost block. W.l.o.g. the only cardinality constraint in ω is |X1| < |X2|. By a slight
abuse of notation, we sometimes treat X1 and X2 as unary relation symbols. Let Cbnd extend
the vocabulary of ρ with new unary relation symbols X1,X2,Wimg,Wdom. Let Cunb extend
Cbnd with a new binary relation symbol B. Finite satisfiability of ω by a structure M such
that tw(M) ≤ k can be reduced to finite satisfiability of a sentence α ∧ β, α ∈ MSO(Cbnd)
and β ∈ C2(Cunb), by a structure A1 such that tw(A1|Cbnd ) ≤ k. Let β be the C2-sentence
β = (inj12 ∨ inj21) ∧ dom ∧ img, where:

inj12 expresses that B is an injective function from X1 to X2,
inj21 expresses that B is an injective function from X2 to X1,
dom expresses that the domain of B is Wdom,
and img expresses that the image of B is Wimg.

For every Cunb-structure A1, |XA1
1 | < |X

A1
2 | iff W

A1
dom = XA1

1 and XA1
2 \W

A1
img 6= ∅. Let α

be obtained from ω by substituting every |X1| < |X2| by

∀x (X1(x)↔Wdom(x)) ∧ ∃x (¬Wimg(x) ∧X2(x))

For any Cbnd-structure A0 with tw(A0) ≤ k, A0 |= ω iff there is an expansion A1 of A0 such
that A1 |= α ∧ β. The treatment of other cardinality constraints

∑r
i=1 |Xi| <

∑t
i=1 |Yi| is

similar; it is helpful to assume w.l.o.g. that the sets Xi and Yi are pairwise disjoint. J

I Remark. While we assumed for simplicity in (B) that X1 and X2 range over subsets of
the universe, it is not hard to extend the proof to the case that X1 and X2 are guarded
second order variables which range over subsets of any relation in the structure. This is
true since we can use the translation scheme tr from Lemma 5.5 to obtain the structures of
tree-width at most k as the image of tr? of labeled trees; X1 and X2 then translate naturally
to monadic second order variables.

Acknowledgements. We are grateful to the referees for their detailed comments on the
presentation of the paper.
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A Appendix: Proof of Theorem 7.1(A)

The unary function +1 is the successor relation of N and interprets the binary relation symbol
suc. The binary relation < is the natural order relation on N. In the proof of (A) we will use
the theory of Hintikka sentences as presented in Section 6 with one caveat, namely that instead
of restricting to finite structures, we allow arbitrary structures. Theorems 6.1 and 6.2 hold
for arbitrary structures. Theorems 6.1 guarantees the existence of a set HIN

arb
C,q analogously

to HINC,q for arbitrary structures. For every C-structure A, Theorem 6.1 guarantees the
existence of a sentence hinarb

C,q (A) of HIN
arb
C,q analogously to hinC,q(A). For the rest of the

section, we omit the superscript arb to simplify notation.
Consider ρ = ∃X1∃X2ω for the vocabulary CN of 〈N,+1, <〉. Let α ∈ MSO(Cbnd) and

β ∈ C2(Cunb) be as discussed in the proof of (B) above. The following are equivalent:
1. 〈N,+1, <〉 |= ρ

2. There are finite unary relations U1 and U2 such that 〈N,+1, <, U1, U2〉 |= ω. U1 and U2
interpret X1 and X2 respectively.

3. There are finite unary relations U1 and U2 and an expansion A of 〈N,+1, <, U1, U2〉 such
that A |= α ∧ β. A expands 〈N,+1, <, U1, U2〉 with interpretations of the symbols in
Dunb = {B,Wdom,Wimg}.

4. ρ′ = ∃X1∃X2(α ∧ β) is satisfiable by an expansion of 〈N,+1, <〉 with interpretations for
the symbols of Dunb.

We have 1. iff 2. and 3. iff 4. by the semantics of ∃X1∃X2 in weak monadic second order
logic. We have 2. iff 3. similarly to the discussion of α and β in the proof of (A) above. The
rest of the proof is devoted to proving that 4. is decidable.

Observe that by the definition of β, and in weak monadic second order X1 and X2 are
quantified to be finite sets, B is axiomatized to be a function with finite domain, and Wdom
and Wimg are finite. Hence models A of ρ′ can be decomposed into a finite part containing
BA, and an infinite part isomorphic to an expansion of 〈N,+1, <〉 in which the symbols of
Dunb as are interpreted as empty sets. We will use a similar decomposition, but first we
want to move from the structure 〈N,+1, <〉 and its expansions to 〈N,+1〉 and its expansions.
There is a translation scheme t< such that for every structure A =

〈
N,+1, BA,WA

dom,W
A
img
〉
,

t?<(〈A〉) = 〈A, <〉, where 〈A, <〉 is the expansion of A with <. This is true since < is MSO
definable from +1. We have that ρ′ is satisfied by an expansion of 〈N,+1, <〉 iff t]<(ρ′) is
satisfied by the same expansion of 〈N,+1〉.

Now we turn to the decomposition of models of t]<(ρ′) into a finite part containing BA,
and an infinite part isomorphic to a Dunb-expansion of 〈N,+1〉. Let Dunb+ = 〈Dunb,+〉
and note that Dunb+ is the vocabulary of t]<(ρ′). For every Dunb+-expansion P of 〈N,+1〉
and every n ∈ N, let P1,n and Pn,∞ be the substructures of P generated by [n] and
N\[n− 1] respectively. There is a translation scheme u such that u?(P1,n tPn+1,∞) = P if
BP ⊆ [n]× [n]. u existentially quantifies the set [n] (which is the only non-empty finite set
closed under suc and its inverse), 1 and n (as the first and last elements of [n]) and n+ 1
(as the only element without a suc-predecessor except for 1) and adds the edge (n, n + 1)
to suc. We have P |= t]<(ρ′) iff P1,n tPn+1,∞ |= u](t]<(ρ′)). Note that the vocabulary of
u](t]<(ρ′)) is Dunb+. Let q be the quantifier rank of u](t]<(ρ′)).
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The Hintikka sentence hin(Pn+1,∞) of quantifier rank q of Pn+1,∞ is uniquely defined
since Pn+1,∞ is isomorphic to the expansion of 〈N,+1〉 with empty sets. Moreover,
hin(Pn+1,∞) is computable using that the theory of 〈N,+1〉 is decidable. Hence, by the
smoothness of the disjoint union, for every Hintikka sentence ε ∈ HINDunb+,q there is a
computable set Eε ⊆ HINDunb+,q such that hin(P1,n tPn+1,∞) = ε iff hin(P1,n) ∈ Eε. Then
P1,n tPn+1,∞ |= u](t]<(ρ′)) iff P1,n satisfies the sentence

∨
(ε,ε′) ε

′, where the
∨

(ε,ε′) ranges
over pairs (ε, ε′) such that (1) ε ∈ HINDunb+,q, (2) ε |= u](t]<(ρ′)), and (3) ε′ ∈ Eε. Hence, ρ′
is satisfiable by an expansion of 〈N,+1, <〉 iff

∨
(ε,ε′) ε

′ is satisfiable by a finite structure in
which suc is interpreted as a successor relation (i.e., as a simple directed path on the whole
universe). Let suc-rel be the weak MSO-sentence such that the interpretation of suc is a
successor relation. By Theorem 7.1(B), it is decidable whether,

∨
(ε,ε′) ε

′ ∧ suc-rel is finitely
satisfiable using that the class of simple directed paths annotated with unary relations has
tree-width 1.

B Appendix: Proof of Lemma 6.3

For a leaf b, hinq(Tb) depends only on the unary relations which b satisfies. By Theorem 6.2,
for a vertex b with one child b0 (two children b0, b1), hinq(Tb) depends only on the unary
relations which b satisfies and on hinq(Tb0) (on hinq(Tb0) and hinq(Tb1)).

Let

Θhin
C,q = part ∧ leaves ∧ ints1 ∧ ints2

where part says that {Cε : ε ∈ HINC,q} partition the universe, and leaves, ints1, and ints2
define the Cε for the leaves respectively the internal vertices of T0 with one or two children.

We give part, leaves, ints1 and ints2 below. There are C2 formulas leaf(x), int1(x), and
int2(x), which express that x is a leaf, has one child, or has two children, respectively. Let

part = ∀x

 ∨
ε∈HINC,q

Cε(x)

 ∧
 ∧
ε1 6=ε2∈HINC,q

(¬Cε1(x) ∨ ¬Cε2(x))

 .

For U ⊆ un(C), let OU be a C-structure with universe O of size 1 satisfying that UOU = ∅
iff U ∈ U , and rootOU = O. Let

ints1 = ∀x

int1(x)→
∧

(U,ε1,ε2)∈Range3

((thisU (x) ∧ childε2(x))→ Cε1(x))


thisU (x) =

∧
U∈un(C),U /∈U

U(x) ∧
∧

U∈un(C),U∈U

¬U(x)

childε2(y) = ∃y s(x, y) ∧ Cε2(y)

The conjunction
∧

(U,ε1,ε2)∈Range3
ranges over tuples (U , ε1, ε2) such that U ⊆ un(C), ε1, ε2 ∈

HINC,q, and for every structure A ∈ Kroot with hin(A) = ε2, hin(OU
→◦ A) = ε1.

We define:

leaves = ∀x

leaf(x)→
∧

(U,ε1)∈Range4

thisU (x)→ Cε1(x)


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The conjunction
∧

(U,ε1)∈Range4
ranges over tuples (U , ε1) such that U ⊆ un(C), ε1 ∈ HINC,q,

and hin(OU ) = ε1. Finally, ints2 is defined as follows:

ints2 = ∀x(int2(x)→ (intdist(x) ∧ intsame))
intdist(x) =

∧
(U,ε1,ε2,ε3)∈Range5

((thisU (x) ∧ childε2(x) ∧ childε3(x))→ Cε1(x))

intsame(x) =
∧

(U,ε1,ε2)∈Range6

((thisU (x) ∧ childrenε2(x))→ Cε1(x))

childrenε2(x) = ∃=2y (s(x, y) ∧ Cε2(y))

The conjunction
∧

(U,ε1,ε2,ε3)∈Range5
in intdist(x) ranges over U ⊆ un(C) and ε1, ε2, ε3 ∈

HINC,q such that ε2 6= ε3, and for every two structure A,B ∈ Kroot with hin(A) = ε2 and
hin(B) = ε3, hin((OU

→◦ A) →◦ B) = ε1. The conjunction
∧

(U,ε1,ε2)∈Range6
in intsame(x)

ranges over U ⊆ un(C) and ε1, ε2 ∈ HINC,q such that for every structure A ∈ Kroot with
hin(A) = ε2, hin((OU

→◦ A) →◦ A′) = ε1, where A′ is isomorphic to A over a disjoint universe.
By definition, Θhin

C,q ∈ C2. Let T0 be a C-structure in which s is interpreted as a binary
tree. Let T1 be the expansion of T0 such that, for every element b of the universe T1 = T0
of T1, b ∈ CT1

hin(Tb), where Tb is the subtree of T0 rooted at b. In particular, for the root r
of T0, r ∈ CT1

hin(Tr) = CT1
hin(T0). The structure T1 is the unique expansion of T0 such that

T1 |= Θhin
C,q , hence (i) holds. Using the definition of ωhin, (ii) holds.

Note that Θhin
C,q is a sentence in the description logic ALCQIO (which is a sublogic of C2)

discussed in [17]. The same is true for the sentences ωhin.

C Appendix: The induced translation t]

Let C1 and C2 be vocabularies. Given a translation scheme t = 〈φ, ψC : C ∈ C2〉 for C0 over C1
we define the induced translation t] to be a function from MSO(C2)-formulas to C1-formulas
inductively as follows:
1. For C ∈ un(C2) or for monadic second order variables C, and for θ = C(x), we put

t](θ) = ψC(x) ∧ φ(x)

2. For C ∈ bin(C2) and θ = C(x, y), we put t](θ) = ψC(x, y) ∧ φ(x) ∧ φ(y)
3. For x ≈ y, we put t](θ) = x ≈ y ∧ φ(x) ∧ φ(y)
4. For the Boolean connectives the translation distributes, i.e.

if θ = θ1 ∨ θ2 then t](θ) = (t](θ1) ∨ t](θ2))
if θ = ¬θ1 then t](θ) = ¬t](θ1)

5. For the existential quantifiers, we relativize to φ:
If θ = Qy θ1, where Q ∈ {∃}∪{∃≤n,∃≥n,∃=n : n ∈ N}, we put t](θ) = Qy (φ(y)∧t](θ1))
If θ = ∃U θ1, we put t](θ) = ∃U (t](θ1) ∧ ∀y U(y)→ φ(y))

We have somewhat simplified the presentation in [20, Definition 2.3] to fit our setting. On
the other hand, we have extended the presentation in [20] by the counting quantifiers. This
is important for Lemma 5.4 on C2-translations schemes. (Note that for the Lemma 5.4 it is
not enough to use that counting quantifiers are definable in MSO.)
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