5 research outputs found

    Connectivité fonctionnelle des générateurs de deux types d'ondes lentes dans une population jeune et âgée

    Full text link
    Le cerveau endormi tend à se déconnecter dans sa progression vers le sommeil lent (SL) chez les jeunes adultes et se déconnecte moins chez les plus âgés. Les ondes lentes (OL) sont les caractéristiques principales du sommeil lent sur l’électroencéphalogramme (EEG). Notre groupe a récemment montré que deux types d’OL co-existent, les « slow switcher » (SlowS) et les « fast switcher » (FastS), caractérisées par leur vitesse de transition entre les maximums d’hyperpolarisation et de dépolarisation. Sur l’EEG, la connectivité globale pendant la transition des SlowS et des FastS diffère et diminue avec le vieillissement. Dans cette étude, nous utilisons des enregistrements de magnétoencéphalographie pour évaluer les changements relatifs à l’âge sur les générateurs des OL pendant la transition entre les maximums d’hyperpolarisation et de dépolarisation en termes de 1) topographie et 2) connectivité, avec l’indice de délais de phase pondéré basé sur le délai de phase moyen dans la transition des OL. Nous avons fait l’hypothèse que comparativement aux OL des individus jeunes, les OL des individus plus âgés vont 1) impliquer des régions corticales plus étendues et 2) montrer plus de connectivité, spécialement pour les SlowS. Nos résultats révèlent que comparativement aux jeunes participants, les plus vieux montrent 1) plus d’implication du précuneus droit pendant les SlowS et 2) une connectivité globale supérieure, surtout pour les SlowS. Finalement, les individus plus jeunes montrent plus de connectivité que les individus plus âgés entre des régions spécifiques, plus précisément dans le réseau antéropostérieur pour les SlowS que les FastS. Ensemble, nos résultats suggèrent une perte de flexibilité des réseaux pendant la transition des OL chez les individus plus âgés par rapport aux individus plus jeunes.The sleeping brain tends to disconnect as it progresses toward slow wave sleep (SWS) in young adults and disconnects less in older adults. Slow waves (SW) are the main characteristics of slow wave sleep on the electroencephalogram (EEG). Our group recently showed that two types of SW co-exist, the “slow switcher” (SlowS) and the “fast switcher” (FastS), characterized by the transition speed between the hyperpolarized and depolarized peaks. On the EEG, the global connectivity during the transition of the SlowS and FastS differs and is reduced with aging. In this study, we used magnetoencephalography recordings to investigate age-related differences on the SW generators during the transition between the hyperpolarized and depolarized peaks in terms of 1) topography and 2) connectivity, using the weighted phase lag index based on the average phase lag during the SW transition. We hypothesised that as compared to younger individuals, SW of older participants would 1) involve broader cortical areas and 2) show higher connectivity than younger individuals, particularly for the SlowS. Our results revealed that as compared to younger participants, older individuals showed 1) more involvement of the right precuneus during the SlowS and 2) globally higher connectivity, more significantly for the SlowS. Finally, younger individuals showed higher connectivity than older individuals between specific regions, more precisely in the anteroposterior network for the SlowS than the FastS. Altogether, our results suggest an impaired flexibility of the network during the SW transition in older individuals as compared to younger individuals

    Localization of the Epileptogenic Zone Using High Frequency Oscillations

    Get PDF
    For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40–50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization

    Imagerie fonctionnelle de la rétine par électrorétinographie multi-angulaire

    Get PDF
    Objectif: L’objectif de ce projet est de concevoir une méthode d’enregistrement de l’activité électrophysiologique de l’oeil permettant une image fonctionnelle de la rétine. L’objectif à long terme de ce travail est de fournir au clinicien un outil d’imagerie pour le diagnostic de certains dysfonctionnements de la rétine (rétinopathies). Contexte: L’électrorétinogramme (ERG) plein champ est une méthode bien connue permettant de déterminer objectivement la fonction rétinienne. Cependant, cette méthode ne permet pas d’exprimer les variations locales de la réponse rétinienne à moins d’utiliser un stimulus spécifique, comme cela est fait en ERG multi-focal (mfERG). Ce travail propose une solution en deux temps. D’abord, nous proposons une méthode permettant d’enregistrer un ERG comportant plusieurs dérivations spatiales (comme dans le contexte ECG). Ensuite, nous proposons une solution au problème électromagnétique de calculer l’activité rétinienne sur plus de dipôles qu’il y a de points d’enregistrement. Méthode: Nous avons proposé une méthode originale qui profite de la capacité qu’a l’oeil de tourner afin d’enregistrer plusieurs potentiels sur la cornée ou la peau (la méthode maERG). Cette méthode consiste à positionner 3 électrodes cutanées sur la paupière inférieure et les cathi interne et externe. Nous avons enregistré le maERG de 2 sujets sains pour 11 directions du regard pour un total de 33 électrodes virtuelles par sujet. À partir d’un modèle réaliste de conductivités et de géométries de l’oeil et de la peau, nous avons construit un modèle par éléments finis de frontières de l’oeil humain. Afin de déterminer si la méthode maERG permet la construction d’une image fonctionnelle de la rétine, nous avons comparé la qualité de reconstruction de plusieurs configurations d’électrodes du maERG avec un modèle d’un jeu d’électrodes directement en contact avec la cornée. Nous avons simulé 2 scénarios : une rétinopathie centrale et une périphérique. Nous avons propagé la topographie rétinienne simulée sur les électrodes (ce qu’on appelle le problème direct). À partir de ces mesures d’électrodes simulées, nous avons reconstruit l’activité des sources et comparé cette topographie reconstruite avec la topographie initiale en utilisant une méthode balancée de l’approche Area Under ROC-curve (AUC) ainsi qu’avec la méthode du Coefficient de Corrélation de Matthews (CCM). Nous avons ensuite utilisé les AUCs et CCMs de chaque configuration comme métrique du potentiel de la méthode maERG comme modalité d’imagerie diagnostique. Nous avons également proposé une méthode afin de réduire le rapport signal sur bruit (ou SNR) minimal, qui consiste à localiser les coefficients d’une transformée en ondelettes invariance par décalage. Finalement, pour comparer qualitativement nos résultats simulés avec des données expérimentales, nous avons reconstruit l’activité rétinienne de sujets sains. Résultats: Chaque électrode virtuelle donnait un signal ERG différent des autres, ce qui signifie qu’il est possible d’obtenir plusieurs dérivations d’un même ERG suggérant qu’il est possible de résoudre le problème inverse. Nos simulations ont démontré qu’il était possible d’obtenir une reconstruction correcte (AUC>0.7 et CCM>0.5) seulement avec des variations horizontales du regard, un SNR de 55dB et une surface pathologique d’au minimum 5%. Nous avons également démontré qu’en localisant les coefficients de la transformée en ondelette, il était possible de réduire le SNR minimal à 30-40dB. La reconstruction d’activité rétinienne de sujets sains a donné des topographies qualitativement similaires à celles de données simulées, ce qui signifie que nos résultats simulés concordent avec la réalité. Conclusion: Nous avons proposé une nouvelle méthode permettant l’enregistrement de plusieurs dérivations de l’ERG en profitant de la capacité de l’oeil de tourner, méthode que nous avons nommé maERG. Nous avons aussi proposé un modèle de l’oeil humain et une méthode de résolution du problème inverse afin de représenter l’activité rétinienne à partir de la position d’une parcelle, créant ainsi une nouvelle modalité d’imagerie fonctionnelle de la rétine. Malgré que notre technique nécessite un SNR élevé, nous avons démontré qu’il existe des méthodes de débruitage qui permettent d’atteindre une meilleure qualité du signal et ainsi, une bonne résolution d’imagerie rétinienne. Nous croyons que notre technique d’enregistrement de l’ERG augmentera la sensibilité de l’ERG et ainsi, permettre un diagnostic précoce et un suivi plus précis de rétinopathies
    corecore