3,362 research outputs found

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Improved Stroke Detection at Early Stages Using Haar Wavelets and Laplacian Pyramid

    Get PDF
    Stroke merupakan pembunuh nomor tiga di dunia, namun hanya sedikit metode tentang deteksi dini. Oleh karena itu dibutuhkan metode untuk mendeteksi hal tersebut. Penelitian ini mengusulkan sebuah metode gabungan untuk mendeteksi dua jenis stroke secara simultan. Haar wavelets untuk mendeteksi stroke hemoragik dan Laplacian pyramid untuk mendeteksi stroke iskemik. Tahapan dalam penelitian ini terdiri dari pra proses tahap 1 dan 2, Haar wavelets, Laplacian pyramid, dan perbaikan kualitas citra. Pra proses adalah menghilangkan bagian tulang tengkorak, reduksi derau, perbaikan kontras, dan menghilangkan bagian selain citra otak. Kemudian dilakukan perbaikan citra. Selanjutnya Haar wavelet digunakan untuk ekstraksi daerah hemoragik sedangkan Laplacian pyramid untuk ekstraksi daerah iskemik. Tahapan terakhir adalah menghitung fitur Grey Level Cooccurrence Matrix (GLCM) sebagai fitur untuk proses klasifikasi. Hasil visualisasi diproses lanjut untuk ekstrasi fitur menggunakan GLCM dengan 12 fitur dan kemudian GLCM dengan 4 fitur. Untuk proses klasifikasi digunakan SVM dan KNN, sedangkan pengukuran performa menggunakan akurasi. Jumlah data hemoragik dan iskemik adalah 45 citra yang dibagi menjadi 2 bagian, 28 citra untuk pengujian dan 17 citra untuk pelatihan. Hasil akhir menunjukkan akurasi tertinggi yang dicapai menggunakan SVM adalah 82% dan KNN adalah 88%

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Regularity scalable image coding based on wavelet singularity detection

    Get PDF
    In this paper, we propose an adaptive algorithm for scalable wavelet image coding, which is based on the general feature, the regularity, of images. In pattern recognition or computer vision, regularity of images is estimated from the oriented wavelet coefficients and quantified by the Lipschitz exponents. To estimate the Lipschitz exponents, evaluating the interscale evolution of the wavelet transform modulus sum (WTMS) over the directional cone of influence was proven to be a better approach than tracing the wavelet transform modulus maxima (WTMM). This is because the irregular sampling nature of the WTMM complicates the reconstruction process. Moreover, examples were found to show that the WTMM representation cannot uniquely characterize a signal. It implies that the reconstruction of signal from its WTMM may not be consistently stable. Furthermore, the WTMM approach requires much more computational effort. Therefore, we use the WTMS approach to estimate the regularity of images from the separable wavelet transformed coefficients. Since we do not concern about the localization issue, we allow the decimation to occur when we evaluate the interscale evolution. After the regularity is estimated, this information is utilized in our proposed adaptive regularity scalable wavelet image coding algorithm. This algorithm can be simply embedded into any wavelet image coders, so it is compatible with the existing scalable coding techniques, such as the resolution scalable and signal-to-noise ratio (SNR) scalable coding techniques, without changing the bitstream format, but provides more scalable levels with higher peak signal-to-noise ratios (PSNRs) and lower bit rates. In comparison to the other feature-based wavelet scalable coding algorithms, the proposed algorithm outperforms them in terms of visual perception, computational complexity and coding efficienc

    Prioritized Data Compression using Wavelets

    Full text link
    The volume of data and the velocity with which it is being generated by com- putational experiments on high performance computing (HPC) systems is quickly outpacing our ability to effectively store this information in its full fidelity. There- fore, it is critically important to identify and study compression methodologies that retain as much information as possible, particularly in the most salient regions of the simulation space. In this paper, we cast this in terms of a general decision-theoretic problem and discuss a wavelet-based compression strategy for its solution. We pro- vide a heuristic argument as justification and illustrate our methodology on several examples. Finally, we will discuss how our proposed methodology may be utilized in an HPC environment on large-scale computational experiments
    corecore