230 research outputs found

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning

    Full text link
    Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are some limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, data driven machine learning-based methods such as neural networks provide a faster, fairly accurate alternative, and have certain advantages such as discretization invariance and resolution invariance. This article aims to provide a comprehensive insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems, while also noting some of the major pitfalls of machine learning-based approaches. Furthermore, we highlight, a novel and fast machine learning-based approach (~1000x) to learning the solution operator of a PDE operator learning. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics

    Differentiable Time-Frequency Scattering on GPU

    Full text link
    Joint time-frequency scattering (JTFS) is a convolutional operator in the time-frequency domain which extracts spectrotemporal modulations at various rates and scales. It offers an idealized model of spectrotemporal receptive fields (STRF) in the primary auditory cortex, and thus may serve as a biological plausible surrogate for human perceptual judgments at the scale of isolated audio events. Yet, prior implementations of JTFS and STRF have remained outside of the standard toolkit of perceptual similarity measures and evaluation methods for audio generation. We trace this issue down to three limitations: differentiability, speed, and flexibility. In this paper, we present an implementation of time-frequency scattering in Python. Unlike prior implementations, ours accommodates NumPy, PyTorch, and TensorFlow as backends and is thus portable on both CPU and GPU. We demonstrate the usefulness of JTFS via three applications: unsupervised manifold learning of spectrotemporal modulations, supervised classification of musical instruments, and texture resynthesis of bioacoustic sounds.Comment: 8 pages, 6 figures. Submitted to the International Conference on Digital Audio Effects (DAFX) 202

    PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks

    Full text link
    Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions for partial differential equations (PDEs). While conventional PINNs and most related studies adopt fully-connected multilayer perceptrons (MLP) as the backbone structure, they have neglected the temporal relations in PDEs and failed to approximate the true solution. In this paper, we propose a novel Transformer-based framework, namely PINNsFormer, that accurately approximates PDEs' solutions by capturing the temporal dependencies with multi-head attention mechanisms in Transformer-based models. Instead of approximating point predictions, PINNsFormer adapts input vectors to pseudo sequences and point-wise PINNs loss to a sequential PINNs loss. In addition, PINNsFormer is equipped with a novel activation function, namely Wavelet, which anticipates the Fourier decomposition through deep neural networks. We empirically demonstrate PINNsFormer's ability to capture the PDE solutions for various scenarios, in which conventional PINNs have failed to learn. We also show that PINNsFormer achieves superior approximation accuracy on such problems than conventional PINNs with non-sensitive hyperparameters, in trade of marginal computational and memory costs, with extensive experiments.Comment: 15 pages (including 9 pages of main text, 3 pages of references, and 3 pages of appendix), 4 figures, 5 table

    Unsupervised behavioral classification with 3D pose data from tethered Drosophila melanogaster

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), Universidade de Lisboa, Faculdade de Ciências, 2020O comportamento animal e guiado por instruções geneticamente codificadas, com contribuições do meio envolvente e experiências antecedentes. O mesmo pode ser considerado como o derradeiro output da atividade neuronal, pelo que o estudo do comportamento animal constitui um meio de compreensão dos mecanismos subjacentes ao funcionamento do cérebro animal. Para desvendar a correspondência entre cérebro e comportamento são necessárias ferramentas que consigam medir um comportamento de forma precisa, apreciável e coerente. O domínio científico responsável pelo estudo dos comportamentos dos animais denomina-se Etologia. No início do seculo XX, os etólogos categorizavam comportamentos animais com recurso as suas próprias intuições e experiência. Consequentemente, as suas avaliações eram subjetivas e desprovidas de comportamentos que os etólogos não considerassem a priori. Com o ressurgimento de novas técnicas de captura e analise de comportamentos, os etólogos transitaram para paradigmas mais objetivos, quantitativos da medição de comportamentos. Tais ferramentas analíticas fomentaram a construção de datasets comportamentais que, por sua vez, promoveram o desenvolvimento de softwares para a quantificação de comportamentos: rastreamento de trajetórias, classificação de ações, analise de padrões comportamentais em grandes escalas consistem nos exemplos mais preeminentes. Este trabalho encontra-se inserido na segunda categoria referida (classificação de ações). Os classificadores de ações dividem-se consoante são supervisionados ou não-supervisionados. A primeira categoria compreende classificadores treinados para reconhecer padrões específicos, definidos por um especialista humano. Esta categoria de classificadores e encontra-se limitada por: 1) necessitar de um processo extenuado de anotação de frames para treino do classificador; 2) subjetividade face ao especialista que classifica os mesmos frames, 3) baixa dimensionalidade, na medida em que a classificação reduz os complexos comportamentos a um só rotulo; 4) assunções erróneas; 5) preconceito humano face aos comportamentos observados. Por sua vez, os classificadores não-supervisionados seguem exaustivamente uma formula: 1) computer vision e empregue para a extração das características posturais do animal; 2) dá-se o pré-processamento dos dados, que inclui um modulo vital que envolve a construção de uma representação dinâmico-postural das ações do animal, de forma a capturar os elementos dinâmicos do comportamento; 3) segue-se um modulo opcional de redução de dimensionalidade, caso o utilizador deseje visualizar diretamente os dados num espaço de reduzidas dimensões; 4) efetua-se a atribuição de um rótulo a cada elemento dos dados, por via de um algoritmo que opera quer diretamente no espaço de alta dimensão, ou no de baixa dimensão, resultante do passo anterior. O objetivo deste trabalho passa por alcançar uma classificação objetiva e reproduzível, de forma não-supervisionada de frames de Drosophila melanogaster suspensas numa bola que flutua no ar, tentando minimizar o número de intuições requeridas para o efeito e, se possível, dissipar a influência dos aspetos morfológicos de cada individuo (garantindo assim uma classificação generalizada dos comportamentos destes insetos). Para alcançar tal classificação, este estudo recorre a uma ferramenta recém desenvolvida que regista a pose tridimensional de Drosophila fixas, o DeepFly3D, para construir um dataset com as coordenadas x-, y- e z-, ao longo do tempo, das posições de referência de um conjunto de três genótipos de Drosophila melanogaster (linhas aDN>CsChrimson, MDN-GAL4/+ e aDNGAL4/+). Sucede-se uma operação inovadora de normalização que recorre ao cálculo de ângulos entre pontos de referência adjacentes, como as articulações, antenas e riscas dorsais das moscas, por via de relações trigonométricas e a definição dos planos anatómicos das moscas, que visa atenuar os pesos das diferenças morfológicas das moscas, ou a sua orientação relativa as camaras do DeepFly3D, para o classificador. O modulo de normalização e sucedido por outro de analise de frequência, focado na extração das frequências relevantes nas series temporais dos ângulos calculados, bem como dos seus pesos relativos. O produto final do pré-processamento consiste numa matriz com a norma dos ditos pesos – a matriz de expressão do espaço dinâmico-postural. Subsequentemente, seguem-se os módulos de redução de dimensionalidade e de atribuição de clusters (pontos 3) e 4) do paragrafo anterior). Para os mesmos, são propostas seis configurações possíveis de algoritmos, submetidas de imediato a uma anélise comparativa, de forma a determinar a mais apta para classificar este tipo de dados. Os algoritmos de redução de dimensionalidade aqui postos a prova são o t-SNE (t-distributed Stochastic Neighbor Embedding) e o PCA (Principal Component Analysis), enquanto que os algoritmos de clustering comparados são o Watershed, GMM-posterior probability assignment e o HDBSCAN (Hierarchical Density Based Spatial Clustering of Applications with Noise). Cada uma das pipelines candidatas e finalmente avaliada mediante a observação dos vídeos inclusos nos clusters produzidos e, dado o vasto numero destes vídeos, bem como a possibilidade de uma validação subjetiva face a observadores distintos, com o auxilio de métricas que expressam determinados critérios abrangentes de qualidade dos clusters: 1) Fly uncompactness, que avalia a eficiência do modulo de normalização com ângulos de referencia da mosca; 2) Homogeneity, que procura garantir que os clusters não refletem a identidade ou o genótipo das moscas; 3) Cluster entropy, que afere a previsibilidade das transições entre os clusters; 4) Mean dwell time, que pondera o tempo que um individuo demora em media a realizar uma Acão. Dois critérios auxiliares extra são ainda considerados: o número de parâmetros que foram estimados pelo utilizador (quanto maior, mais limitada e a reprodutibilidade da pipeline) e o tempo de execução do algoritmo (que deve ser igualmente minimizado). Apesar de manter alguma subjetividade face aquilo a que o utilizador considera um “bom” cluster, a inclusão das métricas aproxima esta abordagem a um cenário ideal de completa autonomia entre a conceção de uma definição de comportamento, e a validação dos resultados que decorrem das suas conjeturas. Os desempenhos das pipelines candidatas divergiram largamente: os espaços resultantes das operações de redução de dimensionalidade demonstram-se heterogéneos e anisotrópicos, com a presença de sequências de pontos que tomam formas vermiformes, ao invés de um antecipado conglomerado de pontos desassociados. Estas trajetórias vermiformes limitam o desempenho dos algoritmos de clustering que operam nos espaços de baixas (duas, neste caso) dimensões. A ausência de um passo intermedio de amostragem do espaço dinâmico-postural explica a génese destas trajetórias vermiformes. Não obstante, as pipelines que praticam redução de dimensionalidade geraram melhores resultados que a pipeline que recorre a clustering com HDBSCAN diretamente sobre a matriz de expressão do espaço dinâmico-postural. A combinação mais fortuita de módulos de redução de dimensionalidade e clustering adveio da pipeline PCA30-t-SNE2-GMM. Embora não sejam absolutamente consistentes, os clusters resultantes desta pipeline incluem um comportamento que se sobressai face aos demais que se encontram inseridos no mesmo cluster (erroneamente). Lacunas destes clusters envolvem sobretudo a ocasional fusão de dois comportamentos distintos no mesmo cluster, ou a presença inoportuna de sequências de comportamentos nas quais a mosca se encontra imóvel (provavelmente o resultado de pequenos erros de deteção produzidos pelo DeepFly3D). Para mais, a pipeline PCA30-t-SNE2-GMM foi capaz de reconhecer diferenças no fenótipo comportamental de moscas, validadas pelas linhas genéticas das mesmas. Apesar dos resultados obtidos manifestarem visíveis melhorias face aqueles produzidos por abordagens semelhantes, sobretudo a nível de vídeos dos clusters, uma vez que só uma das abordagens inclui métricas de sucesso dos clusters, alguns aspetos desta abordagem requerem correções: a inclusão de uma etapa de amostragem, sucedida de um novo algoritmo que fosse capaz de realizar reduções de dimensionalidade consistentes, de forma a reunir todos os pontos no mesmo espaço embutido será possivelmente a característica mais capaz de acrescentar valor a esta abordagem. Futuras abordagens não deverão descurar o contributo de múltiplas representações comportamentais que possam vir a validar-se mutuamente, substituindo a necessidade de métricas de sucesso definidas pelos utilizadores.One of the preeminent challenges of Behavioral Neuroscience is the understanding of how the brain works and how it ultimately commands an animal’s behavior. Solving this brain-behavior linkage requires, on one end, precise, meaningful and coherent techniques for measuring behavior. Rapid technical developments in tools for collecting and analyzing behavioral data, paired with the immaturity of current approaches, motivate an ongoing search for systematic, unbiased behavioral classification techniques. To accomplish such a classification, this study employs a state-of-the-art tool for tracking 3D pose of tethered Drosophila, DeepFly3D, to collect a dataset of x-, y- and z- landmark positions over time, from tethered Drosophila melanogaster moving over an air-suspended ball. This is succeeded by unprecedented normalization across individual flies by computing the angles between adjoining landmarks, followed by standard wavelet analysis. Subsequently, six unsupervised behavior classification techniques are compared - four of which follow proven formulas, while the remaining two are experimental. Lastly, their performances are evaluated via meaningful metric scores along with cluster video assessment, as to ensure a fully unbiased cycle - from the conjecturing of a definition of behavior to the corroboration of the results that stem from its assumptions. Performances from different techniques varied significantly. Techniques that perform clustering in embedded low- (two-) dimensional spaces struggled with their heterogeneous and anisotropic nature. High-dimensional clustering techniques revealed that these properties emerged from the original highdimensional posture-dynamics spaces. Nonetheless, high and low-dimensional spaces disagree on the arrangement of their elements, with embedded data points showing hierarchical organization, which was lacking prior to their embedding. Low-dimensional clustering techniques were globally a better match against these spatial features and yielded more suitable results. Their candidate embedding algorithms alone were capable of revealing dissimilarities in preferred behaviors among contrasting genotypes of Drosophila. Lastly, the top-ranking classification technique produced satisfactory behavioral cluster videos (despite the irregular allocation of rest labels) in a consistent and repeatable manner, while requiring a marginal number of hand tuned parameters

    Carpal Bone Analysis using Geometric and Deep Learning Models

    Get PDF
    The recent trend for analyzing 3D shapes in medical application has arisen new challenges for a vast amount of research activities. Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. This thesis is motivated by the availability of carpal bone shape dataset to develop efficient techniques for diagnosis of a variety of wrist diseases and examine human skeletal. This study is conducted in two sections. First, we propose a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. More precisely, we employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We then propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute and combines the advantages of both low-pass and band-pass filters. Subsequently, we perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature (GPS) embedding approach for comparing shapes of the carpal bones across populations. In the second section, we evaluate bone age to assess children’s biological maturity and to diagnose any growth disorders in children. Manual bone age assessment (BAA) methods are timeconsuming and prone to observer variability by even expert radiologists. These drawbacks motivate us for proposing an accurate computerized BAA method based on human wrist bones X-ray images. We also investigate automated BAA methods using state-of-the-art deep learning models that estimate the bone age more accurate than the manual methods by eliminating human observation variations. The presented approaches provide faster assessment process and cost reduction in the hospitals/clinics. The accuracy of our experiments is evaluated using mean absolute error (MAE), and the results demonstrate that exploiting InceptionResNet-V2 model in our architecture achieves higher performance compared to the other used pre-trained models
    corecore