6,440 research outputs found

    Redundancy of stereoscopic images: Experimental Evaluation

    Full text link
    With the recent advancement in visualization devices over the last years, we are seeing a growing market for stereoscopic content. In order to convey 3D content by means of stereoscopic displays, one needs to transmit and display at least 2 points of view of the video content. This has profound implications on the resources required to transmit the content, as well as demands on the complexity of the visualization system. It is known that stereoscopic images are redundant, which may prove useful for compression and may have positive effect on the construction of the visualization device. In this paper we describe an experimental evaluation of data redundancy in color stereoscopic images. In the experiments with computer generated and real life and test stereo images, several observers visually tested the stereopsis threshold and accuracy of parallax measuring in anaglyphs and stereograms as functions of the blur degree of one of two stereo images and color saturation threshold in one of two stereo images for which full color 3D perception with no visible color degradations is maintained. The experiments support a theoretical estimate that one has to add, to data required to reproduce one of two stereoscopic images, only several percents of that amount of data in order to achieve stereoscopic perception

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Three dimensional reconstruction of the cell cytoskeleton from stereo images

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.Includes bibliographical references (leaves 80-83).Besides its primary application to robot vision, stereo vision also appears promising in the biomedical field. This study examines 3D reconstruction of the cell cytoskeleton. This application of stereo vision to electron micrographs extracts information about the interior structure of cells at the nanometer scale level. We propose two different types of stereo vision approaches: the line-segment and wavelet multiresolution methods. The former is primitive-based and the latter is a point-based approach. Structural information is stressed in both methods. Directional representation is employed to provide an ideal description for filament-type structures. In the line-segment method, line-segments are first extracted from directional representation and then matching is conducted between two line-segment sets of stereo images. A new search algorithm, matrix matching, is proposed to determine the matching globally. In the wavelet multiresolution method, a pyramidal architecture is presented. Bottom-up analysis is first performed to form two pyramids, containing wavelet decompositions and directional representations. Subsequently, top-down matching is carried out. Matching at a high level provides guidance and constraints to the matching at a lower level. Our reconstructed results reveal 3D structure and the relationships of filaments which are otherwise hard to see in the original stereo images. The method is sufficiently robust and accurate to allow the automated analysis of cell structural characteristics from electron microscopy pairs. The method may also have application to a general class of stereo images.by Yuan Cheng.S.M

    Wavelet based stereo images reconstruction using depth images

    Get PDF
    It is believed by many that three-dimensional (3D) television will be the next logical development toward a more natural and vivid home entertaiment experience. While classical 3D approach requires the transmission of two video streams, one for each view, 3D TV systems based on depth image rendering (DIBR) require a single stream of monoscopic images and a second stream of associated images usually termed depth images or depth maps, that contain per-pixel depth information. Depth map is a two-dimensional function that contains information about distance from camera to a certain point of the object as a function of the image coordinates. By using this depth information and the original image it is possible to reconstruct a virtual image of a nearby viewpoint by projecting the pixels of available image to their locations in 3D space and finding their position in the desired view plane. One of the most significant advantages of the DIBR is that depth maps can be coded more efficiently than two streams corresponding to left and right view of the scene, thereby reducing the bandwidth required for transmission, which makes it possible to reuse existing transmission channels for the transmission of 3D TV. This technique can also be applied for other 3D technologies such as multimedia systems. In this paper we propose an advanced wavelet domain scheme for the reconstruction of stereoscopic images, which solves some of the shortcommings of the existing methods discussed above. We perform the wavelet transform of both the luminance and depth images in order to obtain significant geometric features, which enable more sensible reconstruction of the virtual view. Motion estimation employed in our approach uses Markov random field smoothness prior for regularization of the estimated motion field. The evaluation of the proposed reconstruction method is done on two video sequences which are typically used for comparison of stereo reconstruction algorithms. The results demonstrate advantages of the proposed approach with respect to the state-of-the-art methods, in terms of both objective and subjective performance measures

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition
    • …
    corecore