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Abstract

Carpal bone analysis using geometric and deep learning models

Mahsa Rezaei, M.A. Sc.
Concordia University, 2020

The recent trend for analyzing 3D shapes in medical application has arisen new challenges

for a vast amount of research activities. Quantitative shape comparison is a fundamental problem

in computer vision, geometry processing and medical imaging. This thesis is motivated by the

availability of carpal bone shape dataset to develop efficient techniques for diagnosis of a variety

of wrist diseases and examine human skeletal.

This study is conducted in two sections. First, we propose a spectral graph wavelet approach

for shape analysis of carpal bones of the human wrist. More precisely, we employ spectral graph

wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the

Laplace-Beltrami operator in the discrete domain. We then propose global spectral graph wavelet

(GSGW) descriptor that is isometric invariant, efficient to compute and combines the advantages of

both low-pass and band-pass filters. Subsequently, we perform experiments on shapes of the carpal

bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way

multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive

experiments that the proposed GSGW framework gives a much better performance compared to

the global point signature (GPS) embedding approach for comparing shapes of the carpal bones

across populations.

In the second section, we evaluate bone age to assess children’s biological maturity and to di-

agnose any growth disorders in children. Manual bone age assessment (BAA) methods are time-

consuming and prone to observer variability by even expert radiologists. These drawbacks motivate

us for proposing an accurate computerized BAA method based on human wrist bones X-ray im-

ages. We also investigate automated BAA methods using state-of-the-art deep learning models that

estimate the bone age more accurate than the manual methods by eliminating human observation
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variations. The presented approaches provide faster assessment process and cost reduction in the

hospitals/clinics. The accuracy of our experiments is evaluated using mean absolute error (MAE),

and the results demonstrate that exploiting InceptionResNet-V2 model in our architecture achieves

higher performance compared to the other used pre-trained models.
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1
Introduction

In this chapter, we present the motivation behind our work, the problem statement, objectives of

the study and followed by literature reviews.

1.1 Framework and Motivation

With the advent of X-ray technology, X-ray images facilitate the estimation of bone age for a

child’s hand, where the extent of growth and development of hand bones have been visualized

by wrist radiographs. An X-ray image indicates the best visualization of a pattern of ossification

in a child’s hand and wrist bones until the elongation of the bone is completed. Thus, the bone

age is derived by comparing the maturation level of hand and wrist bones with normal age levels

and can be fairly predicted in the period of time. Recently, bone age assessment (BAA) has gained

remarkable attention from academia and medicine. Various manual techniques have been proposed

to compute bone age score from the radiographs, such as the Greulich Pyle (GP) [5, 6] and Tanner

Whitehouse (TW) [7].

Due to the significant variation of calculated bone age and time-consuming procedure of these

techniques, the results are not acceptable by senior radiologists [8]. To address the limitations,

automated methods based on deep learning techniques have been proposed for BAA.

In this thesis, we also analyze 3D carpal bones among men and women using a discriminative

shape descriptor and then explore the application of deep learning to predict children’s wrist bones

ages.
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1.2 Problem Statement

Shape and regression analyses are critical challenges in computer vision, geometry processing and

medical imaging. In this thesis, a discriminative shape descriptor is proposed for quantitative shape

comparison of the human wrist between genders. In addition, for developing automated BAA

methods, we introduce regression analysis in conjunction with deep learning models to evaluate

biological maturity of children from their chronological ages (real ages) on the RSNA dataset,

including X-ray images of their left hand wrists.

1.2.1 Shape analysis

Global spectral graph wavelet (GSGW) [9, 10] approach is a global descriptor, proposed for shape

analysis on carpal bones of the human wrist. By applying GSGW descriptor, the spectral geomet-

ric analysis of the Laplace-Beltrami operator in the discrete domain is exploited to represent the

cortical surface of a carpal bone. The proposed descriptor takes advantages of both low-pass and

band-pass filters to be more discriminated, which is also computationally efficient and isometric in-

variant. In order to assess the analysis of carpal bone shapes of both genders, two standard metrics

are used, i.e. one-way multivariate analysis of variance (MANOVA) and permutation testing.

1.2.2 Regression analysis

The goal of regression analysis is to efficiently predict age of hand bones as a continuous variable.

We split RSNA dataset into two disjoint subsets, training set for learning process, and test set for

testing. In a bid to improve the performance, various deep learning pre-trained models are investi-

gated to extract high-level features of the radiographs, followed by applying a regression model to

predict age of children’s bones. Finally, the assessment of a regression model is performed on the

test set by comparing the predicated bone age with the real age using mean absolute error (MAE)

metric.

1.3 Objectives

This research aims to propose a GSGW framework that represents cortical surface of a carpal

bone using a global shape descriptor, in which the descriptor is defined as an area-weighted sum

of all local spectral graph wavelet signatures at each surface point. In fact, The global descriptor

takes into account the spectral geometric analysis on a shape, generated by the Laplace-Beltrami

operator in the discrete domain. Also, considering the wavelet transform enables us to perform
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local analysis and a multi-resolution analysis as well. The objective of introducing GSGW is

to understand and analyze variations of carpal bones shapes to better diagnose wrist pathologies

compared to the existing approaches.

Moreover, in this thesis, we investigate an automated algorithm for BAA based on publicly

available RSNA dataset using deep learning pre-trained models to develop the regression model’s

performance. In fact, the deep learning pre-trained models provide high-level features learned

from different large datasets, that is positively correlated with improvement of predicted bone age

as an output of our model.

1.4 Literature Review

The human wrist (or carpus) is a complex joint that connects the hand to the forearm and is com-

posed of eight carpal bones arranged in two rows of four bones each. Each carpal bone has a

unique shape and plays a significant functional role in wrist stability and mobility. Changes in the

shape of a carpal bone may be a sign of wrist injuries or disorders, such as arthritis and carpal

tunnel syndrome, and hence understanding and analyzing variations of bone shapes is essential

to the diagnosis of wrist pathologies. Quantitative shape analysis of carpal bones not only helps

identify unique phenotypes across populations, but also allows for the detection of abnormal wrist

pathologies as well as the investigation of biomechanical properties of the wrist joints [11]. This

analysis has become possible thanks in large part to the availability of databases of normal and

abnormal pathologies [12].

Quantitative analysis of variations in shape has been successfully applied to other medical imag-

ing applications [13, 14], including the diagnosis and understanding of cardiovascular diseases.

Xu et al. [13] exploited kinematic features from a 3D shape throughout the cardiac cycle to ana-

lyze the function of the human right ventricle, which is anatomically consistent and provides direct

comparison across populations of individuals. Wu et al. [14] presented a computational approach

for statistical analysis of sets of watertight surfaces produced from untagged medical images in

two main steps, namely surface parametrization and proper orthogonal decomposition.

The recent surge of interest in the spectral analysis of the Laplace-Beltrami operator (LBO)

has resulted in a considerable number of spectral shape signatures that have been successfully

applied to a broad range of areas, including shape analysis [15–21], multimedia protection [22],

and medical imaging [23]. The diversified nature of these applications is a powerful testimony

of the practical usage of spectral shapes signatures, which are usually defined as feature vectors

representing local and/or global characteristics of a shape and may be broadly classified into two

main categories: local and global descriptors. Local descriptors (also called point signatures) are

3



defined on each point of the shape and often represent the local structure of the shape around that

point, while global descriptors are usually defined on the entire shape capturing its global structure.

Most point signatures may easily be aggregated to form global descriptors by integrating over

the entire shape. One of the simplest global spectral shape signatures is Shape-DNA [15], which

is an isometry-invariant global descriptor defined as a truncated sequence of the LBO eigenval-

ues arranged in increasing order of magnitude. Gao et al. [24] developed a variant of Shape-DNA,

referred to as compact Shape-DNA (cShape-DNA), which is an isometry-invariant signature result-

ing from applying the discrete Fourier transform to the area-normalized eigenvalues of the LBO.

Chaudhari et al. [23] proposed a global point signature (GPS) embedding for quantifying the over-

all bone shape, and it is obtained by setting the LBO eigenfunctions in the GPS signature [16] to

unity. More precisely, the GPS embedding is defined as a truncated sequence of inverse square

roots of the area-normalized eigenvalues of the LBO. In addition to providing an efficient repre-

sentation for comparing shapes of the carpal bones across populations, the GPS embedding has

several desirable properties for shape analysis of carpal bones, including invariance to Euclidean

and isometric transformations.

While the GPS signature [16] is invariant under isometric deformations of the shape, it suffers

from the problem of eigenfunctions’ switching whenever the associated eigenvalues are close to

each other. This problem was lately well handled by the heat kernel signature (HKS) [25], which

is a temporal descriptor defined as an exponentially-weighted combination of the LBO eigenfunc-

tions. HKS is a local shape descriptor that has a number of desirable properties, including robust-

ness to small perturbations of the shape, efficiency and invariance to isometric transformations.

From the graph Fourier perspective, it can be seen that HKS is highly dominated by information

from low frequencies, which correspond to macroscopic properties of a shape. To give rise to sub-

stantially more accurate matching than HKS, the wave kernel signature (WKS) [26] was proposed

as an alternative in an effort to allow access to high-frequency information.

Another alternative approach to transforming local descriptors into global representations is the

bag-of-features (BoF) paradigm [17]. The BoF model represents each object in the dataset as a

collection of unordered feature descriptors extracted from local areas of the shape, just as words

are local features of a document. A baseline BoF approach quantizes each local descriptor to its

nearest cluster center using K-means clustering and then encodes each shape as a histogram over

cluster centers by counting the number of assignments per cluster. These cluster centers form a

visual vocabulary or codebook whose elements are often referred to as visual words or codewords.

Although the BoF paradigm has been shown to provide significant levels of performance, it does

not, however, take into consideration the spatial relations between features, which may have an
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adverse effect not only on its descriptive ability but also on its discriminative power. To account

for the spatial relations between features, Bronstein et al. introduced a generalization of a bag

of features, called spatially sensitive bags of features (SS-BoF) [17]. The SS-BoF is a global

descriptor defined in terms of mid-level features and the heat kernel, and can be represented by a

square matrix whose elements represent the frequency of nearby codewords in the vocabulary. In

the same spirit, Bu et al. [27] recently proposed the geodesic-aware bags of features (GA-BoF) for

3D shape classification by replacing the heat kernel in SS-BoF with a geodesic exponential kernel.

More recently, vertex-frequency analysis on graphs via the Fourier transform in the spectral

graph-theoretic setting has received a great deal of interest [28, 29]. While the Fourier transform

has been widely used as a reliable tool in signal processing applications for many years, wavelet

analysis has been shown to provide some key advantages over the Fourier transform, making it an

interesting alternative for many applications. In particular, unlike the Fourier transform, wavelet

analysis is able to perform local analysis and also makes it possible to perform a multiresolution

analysis. Classical wavelets are constructed by translating and scaling a mother wavelet, which

is used to generate a set of functions through the scaling and translation operations. The wavelet

transform coefficients are then obtained by taking the inner product of the input function with the

translated and scaled waveforms.

The application of wavelets to graphs (or triangle meshes in geometry processing) is, however,

problematic and not straightforward due in part to the fact that it is unclear how to apply the

scaling operation on a signal (or function) defined on the mesh vertices. To tackle this problem,

Coifman et al. [30] introduced the diffusion wavelets, which generalize the classical wavelets by

allowing for multiscale analysis on graphs. The construction of diffusion wavelets interacts with

the underlying graph through repeated applications of a diffusion operator, which induces a scaling

process. Hammond et al. [31] showed that the wavelet transform can be performed in the graph

Fourier domain, and proposed a spectral graph wavelet transform that is defined in terms of the

eigensystem of the graph Laplacian matrix.

Recently, a spectral graph wavelet signature (SGWS) was introduced in [32], and it has shown

superior performance over HKS and WKS in 3D shape analysis. SGWS is a multiresolution local

descriptor that is not only isometric invariant, but also compact, easy to compute and combines the

advantages of both band-pass and low-pass filters.

Bone age is described as a measurement of skeletal maturity using radiography of the ossification

center. Despite a large amount of scientific research on BAA, a lack of consensus on the accuracy

of bone age prediction techniques exists for clinical environments [33]. In fact, in the practical

application of BAA methods in clinical environments and courts of justice, the most accurate
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results are essential. These methods are reduced the subjective evaluation as the primary reason

for achieving the inaccurate result by eliminating role of human observer [34].

The Greulich and Pyle (GP) atlas [35] was introduced based on the radiographic atlas of skeletal

development of the hand and wrist. The method is one of the most frequent used atlases for

measurement of bone age by radiologists in the West and Pakistan [36]. The atlas includes the

reference images of the hand and the left wrist for both genders from birth until the age of 18

for women and the age of 19 for men, in which each image provides an explanation of gradual

age-related changes in the bone structure. Bone age is calculated by comparing the subject’s left

hand wrist X-ray with the closest matching reference X-rays in the atlas, which are standardized

for ages of the atlas [36]. The Tanner-Whitehouse (TW) [7] was proposed based on maturity level

instead of age for 20 selected regions of interest (ROI) in specific hand and wrist bones for each

range of age. The specific stage labeled (A,B,C,D, . . . , I) are determined for the development

level of each ROI, which represents a numerical score for each stage of development for individual

bone. Then, a total maturity score is computed by summing up all the ROI scores and correlated

with bone age separately for both genders. This method benefits from higher accuracy but it is

relatively time-consuming and complex compared to GP method. A new version of atlas called

Gilsanz and Ratibin (GR) atlas [37] was later developed to idealized and artificial images specific

to age and sex standards of skeletal maturity, produced by analyses of the size, shape, morphology

and density of ossification centers for hand X-rays of healthy children to generate images with

typical developmental features in each ossification center. The new GR images are more accurate

from the view of radiologists and of better quality compared to those of the old GP atlas [38].

The new GR atlas standards also have a regular interval of six months between the ages of 2 and

6 and an annual interval between the ages of 7 and 17. Regardless of nearly the same result in

determining bone age in GP and GR methods, the GR contains more outliers and can be replaced

with the older GP atlas [37].

The majority of automatic BAA techniques are based on X-ray images of the left hand wrist

to indicate skeletal maturity. The analysis of wrist bones age is a challenge even for radiologists

due to rapid changes in the shapes of wrist bones over time, and some bones also overlap with

maturation [39]. Most computer-based approaches utilize TW because of its ability to score for

skeletal maturity, and to evaluate the radiograph of a known hand [40].

The importance of the automation methods such as hand segmentation for bone age estimation,

is recognized by researchers [41, 42]. Computerized approaches in BAA are projected to reduce

the BAA cost by reducing the time spent on BAA process by radiologists [43]. The first semi-

automated BAA system called HANDX [44] was proposed to enable automatic segmentation of
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wrist bones on X-ray images. The system includes three parts: pre-processing, segmentation and

measurement, in which decreases the observer variability. The output of system is helpful for

detecting skeletal growth abnormalities in children. The system process is as follows: the X-rays

are normalized in the first phase to feed in the second phase. The segmentation phase identifies the

individual bones in the hand and isolates the edges of the bone. Finally, quantitative parameters

are obtained. This method lacks sufficient accuracy when the hand image has been fused and has

never been assessed for a large scale hand image.

The PROI-based technique [45] was introduced based on the region including the phalanges

and epiphyses. In the first phase, a horizontal line is scanned to evaluate the bone age before

the soft tissue between the thumb and fist finger is detected and the lower boundary of the PROI

is found. In the following phase, the upper boundary with a horizontal line is scanned at the

edge of the third finger. Then, the segmentation phase begins when the upper, lower, left and

right boundaries of the PROI have been identified. For bone segmentation, a gradient image is

used, and the output threshold for determining bone edges is based on empirical analysis. At

the end of the region, the density of the value of pixels is higher than the center section. This

technique is measured for the boundary between the third distal, middle, and proximal phalanges

using the standard table designed by the Garn group [46], in which phalangeal length is converted

into skeletal age. The system was assessed with 50 computer radiographs (CR) of patients and

compared with a radiologist’s results, in which the mean difference from the assessment was 0.02

mm with a measurement error of 0.08 mm [47].

Phalanges, Epiphyses, and Carpals is a computer-based system for BAA that was presented

based on the third digit by the National Tsing-Hwa University, in which the left hand was ex-

tracted from the X-ray image [48]. In the pre-processing stage, thresholding methods and heuristic

searches were used to rotate the X-ray. The approach operates the segmented phalangeal region of

interest (PROI) with Gabor filters for smoothing, canny edge detector and local variance method

for finding the edge, and refinement. The PROI segmentation takes advantage of low error rate in

BAA, however, poor image processing techniques are considered as its drawback.

Another computerized system for BAA is the neural network classifiers (NNC), developed by

Liu et al [49], which is based on two geometric features of carpal bones and the RUS (radius, ulna,

and short bones). For the segmentation of the bones, a large dataset of samples along with particle

swarm algorithm was exploited. Two individual classifiers are then applied in this method on the

RUS bone and the carpal bone for samples under nine years old. The method has the advantage

of a small standard deviation of the differences between the system and observer and reduces the

carpal bone-based system’s variability in comparison with previous systems. However, it suffers
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from high image processing loading than other methods.
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Global spectral graph wavelet signature for surface

analysis of carpal bones

2.1 Introduction

The human wrist is composed of eight carpal bones which each bone has a unique shape. The

bones shapes play a key role in diagnosis of any wrist abnormality, such as wrist instability, os-

teoarthritis [50]. Also, further applications of analyzing bone shape may be in development of

patient-specific prostheses [51] examination of skeletal growth and maturity pattern [52, 53], re-

constructive [54] as well as researches on carpal bones of different species [55]. Therefore, shape

analysis of carpal bones can be provided by detailed investigation of visual representation (fea-

tures) of wrist bones shapes and led to advancement in orthopedic science.

In recent years, utility of spectral analysis of the Laplace-Beltrami operator (LBO) has been

considerably developed to build a number of spectral shape signatures or descriptors. In fact, LBO

represents a shape via a compact and concise descriptor and can be applied to facilitate the tasks

in various fields, such as shape analysis [15–17, 19–21, 56], multimedia protection [22], medical

imaging [23, 57], and food processing industry [58].

The shape representation are categorized into local and global descriptors. As a matter of fact,

local descriptors are usually defined on each point of the shape, which the category of local descrip-

tors include as following: the global point signature (GPS) [16], heat kernel signature (HKS) [25],

wave kernel signature (WKS) [26], and spectral graph wavelet signature (SGWS) [19]. On the

other hand, global descriptors are composed of point signatures by integrating over the entire
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shape. For example, Shape-DNA is defined as a truncated sequence of the LBO eigenvalues ar-

ranged in increasing order of magnitude. A new version of the GPS descriptor was introduced

by Chaudhari et al. [23] that set the LBO eigenfunctions to unity. A developed version of Shape-

DNA proposed by Gao et al. [24], referred to as compact Shape-DNA (cShape-DNA), in which

an isometry-invariant signature was constructed by applying the discrete Fourier transform to the

area-normalized eigenvalues of the LBO.

More recently, Fourier transform has been a powerful tool in signal processing. Unlike, the advan-

tages of the Fourier transform, wavelet analysis has been proven the superiority than the Fourier

transform due to its power of localization and multi-resolution analysis. Recently, a spectral

graph wavelet signature [32] (SGWS) has been shown to provide higher performance as a multi-

resolution local descriptor than HKS and WKS on 3D shape Analysis. The descriptor is isometric

invariant and computationally efficient and also contains the information given by both band-pass

and low-pass filters.

In this chapter, we introduce a global spectral graph wavelet (GSGW) framework that represents

the shape of the cortical surface of a carpal bone by a global shape descriptor defined as an area-

weighted sum of all local spectral graph wavelet signatures at each surface point. The resulting

global descriptor is not only isometric invariant, but also efficient to compute and requires less

memory storage. Using one-way multivariate analysis of variance (MANOVA) and permutation

testing, we show through experiments on a publicly-available database that our proposed GSGW

approach yields better performance compared to existing methods in providing an efficient way for

comparing shapes of the carpal bones across populations.

The rest of this chapter is organized as follows. In Section 2.2, we briefly provide a brief

overview the Laplace-Beltrami operator and its spectral analysis in the discrete domain. In Sec-

tion 2.3, we introduce a global spectral graph wavelet framework, and we discuss in detail its main

algorithmic steps. Experimental results are presented in Sections 2.4. Finally, we conclude in

Section 2.5 and point out some future work directions.

2.2 Background

A 3D shape is usually modeled as a triangle mesh M whose vertices are sampled from a Rieman-

nian manifold. A triangle mesh M may be defined as a graph G = (V , E) or G = (V , T ), where

V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and T = {t1, . . . , tg} is the

set of triangles. Each edge eij = [vi,vj] connects a pair of vertices {vi,vj}. Two distinct vertices

vi,vj ∈ V are adjacent (denoted by vi ∼ vj or simply i ∼ j) if they are connected by an edge, i.e.

eij ∈ E.
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2.2.1 Laplace-Beltrami Operator

Given a compact Riemannian manifold M, the space L2(M) of all smooth, square-integrable func-

tions on M is a Hilbert space endowed with inner product 〈f1, f2〉 =
∫
M
f1(x)f2(x) da(x), for

all f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes the measure from the area element of

a Riemannian metric on M. Given a twice-differentiable, real-valued function f : M → R, the

Laplace-Beltrami operator (LBO) is defined as ΔMf = −div(∇Mf), where ∇Mf is the intrinsic

gradient vector field and div is the divergence operator [59, 60]. The LBO is a linear, positive

semi-definite operator acting on the space of real-valued functions defined on M, and it is a gener-

alization of the Laplace operator to non-Euclidean spaces.

Discretization: A real-valued function f : V → R defined on the mesh vertex set may be

represented as an m-dimensional vector f = (f(i)) ∈ R
m, where the ith component f(i) denotes

the function value at the ith vertex in V . Using a mixed finite element/finite volume method on

triangle meshes [61], the value of ΔMf at a vertex vi (or simply i) can be approximated using the

cotangent weight scheme as follows:

ΔMf(i) ≈
1

ai

∑
j∼i

cotαij + cot βij

2

(
f(i)− f(j)

)
, (2.1)

where αij and βij are the angles ∠(vivk1vj) and ∠(vivk2vj) of two faces tα = {vi,vj,vk1}
and tβ = {vi,vj,vk2} that are adjacent to the edge [i, j], and ai is the area of the Voronoi cell

at vertex i. It should be noted that the cotangent weight scheme is numerically consistent and

preserves several important properties of the continuous LBO, including symmetry and positive

semi-definiteness [62].

Spectral Analysis: The m × m matrix associated to the discrete approximation of the LBO is

given by L = A−1W, where A = diag(ai) is a positive definite diagonal matrix (mass matrix),

and W = diag(
∑

k �=i cik) − (cij) is a sparse symmetric matrix (stiffness matrix). Each diagonal

element ai is the area of the Voronoi cell at vertex i, and the weights cij are given by

cij =

⎧⎨
⎩
cotαij + cot βij

2
if i ∼ j

0 o.w.
(2.2)

where αij and βij are the opposite angles of two triangles that are adjacent to the edge [i, j].

The eigenvalues and eigenvectors of L can be found by solving the generalized eigenvalue prob-

lem Wϕ� = λ�Aϕ� using, for instance, the Arnoldi method of ARPACK1, where λ� are the

1ARPACK (ARnoldi PACKage) is a MATLAB library for computing the eigenvalues and eigenvectors of large

matrices.
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eigenvalues and ϕ� are the unknown associated eigenfunctions (i.e. eigenvectors which can be

thought of as functions on the mesh vertices). We may sort the eigenvalues in ascending order as

0 = λ1 < λ2 ≤ · · · ≤ λm with associated orthonormal eigenfunctions ϕ1,ϕ2, . . . ,ϕm, where the

orthogonality of the eigenfunctions is defined in terms of the A-inner product, i.e.

〈ϕk,ϕ�〉A =
m∑
i=1

aiϕk(i)ϕ�(i) = δk�, for all k, � = 1, . . . ,m. (2.3)

We may rewrite the generalized eigenvalue problem in matrix form as WΦ = AΦΛ, where

Λ = diag(λ1, . . . , λm) is an m × m diagonal matrix with the λ� on the diagonal, and Φ is an

m×m orthogonal matrix whose �th column is the unit-norm eigenvector ϕ�.

The successful use of the LBO eigenvalues and eigenfunctions in shape analysis is largely at-

tributed to their isometry invariance and robustness to noise. Moreover, the eigenfunctions asso-

ciated to the smallest eigenvalues capture well the large-scale properties of a shape. As shown in

Figure 2.1, the (non-trivial) eigenfunctions of the LBO encode important information about the

intrinsic global geometry of a shape. Notice that the eigenfunctions associated with larger eigen-

values oscillate more rapidly. Blue regions indicate negative values of the eigenfunctions and red

colors regions indicate positive values, while green and yellow regions in between.

Figure 2.1: From left to right: 3D scaphoid bone and selected eigenfunctions (2nd, 5th, 7th and

10th) of the LBO mapped into the surface of the bone.

2.3 Method

In this section, we provide a detailed description of our GSGW framework for the analysis of the

cortical surface of a carpal bone using spectral graph wavelets. We start by defining the spectral

graph wavelet transform on a Riemannian manifold. We show how to build local descriptors from

spectral graph wavelets and its subcomponent functions. Then, we propose a novel global shape

descriptor defined as an area-weighted sum of all local spectral graph wavelet signatures at each

mesh vertex. Finally, we provide the main algorithmic steps of our carpal bone analysis framework.
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2.3.1 Local Descriptors

Graph Fourier Transform: For any graph signal f : V → M, the forward and inverse graph

Fourier transforms (also called manifold harmonic and inverse manifold harmonic transforms) are

defined as

f̂(�) = 〈f, ϕ�〉 =
m∑
i=1

aif(i)ϕ�(i), � = 1, . . . ,m (2.4)

and

f(i) =
m∑
�=1

f̂(�)ϕ�(i) =
m∑
�=1

〈f, ϕ�〉ϕ�(i), i ∈ V , (2.5)

respectively, where f̂(�) is the value of f at eigenvalue λ� (i.e. f̂(�) = f̂(λ�)). In particular, the

graph Fourier transform of a delta function δj centered at vertex j is given by

δ̂j(�) =
n∑

i=1

aiδj(i)ϕ�(i) =
n∑

i=1

aiδijϕ�(i) = ajϕ�(j),

The forward and inverse graph Fourier transforms may be expressed in vector form as follows:

f̂ = Φ
ᵀ
Af and f = Φf̂ , (2.6)

where f = (f(i)) and f̂ = (f̂(�)) are m-dimensional vectors, whose elements are given by (2.4)

and (2.5), respectively. The vector f̂ represents the signal’s graph Fourier series expansion in the

area-weighted eigenvector basis and describes the frequency components of the graph signal f .

The inverse graph Fourier transform reconstructs the graph signal by combining graph frequency

components, as shown in Figure 2.2, which demonstrate the ability of the LBO eigenfunctions in

rendering the shape-based features. As can be seen, the lower-order eigenfunctions capture the

global structure of shape, while by increasing the number of eigenfunctions more details of the

curvature of the bone are captured.

Figure 2.2: From left to right: 3D hamate bone in a healthy man and its graph Fourier reconstruc-

tion using 5, 20, 50 and 100 eigenfunctions of the LBO.
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The normalized mean squared error between the original bone surface and its graph Fourier re-

construction is shown in Figure 2.3, where the x-axis is the number of eigenfunctions of the LBO.

As can be seen, a relatively small number of eigenfunctions (i.e. between 20 and 30) would be

enough to efficiently capture the features of the carpal bone surface to analyze shape differences

in a population study. By features, we mean the points on the carpal bones that contain salient

information about the shape (e.g. protrusions). The extracted features should be robust to trans-

formations. Our global spectral graph wavelet descriptor is a dense descriptor that makes use of

the LBO eigenvalues and eigenfunctions, which are invariant to isometric transformation. Hence,

our framework provides a robust descriptor for describing the carpal bones that helps facilitate

the statistical analysis among bone shapes. Rendering a carpal bone surface in a lower-dimension

has some advantages, including the ability of being invulnerable to tessellation noise or image

segmentation.
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Figure 2.3: Normalized mean squared error between the original carpal bone and its graph Fourier

reconstruction as a function of the LBO eigenfunctions.

Spectral Graph Wavelet Transform: Wavelets are useful in describing functions at different

levels of resolution. To characterize the localized context around a mesh vertex j ∈ V , we assume

that the signal on the mesh is a unit impulse function, that is f(i) = δj(i) at each mesh vertex
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i ∈ V . The spectral graph wavelet coefficients are expressed as

Wδj(t, j) = 〈δj,ψt,j〉 =
m∑
`=1

a2jg(tλ`)ϕ
2
`(j), (2.7)

and that the coefficients of the scaling function are

Sδj(j) =
m∑
`=1

a2jh(λ`)ϕ
2
`(j). (2.8)

Following the multiresolution analysis, the spectral graph wavelet and scaling function coefficients

are collected to form the spectral graph wavelet signature at vertex j as follows:

sj = {sL(j) | L = 1, . . . , R}, (2.9)

where R is a resolution parameter, and sL(j) is the shape signature at resolution level L given by

sL(j) = {Wδj(tk, j) | k = 1, . . . , L} ∪ {Sδj(j)}. (2.10)

The wavelet scales tk (tk > tk+1) are selected to be logarithmically equispaced between maximum

and minimum scales t1 and tL, respectively. Thus, the resolution level L determines the resolution

of scales to modulate the spectrum. At resolution R = 1, the spectral graph wavelet signature sj

is a 2-dimensional vector consisting of two elements: one element, Wδj(t1, j), of spectral graph

wavelet function coefficients and another element, Sδj(j), of scaling function coefficients. And

at resolution R = 2, the spectral graph wavelet signature sj is a 5-dimensional vector consisting

of five elements (four elements of spectral graph wavelet function coefficients and one element of

scaling function coefficients). In general, the dimension of a spectral graph wavelet signature sj at

vertex j can be expressed in terms of the resolution R as follows:

p =
(R + 1)(R + 2)

2
− 1. (2.11)

Hence, for a p-dimensional signature sj , we define a p×m spectral graph wavelet signature matrix

as S = (s1, . . . , sm), where sj is the signature at vertex j and m is the number of mesh vertices.

In our implementation, we used the Mexican hat wavelet as a kernel generating function g. In

addition, we used the scaling function h given by

h(x) = γ exp

(
−
(

x

0.6λmin

)4
)
, (2.12)

where λmin = λmax/20 and γ is set such that h(0) has the same value as the maximum value of g.

The maximum and minimum scales are set to t1 = 2/λmin and tL = 2/λmax, where λmin and λmax

are the smallest and largest LBO eigenvalues, respectively.
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The geometry captured at each resolution R of the spectral graph wavelet signature can be

viewed as the area under the curve G shown in Figure 2.4. For a given resolution R, we can

understand the information from a specific range of the spectrum as its associated areas under G.

As the resolution R increases, the partition of spectrum becomes tighter, and thus a larger portion

of the spectrum is highly weighted.
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Figure 2.4: Spectrum modulation using different kernel functions at various resolutions. The dark

line is the squared sum function G, while the dash-dotted and the dotted lines are upper and lower

bounds (B and A) of G, respectively.

2.3.2 Global Descriptor

A commonly used methodology for building a global shape descriptor is by aggregating local sig-

natures using the BoF paradigm. However, a major drawback of the BoF model is that it only
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considers the distribution of the codewords and disregards all information about the spatial re-

lations between features, and hence the descriptive ability and discriminative power of the BoF

paradigm may be negatively impacted. In addition, the BoF process is time-consuming since it

requires different steps such as constructing dictionary, feature coding and feature pooling. To

circumvent these limitations, we represent a shape M by a p-dimensional vector

x = Sa =
m∑
i=1

aisi, (2.13)

where S = (s1, . . . , sm) is a p × m matrix of local spectral graph wavelet signatures and a =

(a1, . . . , am)
ᵀ

is an m-dimensional vector of mesh vertex areas (i.e. each element ai is the area of

the Voronoi cell at mesh vertex i).

We refer to the p-dimensional vector x as the global spectral graph wavelet (GSGW) descriptor

of the carpal bone surface. The GSGW descriptor enjoys a number of desirable properties includ-

ing simplicity, compactness, invariance to isometric deformations, and computational feasibility.

Moreover, GSGW combines the advantages of both band-pass and low-pass filters.

2.3.3 Proposed Algorithm

Our proposed carpal bone analysis algorithm consists of two main steps. In the first step, we

represent each bone in the dataset by a spectral graph wavelet signature matrix, which is a feature

matrix consisting of local descriptors. More specifically, let D be a dataset of n carpal bones

modeled by triangle meshes M1, . . . ,Mn. We represent each surface Mi in the dataset D by a p×m

spectral graph wavelet signature matrix Si, whose columns are p-dimensional local signatures and

m is the number of mesh vertices.

In the second step, we compute the p-dimensional global spectral graph wavelet descriptor xi =

Siai of each carpal bone Mi, for i = 1, . . . , n. Subsequently, the feature vectors xi of all n shapes

in the dataset are arranged into a n× p data matrix X = (x1, . . . ,xn)
ᵀ
.

To assess the performance of the proposed GSGW framework, we employed two commonly-

used evaluation criteria, namely MANOVA and permutation testing. MANOVA is a multivariate

data analysis technique used to determine whether there are any statistical differences between

independent groups on more than one continuous dependent variable, while a permutation test in

a non-parametric test that resamples the observed data many times in order to determine a p-value

for the test. The p-value is the probability of obtaining an effect at least as extreme as the one in

our observed data when the null hypothesis is true, and it basically measures how compatible our

data are with the null hypothesis. A small p-value provides enough evidence that we can reject the

null hypothesis. Algorithm 1 summarizes the main algorithm steps of our GSGW approach.
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loa 1: GSGW approach

Input: Dataset D = {M1, . . . ,Mn} of n carpal bones

1: for i = 1 to n do
2: Compute the p ×m spectral graph wavelet matrix Si for each carpal bone Mi, where m is

the number of vertices

3: Compute the p-dimensional vector xi = Siai, where ai is an m-dimensional vector of vertex

areas

4: end for
5: Arrange all the feature vectors xi into a n× p data matrix X = (x1, . . . ,xn)

ᵀ

6: Perform MANOVA and permutation test on X to quantify the statistical differences between

carpal bones

Output: p-values for MANOVA and permutation test.

2.4 Experimental Results

In this section, we evaluate the performance of our proposed GSGW approach on the analysis of

carpal bone surfaces via extensive experiments. The effectiveness of our method is validated by

performing a comprehensive comparison with the global point signature embedding approach [23].

Datasets: In order to evaluate the performance of our GSGW framework on carpal bone surfaces,

a total of 20 men and women with average age of 25 years old from a publicly-available benchmark

[12] have been chosen. In this dataset, the bones of the wrist are obtained from CT volume images.

More precisely, the carpal bones undergo segmentation by detecting the 2D outer cortical bone

contours in each image slice. For each bone, the contours are identified and then aggregated into

a single 3D point cloud. Finally, a triangular mesh is constructed using the acquired points. Each

triangular mesh consists of an edge set (i.e. connectivity list) and vertex locations (i.e. vertex set).

We also performed uniform sampling on triangular meshes to have an equal number of vertices. As

shown in Figure 2.5, the carpal bones of the right wrist in a healthy male are the capitate, hamate,

lunate, pisiform, scaphoid, trapezium, trapezoid, triquetrum. Since the trapeziometacarpal joint of

the thumb is a common site of osteoarthritis, the first metacarpal bone is also considered in our

analysis. The forearm’s radius and ulna bones, which support the many muscles that manipulate

the bones of the hand and wrist, are also depicted in Figure 2.5.

Performance Evaluation Measures To compare the shapes of the carpal bones in women ver-

sus men, we computed the GSGW descriptor for each carpal bone (eight in total) and the first

metacarpal bone for each subject for both the right and left wrists. For fair comparison between

the proposed GSGW approach and GPS embedding method, we followed the same settings de-

scribed in [12]. In order to quantify the difference between the sexes for the carpal bone shapes,
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Figure 2.5: Carpal bone anatomy of a healthy male from a palmar view. The carpus consists

of eight carpal bones, which are arranged in proximal and distal rows. The proximal row con-

tains scaphoid (Sp), lunate (Ln), triquetrum (Tq) and pisiform (Pf), while the distal row contains

trapezium (Tm), trapezoid (Td), capitate (Cp), and hamate (Hm). The distal row adjoins the five

metacarpals (Mc1-5) of the wrist. The radius (Rd) and ulna (Un) are also shown.

we compared GSGW to GPS embedding for each bone of the right and left wrist separately for the

two groups (ten women versus ten men) using MANOVA and permutation testing.

For permutation testing, gender labels of the samples are randomly shuffled for 1000 times to get

the correct distribution of a test statistic under a null hypothesis. We report the p-values generated

by MANOVA and permutation testing. For p < 0.05, there would be a statistically significant

difference between the two groups.

Baseline Method: For the wrist benchmark [12] used for experimentation, we report the com-

parison results of our method against the GPS embedding approach [23].

Implementation Details: The experiments were conducted on a desktop computer with an Intel

Core i5 processor running at 3.10 GHz and 8 GB RAM; and all the algorithms were implemented

in MATLAB. The appropriate dimension (i.e. length or number of features) of a shape signature is

problem-dependent and usually determined experimentally. For fair comparison, we used the same

parameters that have been employed in the baseline method, and in particular the dimensions of

shape descriptors. In our setup, a total of 31 eigenvalues and associated eigenfunctions of the LBO

were computed. We also set the resolution parameter to R = 30, resulting in a 495-dimensional

GSGW descriptor.
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2.4.1 Carpal Bone Dataset

The carpal bone dataset consists of 360 mesh models from 20 classes [12]. The bones of the wrist

are obtained from the CT volume images, and then the carpal bones are rendered and represented

as triangular mesh models. Each class contains 18 objects with distinct postures. Moreover, each

model in the dataset has approximately m = 1502 vertices.

Results In our GSGW approach, each surface in the carpal bone dataset is represented by a 495×
1502 matrix of spectral graph wavelet signatures, resulting in a data matrix X of size 495 × 360.

Figure 2.6 shows the spectral graph wavelet descriptors of two carpal bones (capitate and lunate)

from two different classes of the carpal bone dataset. As can be seen, the global descriptors are

quite different and hence may be used to efficiently discriminate between surfaces in statistical

analysis tasks.

We compared the proposed GSGW method to the GPS embedding approach by performing

MANOVA and non-parametric permutation testing. The results are summarized in Table 2.7 for

the right wrist and Table 2.8 for the left wrist. In these tables, the numbers marked with an asterisk

indicate that the p-value exceeds the significance level of 0.05.

As can be seen, our method achieves better analytical performance than the GPS embedding

method for both right and left wrist. For the right wrist, the GSGW approach yields the lower

p-value compared to GPS embedding for six carpal bones out of nine using MANOVA, and for

seven bones out of nine using permutation testing. In addition, the p-value in the MANOVA test

for some bones (e.g. hamate) has decreased to 6.5× 10−3. For the left wrist, our GSGW approach

significantly improves the results by yielding a lower p-value in the MANOVA test for all bones,

except for Metacarpal-1. Also, unlike GPS embedding, our method achieved a much lower p-value

in the permutation test for all carpal bones. Moreover, the p-value in the MANOVA test for some

bones (e.g. hamate) has plummeted to 2.5× 10−3. To speed-up experiments, all shape descriptors

were computed offline, albeit their computation is quite inexpensive due in large part to the fact

that only a relatively small number of the LBO eigenfunctions need to be computed.

To further assess the discriminative power of our approach, we computed the GSGW descriptors

of carpal bone surfaces from the same class. As shown in Figures 2.9 and 2.10, even for very

similar carpal bones with a slightly difference, the proposed GSGW approach is able to distinguish

between the shapes.

Parameter Sensitivity: The proposed approach depends on two key parameters that affect its

overall performance. The first one is the resolution parameter R of the spectral graph wavelet

signature. The second one is the number of eigenfunctions of the LBO, which plays an important

role in the GSGW descriptor. As shown in Figure 2.11, the best MANOVA result on the carpal
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Figure 2.6: Global spectral graph wavelet descriptors of two carpal bones: capitate (Top) and
lunate (Bottom).

bones dataset is achieved using 30 eigenfunctions and a resolution parameter R = 30. In addition,

the performance of proposed method using MANOVA is satisfactory for a wide range of parameter

values, indicating the robustness of the GSGW framework to the choice of these parameters.
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Bone
MANOVA Permutation Test

GPS GSGW GPS GSGW

Capitate 0.0226 0.0319 0.0493 0
Hamate 0.0065 2.37e-11 0.0097 0.0020
Lunate 0.0379 0.0069 0.0210 0
Pisiform 0.0428 0.0441 0.0365 0.0040
Scaphoid 0.0135 0.0003 0.0255 0
Trapezoid 0.0004 0.0088 0.0087 0
Trapezium 0.0007 1.80e-5 0.0101 0.0200
Triquetrum 0.0015 1.96e-5 0.0124 0.200?

Metacarpal-1 0.0137 0.0009 0.0245 0.0040

Figure 2.7: Comparison of carpal bone surfaces of the right wrist between males and females
using MANOVA and permutation test. Boldface numbers indicate the better performance, while
the numbers marked with an asterisk indicate that the p-value exceeds 0.05

Bone
MANOVA Permutation Test

GPS GSGW GPS GSGW

Capitate 0.0148 0.0065 0.0416 0.0100
Hamate 0.0048 6.64e-8 0.0089 0.0020
Lunate 0.0532? 2.41e-5 0.0766? 0.0020
Pisiform 0.0102 2.56e-5 0.0201 0
Scaphoid 0.0012 3.19e-5 0.0120 0.0060
Trapezoid 0.0022 0.0013 0.0136 0.0020
Trapezium 0.0023 0.0002 0.0140 0
Triquetrum 0.0449 0.0005 0.0836? 0
Metacarpal-1 0.0015 0.0482 0.0129 0.0100

Figure 2.8: Comparison of carpal bone surfaces of the left wrist between males and females using
MANOVA and permutation test. Boldface numbers indicate the better performance, while the
numbers marked with an asterisk indicate that the p-value exceeds 0.05.
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Figure 2.9: Global spectral graph wavelet descriptors for three capitate bones of women’s left
wrists.
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Figure 2.10: Global spectral graph wavelet descriptors for three metacarpal bones of women’s left
wrists.
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Figure 2.11: From top to bottom: effect of the parameters on MANOVA results for the hamate
bone in terms of number of eigenfunctions and resolution parameter, respectively.
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2.5 Conclusion

In this chapter, we introduced a spectral-geometric based framework for population study of carpal

bones. We proposed an efficient representation of the cortical surface of the carpal bone via a

global spectral graph wavelet descriptor, and then performed statistical analysis using MANOVA

and permutation testing on the carpal bones of the human wrist in an effort to compare shapes

of the carpal bones across populations. The proposed GSGW descriptor enjoys a number of de-

sirable properties including simplicity, compactness, invariance to isometric deformations, and

computational feasibility. Moreover, our approach not only captures the similarity between feature

descriptors, but also substantially outperforms existing methods.
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Bone age assessment using deep learning for 2D

X-ray images

3.1 Introduction

In this chapter, we describe the background of bone age estimation and the relevant deep learning

models employed as pre-trained models for regression analysis. Then, we show the proposed

architecture on RSNA dataset, followed by training and fine-tuning processes to implement the

regression task and consequently discuss the results.

3.2 Background and Relevant Work

BAA is a clinical method for determining age discrepancy between one’s skeletal bone age and

their chronological age (real age from birthdate). It has always been considered as an applicable

skill for various fields, such as assessment of bone age by observing the eruption of the second mo-

lar on young men for calling them for the Roman empire military service [63]. In the 19th century,

tooth eruption was estimated children’s age as a reliable method by dentists, and the minimum

bone age was considered 7 years old in Britain [64]. In 1846, unreliability of bone age estimation

based on the only observance of tooth eruption was announced in [65]. In 1886, an idea of the

age estimation in young people was introduced for the first time [66], and then the first systematic

assessment of age variations in carpal bones was proposed in 1887 [67]. In 1895, discovery of

X-rays triggered a revolution in the estimation of bone age, in which the skeleton radiography was
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applied as a complementary approach for tooth eruption [65]. This was the beginning of a new

era for the researchers to determine the age of the subjects based on wrist bone maturity depicted

on the radiographs [68]. Between 1950 and 1980, the most important traditional manual methods,

Greulich and Pyle (GP) [69] and Tanner-Whitehouse (TW) [70] were defined for the BAA based on

radiological analysis of carpus bone. However, the disadvantages of these methods were resulted

in reducing the accuracy of BAA. In fact, the methods are time-consuming and prone to inter-

and intra-observer variability [71] that cause problems in their clinical application; the comparison

between subjects and follow-up of patients. Hence, these drawbacks motivate an automatic BAA

system to be introduced in the past 3 decades [72, 73].

Recently, the importance of BAA for living subjects has been much attracted in Europe, par-

ticularly for a precise census population to verify citizen’s age. By increasing a large number of

immigrants to European countries, who do not have any birth certificate to show their real ages,

the problem of counting the young immigrant’s population annually has arisen. In 2003 and 2006,

the census of immigrants in Spain revealed about 6,000 people from sub-Saharan Africa, who had

traveled by trucks and dangerous boats via the Mediterranean Sea to Spain with unknown real

ages. At that time, no standard method for the BAA existed for illegal immigrants in European

countries. Some countries, such as France and the UK, only held an interview without any expert

examination with those who do not have any identification documents. In 2010, a multi-factorial

method has introduced by Austria in three levels, including evaluation by a doctor, a dental ex-

amination and X-ray analysis with low confidence. Thus, to address the unaccompanied minors

issue, an accurate and effective forensic method is needed to provide an age estimation report in a

criminal proceeding and public courts in European countries [74].

Recently, deep-learning methods have shown improvements in performance over conventional

machine learning approaches for many biomedical problems. In the medical imaging field, con-

volutional neural networks (CNN) have been successfully applied for a wide variety of medical

problems, such as bone diseases prediction, breast cancer histology image analysis and diabetic

retinopathy screening. Therefor, we tried to apply a fully automated deep learning approach for

the BAA problem on the Radiological Society of North America (RSNA) dataset. This chapter

aims to investigate several automated methods for the evaluation of bone age based on left-hand

radiographs for the living subjects. In this chapter, we review some deep learning models and

discuss the methodology and the implementation of the system.
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3.3 Deep Pre-trained Models

A pre-trained model is trained on more than a million images and can classify images into 1000

object categories, such as many animals, mug, coffee and keyboard. The model includes deep

learning model weights that have already learned to extract informative and high-level feature

representations from natural images in the image classification task, which is utilized as a starting

point to learn a new task. Due to computational and time restrictions, building a model from scratch

is impossible. Therefore, a pre-trained model is exploited for promoting the existing models or

testing on other models much faster and easier than training a network from scratch. To evaluate the

performance of the recent most powerful CNN architectures for regression analysis, we focus on

six different CNN architectures, i.e. VGG16, VGG19, Inception-V3, MobileNet-V2, NasNetlarge,

and InceptionResNet-V2.

3.3.1 VGG16 and VGG19

The visual geometry group (VGG) network architecture is a very deep convolutional network for

large scale image recognition as shown in Figure 3.1 [1]. The network is characterized by its

simplicity, using only 3× 3 convolutional layers (Conv) stacked on top of each other in increasing

depth. In the convolutional layer, each neuron is connected to a small region of the input volume

(3 × 3 region), but extends or slides along the full depth of the input volume. As the filter slides

across the input volume, the dot product of the entries of the filter and the input are calculated.

Then, reducing volume size is handled by max-pooling. Two fully-connected layers, each with

4, 096 neurons are then followed by a softmax classifier. The number of 16 and 19 stand for the

number of weight layers in these two networks as shown in Table 3.1.
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Figure 3.1: The VGG16 architecture [1]
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Figure 3.2: the VGG 19 architecture [1]
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Table 3.1: Structure of VGG16 (column A) and VGG19 (column B) pre-trained models [1].

ConvNet Configuration

A B
16 weight layer 19 weight layer

Input(224× 224 RGB image)

conv3-64 conv3-64

conv3-64 conv3-64

maxpool

conv3-128 conv3-128

conv3-128 conv3-128

maxpool

conv3-256 conv3-256

conv3-256 conv3-256

conv3-256 conv3-256

conv3-256
maxpool

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512
maxpool

FC-4096

FC-4096

FC-1000

soft-max
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In 2014, 16 and 19 layer networks were considered very deep (although we now have the ResNet

architecture which can be successfully trained at depths of 50-200 for ImageNet and over 1,000

for CIFAR-10). The VGG designers found training VGG16 and VGG19 challenging (specifically

regarding convergence on the deeper networks). Therefore, to make the training process easier,

they first trained smaller versions of VGG with fewer weight layers (columns A and C).

Two major drawbacks of VGGNet include the low speed of the training process and the large

disk or bandwidth being used due to the large number of weights in the network architecture.

Becuase of its depth and number of fully-connected nodes, VGG is over 533 MB for VGG16 and

574 MB for VGG19, the application of VGG is a tiresome task.

3.3.2 Inception-V3

Inception-V3 is a convolutional neural network that has 48 layers depth and was introduced by

factorization idea [2]. The inception-V3 architecture has similar complexity as the VGG model.

The most conspicuous feature of this architecture is the use of fewer parameters, where Inception-

V1 with 7 million parameters has a lower number of parameters than AlexNet with 60 million

parameters and VGGNet with three times more parameters than AlexNet. Furthermore, this model

is computationally efficient regarding fewer parameters. Due to the lower error rate, the model

is known as the 1st runner up for image classification in ImageNet large scale visual recognition

competition (ILSVRC) in 2015.

Inception-V3 Architecture The model has a mixture of symmetric and asymmetric building

blocks, including convolutions, average pooling, max-pooling, concats, dropouts, and fully con-

nected layers. Furthermore, the loss is calculated using softmax. The Figure 3.16 depicts the

architecture of the model at a high level, which is decomposed of different parts:

Factorizing Convolutions In order to reduce the number of parameters/connections without

decreasing the efficiency of the network, factorizing convolutions are applied to smaller convolu-

tions. Two 3×3 convolutions replaces one 5×5 convolution as shown in Figure 3.4 such that once

a layer of 5 × 5 filter is applied, the number of parameters equals 25. By using 2 layers of 3 × 3

filters, number of parameters is 2× (3× 3) = 18. Thus, number of parameters is reduced by 28%

as depicted in Figure 3.5. To factorize into asymmetric convolutions, a 3× 1 convolution followed

by a 1× 3 convolution is replaced by as 3× 3 convolution as shown in Figure 3.6.

Intuitively, by using 3 × 3 filter, the number of parameters is 3 × 3 = 9, while using 3 × 1 and

1×3 filters, leads to a number of parameters as 3×1+1×3 = 6. Thus, the number of parameters

is reduced by 33% as shown in Figure 3.7.
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Figure 3.3: Inception-V3 Architecture [2]

Figure 3.4: Mini-network (Two 3× 3 convolutions) replacing the 5× 5 convolutions [2].

To improve high dimensional representations, Inception module C is introduced as shown in

Figure 3.8. Therefore, the advantage of using these three Inception modules is to reduce the number

of parameters and the possibility of over-fitting for the whole network.

Auxiliary Classifier Only an auxiliary classifier is employed on the top of the last 17× 17 layer.

It is worth noting that the auxiliary classifier acts as a regularizer.

Efficient Grid Size Reduction
The task of max-pooling is to downsize the feature map. However, if the max-pooling is fol-

lowed by a conv layer, the network becomes too greedy. Moreover, if the conv layer is followed by

a max-pooling, the network becomes computationally expensive. Thereby, a technique for efficient

reduction of the grid size is proposed as depicted Figure 3.10.
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Figure 3.5: Inception Module A using factorization [2]

Figure 3.6: Replacing one 3 × 1 convolution followed by one 1 × 3 convolution with one 3 × 3
convolution [2]

By considering the efficient grid size reduction, 320 feature maps are created by Conv with stride

of 2, and also 320 feature maps are generated by max-pooling. Then, the result of concatenating

these 2 sets of feature maps is 640 feature maps as input for the next level of the inception module.

Thus, the advantage of the used architecture is to having a less expensive and still efficient network.
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Figure 3.7: Inception Module B using asymmetric factorization of the n× n convolutions, which

any n × n convolution can be replaced by a 1 × n convolution followed by a n × 1 convolution,

where n = 7 [2]

Figure 3.8: Inception Module C using asymmetric factorization [2]
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Figure 3.9: One auxiliary classifier shows at the right-most architecture and acts as a regularization

and the left-most shows the main branch of Inception-v3 [2]

Figure 3.10: Detailed architecture of efficient grid size reduction (Left), efficient grid size reduction

(Right) [2].
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3.3.3 MobileNet-V2 Architecture

MobileNet architecture has been designed for mobile devices by Google. The model contains

pre-trained weights on the popular ImageNet database, which is a database containing millions of

images belonging to more than 20, 000 classes. MobileNet-V2 is one of the MobileNet categories

that is a small, low-latency, and low-power model parameterized to meet the resource constraints

in different cases, such as classification, detection, embeddings and segmentation [75].

MobileNet-V2 has two types of blocks, including residual blocks with the stride of 1 and stride

of 2 for downsizing. The idea is based on replacing the standard convolution layers with sev-

eral separate layers, which means a full standard 3 × 3 convolution layer replaces with a 1 × 1

convolution layer (pointwise convolution) and a 3×3 depthwise convolution layer. Pointwise con-

volution is used to create a linear combination of the output of the depthwise layer, and depthwise

convolution uses a single filter per each input channel (input depth). Also, ReLU is used in both

layers.

A full standard convolution is always the combination of two operations, including the data orga-

nization and the feature extraction, in which operation of data organization should be determined

by the nature of data. Thus, to improve the computation efficiency of these two operations, the

1× 1 convolution and the depthwise convolutions are employed for organizing data and extracting

features, respectively. The structure of the MobileNet-V2 module is shown in Figure 3.11.

37



Figure 3.11: MobileNet-V2 model with the stride of 1 and 2. In both architectures, the model

has 3 layers. the first layer is 1 × 1 convolution (pointwise convolution) with ReLU6. The next

layer is the depthwise convolution and the last layer is another 1 × 1 convolution but without any

non-linearity. It should be noted that if ReLU is used again, the deep networks only have the power

of a linear classifier on the non-zero volume part of the output domain. [3]
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3.3.4 NASNetLarge Architecture

NASNetLarge model was introduced by Zoph et al. [76] that is a convolutional neural network

trained on over one million images from the ImageNet dataset. Neural architecture search (NAS)

is a widely used model in the field of machine learning for automating the design of artificial

neural networks (ANN). The model enables us to classify images into 1000 object categories,

and learn the model architectures directly on the dataset of interest, which has been proposed to

design networks that are on par or outperform hand-designed architectures. This technique results

in extracting better discriminative information (high feature representation) from a wide range of

images.

3.3.5 InceptionResNet-V2 Architecture

In image classification, InceptionResNet-V2 [4] is a state-of-the-art convolutional neural network

(CNN) that achieves better accuracy among previous models on the ILSVRC. More precisely,

InceptionResNet-V2 is a lightweight package for defining, training and evaluating models, which

borrows some ideas from Microsoft’s ResNet papers [77, 78] to upgrade the earlier Inception-V3

model. This model propose residual connections in its design, allowing shortcuts in the model

by simplifying the Inception blocks with fewer parallel towers than the previous Inception-V3

as shown in Figures 3.12 and 3.13. Considering the ability, researchers are able to successfully

train even deeper neural networks. Therefore, This ability is led to even better performance in

recognition tasks.
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Figure 3.12: from Top to bottom: Architecture of Inception-ResNet-A and Inception-ResNet-B [4]
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Figure 3.13: Architecture of Inception-ResNet-C [4]
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Figure 3.14: Schema for Inception-ResNet-v2 networks [4]
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3.3.6 Size Comparison of the Used Pre-trained Models

A summary of the size comparison between the used pre-trained models are shown in Table 3.2.

MobileNet has the smallest size among the models about 16MB, such that once we use the model,

running time is significantly reduced. However, the largest model size belongs to NASNetLarge

model with 343MB, having the higher computational time and fairly higher accuracy compared

to other methods.

Table 3.2: Comparison of the used pre-trained models in terms of its sizes

Models Size MB
VGG19 549

MobileNet 16

Inception-V3 92

NASNetLarge 343

IncetionResNet-V2 215

3.4 RSNA Dataset

Radiological Society of North America (RSNA) dataset was released by Stanford Children’s Hos-

pital and Colorado Children’s Hospital and pediatric bone age challenge was organized in 2017, in

which the radiographs have been taken in different conditions and times via various hardware.

Based on visual comparison to Greulich and Pyle’s radiographic atlas of skeletal development

of the hand and wrist, professional pediatric radiologists were able to interpret these images and

then documented bone age in radiology reports. According to the reports, the skeleton ages were

employed for training the model as the ground truth.

The RSNA dataset contains 12, 611 training dataset, which 5, 778 images are allocated for fe-

male radiographs and 6, 833 for male radiographs, 1, 425 images for validation, and 200 images for

test images. Due to the small size of the test dataset and its unknown labels, we tested the model

on 1000 radiographs from the training set, which is called validation set. The skeleton ages are

ranging from 1 to 228 months, in which most subjects were 5-15 years old children. The examples

of RSNA dataset are shown in Figure 3.15.
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Figure 3.15: Examples of RSNA dataset

3.4.1 Proposed Neural Network Architectures

For training our model using the knowledge learned from a pre-trained network, various layers are

taken into account in architecture, including batch normalization, learned weights from different

pre-trained models, pooling layer (global average pooling2D), and dropout layer. In the following,

we are going to explain these layers:

Batch normalization layer The layer normalizes the activation of the previous layer at each

batch so that a transformation is applied to set the mean activation close to zero and the activation
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standard deviation close to 1.

Global average pooling 2D Neural networks also contain pooling layers. Pooling layers are

used to deliberately decrease the spatial size of the output representation, reducing the number of

parameters and to control over-fitting of the model. In essence, the pooling layer helps simplify

the spatial representation of the output volume from the preceding layer, followed by applying a

function, such as max-pooling, average-pooling, or �2-norm pooling.

Dropout layer The aim of using dropout layer is to prevent over-fitting by reducing neurons.

This layer is composed of a fraction rate of input units to be randomly set as zero at each update

during training time. The fraction rate is a value between 0 and 1, which is a fraction of the input

units to drop. In our study, we employed a drop rate of 0.5.

Dense layer A dense layer is a regular layer of neurons in a neural network, in which each neuron

receives input from all the neurons in the previous layer, thus the neurons are densely connected.

3.5 ImageNet dataset

ImageNet dataset contains over 15 million labeled high-resolution images and around 22, 000 cat-

egories. ImageNet large scale visual recognition competition (ILSVRC) utilizes a subset of Im-

ageNet of around 1000 images in each of 1000 categories, including roughly 1.2 million training

images, 50, 000 validation images and 100, 000 testing images.

3.6 Transfer Learning

Transfer learning is a common approach in deep learning applications. The approach is promoted

learning in new tasks by leveraging knowledge from a pre-trained network. We consider a pre-

trained network and its corresponding trained weights as a starting point to learn a new task so

that the learned features are transferred to a new task using a smaller number of training images.

A network is usually fine-tuned by transfer learning much easier and faster than a network with

randomly initialized weights from scratch.

The pre-trained models are powerful tool that enable us to generalize them for images outside of

the ImageNet dataset. The most prominent reason for using transfer learning is the computational

cost of running algorithms on hardware. Although, RAM is available in plenty and has an afford-

able price for every user, running a complex machine learning problem entails hundreds of GBs of

RAM or GPUs that are expensive for most ML users.
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3.7 Transfer Learning with Fine-tuning

The proposed pre-trained models have strong potential to be generalized to other existed images

of the ImageNet dataset using transfer learning. For this purpose, fine-tuning is exploited by some

modifications of the pre-existing models. There are three types of fine-tuning a model. The first

approach employs a pre-trained model as a features extraction mechanism, and then utilizes the

entire network as a fixed features extractor for a new dataset. The second way is to use the ar-

chitecture of the pre-trained model, in which all the weights are initialized randomly to train the

model according to a new dataset. The last way is to train some layers while freezing others. In

this way, a part of a pre-trained model is used to keep the weights of initial layers of the model

frozen while only higher layers are retrained. It is worth noting that the number of layers to be

frozen or to be trained can be varied in fine-tuning.

3.7.1 Use of Different Pre-trained Models to Assess Bone Age

In this work, various architectures trained on ImageNet dataset are used. By taking advantage of

the first way to fine-tune a network as discussed above, a fixed features extractor based on the type

of a pre-trained model is applied.

Considering the low number of the training images in RSNA dataset (12, 611 images) and low

similarity between RSNA dataset and ImageNet dataset, we retrained the output of dense layers

of the used pre-trained models as features extractors. These layers are used as the inputs of our

proposed architectures. The features are trained according to the new dataset (RSNA) and then are

fed to a dense layer as an output layer. More precisely, the output layer of a pre-trained model, e.g.

VGG16 model, is a softmax activation function with 1000 categories for the classification task.

However, the last layer is removed in our architectures and replaced by a dense layer to solve a

regression problem and predict the age of hand bone for RSNA dataset.

3.7.2 Pre-processing on RSNA dataset

RSNA dataset contains 12, 611 X-ray images with portable network graphics (PNG) format. These

images with the given information of the bone age, genders and labels were loaded into memory at

running time. Afterward, the dataset is split into training and validation sets, in which the validation

set includes 25% of the training set, i.e. 9, 458 images for training and 3, 153 for validation sets.

Since the number of images per each age category and gender was not equal, the distribution in

the training set was adjusted to a new training size of 10, 000 instead of the old size of 9, 458, and

the number of samples for each age was changed to 1, 000.
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Figure 3.16: From top to bottom: the distribution of age and gender, respectively. Age is shown
based on months.

Figure 3.17: Balancing the distribution in the training set

To meet the right size of the input image in different pre-trained networks, each input image

in RSNA is resized. For the used pre-trained models in this work, we consider 299 × 299 for

InceptionResNet-V2, 331 × 331 for NasNetLarge, 331 × 331 for Inception-V3 , 224 × 224 for

Mobilenet , 224× 224 for VGG16, and 224× 224 for VGG19 model.

Also, data augmentation is performed on the entire dataset via Keras ImageDataGenerator. In
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the training process, we set up samplewise center for each sample to zero, samplewise standard

deviation normalization to divide each input by its standard deviation, horizontal flip in which the

input is randomly flipped horizontally, rotation range of 10 degrees, and zoom range of 15%. These

values were chosen based on radiologist gestalt, which play important roles in the interpretation

of other types of radiologic examinations [79], and is realistic variances from image to image in

practice.

A real-time augmentation drastically improves learning process by multiplying the dataset, but

each of the selected transformation such as zooming, rotation, and position in the dataset enhances

generalizability. This ability of augmentation helps the model to learn features that are intrinsic for

the patients rather than the imaging technique.

3.7.3 Training

In a bid to expedite the training process of the network, we used a smaller batch size with less

memory, where the batch size defines the number of training examples in a forward or backward

pass (an iteration). So, the training and validation sets are both buffered into batches of 32 items

with greyscale color mode and the same size of the used pre-trained model input. In testing step,

we used the validation set with a big batch size of 100 for evaluating the regression task.

For instance, given MobileNet-V2 as our pre-trained model, all the weights are initialized ran-

domly to retrain our model on RSNA training set. The training time of our model took approx-

imately 3 hours (fairly fast learning), in which MAE loss function was attempted to reach the

minimum value using Adam optimizer when the predicted child’s age is exactly equal to the true

age of the child. Subsequently, the learning rate is reduced when the validation loss is plateaued.

In addition, we need to monitor the model throughout the training process for improving MAE

as a model’s metric. Therefore, a Keras callback function is specified for monitoring a quantity

of validation loss (Val loss), that is the value of error after running the validation set through the

trained network, and once no improvement is observed for a number of epochs (patience=5), the

learning rate is decreased. It is worth noting that, when the learning process is stagnated, the

learning rate will be reduced by a factor of 0.8 and then the value of cooldown is set, which is

the number of epochs to wait before resuming normal operation after the learning rate has been

reduced. We assumed a value of 0.0001 for setting the minimum learning rate as a lower bound on

the learning rate.

Finally, the predicted results are stored in a hdf5 format. It should be noted that as the epochs

increase, both validation and training loss (error) are dropped. If the training loss continues to

drop, it means the network is learning the data better and better while increasing the validation loss
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leads to over-fitting.

3.8 Loss Function

In our study we used mean squared error (MSE) as our loss function, that is a procedure for

estimating an unobserved quantity, measuring the average of the squared errors. The MSE is

defined as the average squared difference between the real values and the estimated value. The

MSE is given as follows:

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 (3.1)

where, yi and ỹi are ground truth label and predicted label for the ith training example, respec-

tively. The actual optimized objective is the mean of the output array across all training examples

n. The value of MSE is almost always strictly positive and none zero.

3.9 Linear Regression

Regression analysis is a statistical tool for the investigation of relationships between variables to

identify, estimate and validate the relationship. The estimated relationship is then used to predict

one variable from the value of the other variable(s).

Suppose that we have n pairs of examples (xi, yi). A preliminary step prior to statistical analysis

of the relationship between the variables x and y is to draw a scatter plot, representing whether

a linear relationship between dependent and independent variables exists. Variable x is known

as predictor or independent variable while variable y is a response or dependent variable. The

simplest type of regression analysis is linear regression. We assume that each observed value xi of

the response variable yi can be described as follows:

yi = β0 + β1xi + εi , i = 1, ..., n (3.2)

where yi is the dependent variable that we wish to predict, xi is the independent variable used to

predict. The regression coefficients β0 and β1 are unknown parameters, which also called intercept

and slope of the line, respectively. εi is a random error with unknown variance. The term linear is

used because equation 3.2 is a linear function of the unknown parameters β0 and β1.
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3.10 Optimizer

The choice of optimization algorithm for a deep learning model plays a key role in speeding up

the obtained results. Extensive stochastic gradient descent is the Adam optimization algorithm

used for deep learning applications in computer vision. Since the optimizer fast approaches the

solution, the algorithm is a great substitution of classical stochastic gradient descent procedure to

update weights based on the training data.

Some of the attractive benefits of using Adam algorithm on non-convex optimization problems

includes being computationally efficient, straightforward to implement, low memory requirements,

well-suited for problems with large data and parameter, being invariant to diagonal rescale of the

gradients, and suitable for problems with very noisy or sparse gradients.

The Adam optimizer is different from the classic Stochastic gradient descent. Moreover, the

Adam algorithm is the combination of two other extensive stochastic gradient descent, including

adaptive gradient algorithm (AdaGrad) and root mean square propagation (RMSProp), which ben-

efits from both aforementioned algorithms. AdaGrad maintains a per-parameter learning rate so

that performances on problems with sparse gradients are improved while RMSProp retains per-

parameter learning rate is adapted based on the average of recent magnitudes of the gradients for

the weight. Therefore, the algorithm has a great performance in online and non-stationary prob-

lems such as noise. Furthermore, Adam optimizer adapts the learning rate parameters based on the

average first moment (the mean) as in RMSProp, and also advantages of the average of the second

moments of the gradients (the uncentered variance). Specifically, an exponential moving average

of the gradient and the squared gradient are obtained using Adam. The parameters β1 and β2 con-

trol the decay rates of these moving averages. If the recommended initial values of the moving

averages, β1 and β2 are close to 1.0, a bias of moment approaches toward zero.

3.11 Regression metrics

3.11.1 Mean absolute error

Mean absolute error (MAE) is a metric to measure the difference between two continuous vari-

ables. Variables X and Y as paired observations denote observed and predicted examples, respec-

tively. Considering a scatter plot with n points, where each point i has a coordinates (xi, yi) points,

MAE is vertical distance between each point and identity line. The MAE is calculated by:

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

(3.3)
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3.12 Implementation

In this section, extensive experiments have been conducted through different architectures to train

the proposed models using different pre-trained models on RSNA dataset. Finally, we analyzed

the result of each architecture on the regression task.

To implement our deep learning framework, we exploited Keras library with Tensorflow, running

as a backend. All the used codes were written in Python 3.7 along with some scientific libraries

such as Numpy and Pandas. We also utilized GPU, i.e. Tesla K80 GPU, provided by Google’s free

cloud service to speed up the computation time. It is worth noting that to use the GPU capability,

Google Colab is available for all the users that can apply Keras, Tensorflow and Pytorch libraries.

All the used pre-trained models are available in Keras framework, which allows us to extract

features using Keras library.

After the basic pre-processing steps on RSNA dataset, a simple MLP model (multilayer per-

ceptron) was proposed with the following architecture in Table 3.3. The architecture consists of

six hidden layers, including batch normalization, a pre-trained model weights, another batch nor-

malization layer, global average pooling 2D, dropout layer and finally a dense layer. Also, the

network architectures and parameters are depicted in Table 3.3, in which six different models (ar-

chitectures) are shown in terms of number and type of the used layers, output of each layer and

number of parameters in each layer. In first layer, the input image layer varies for the various used

architectures, which the selected input size for each model was considered as the input size of the

used pre-trained model, which means that 299 × 299 for InceptionResNet-V2 model, 331 × 331

for NasNetLarge, 331 × 331 for Inception-V3 , 224 × 224 for Mobilenet , 224 × 224 for VGG16

and 224× 224 for VGG19 model, respectively. In this layer, we have used batch normalization, in

which the layer normalizes an input layer (i.e. μ = 0, σ = 1).

The output shape of the first layer has the same size of input layer with 1 channel because we

used greyscale images. A None dimension in a shape tuple means that the network will be able to

accept inputs of any dimension, i.e. no pre-defined number. Therefore, we could assign different

batch sizes during training the network. In this layer, we just obtained four trained parameters for

each used model.

In layer 2, we added a pre-trained model architecture and took the output shape of our first

layer as an input to feed the second layer. Finally, we trained our model with a minibatch size

of 16 for 10 epochs. For instance, given MobileNet-V2 as our pre-trained model, all the weights

are initialized randomly to retrain our model on RSNA training set and MAE is used as our loss

function. Our goal is to find the point that minimizes Adam optimizer implemented in Keras with

default values of 0.001 for learning rate, 0.9 for β1 and 0.999 for β2. The training of MobileNet-V2
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model architecture took approximately 3 hours that is fairly fast enough.

Then, the output shape of the second layer using VGG16 and VGG19 architectures would be

7 × 7 with 512 units (neurons), where the number of trainable parameters in VGG19 was greater

than VGG16 with 14, 713, 536. For Inception-V3 and InceptionResNet-V2 models, the size of the

output is 9 × 9, with 2, 048 and 1536 units, respectively. Also, the number of trainable param-

eters of InceptionResNet-V2 are 2.5 times greater than Inception-V3 parameters. For the output

of NasLargeNet and Mobilenet models, we had a 11 × 11 with 4, 032 units and 16 × 16 with

1, 024 units, respectively. In this layer, MobileNet-V2 architecture had a smaller number of trained

parameters while NasLargeNet model was assigned the larger trained parameters.

In the next layer, we again applied a batch normalization, in which NasNetLarge with the size of

11× 11 and 4, 032 units, was gained the higher number of parameters about 16, 128. Furthermore,

for both VGG16 and VGG19 we observed the lower number of parameters 7× 7 with 512 units as

the output of the third layer, and the layer created 2, 048 trained parameters.

Afterward, global average pooling was used on the output of previous layer to optimize the per-

formance and prevent over-fitting. In this layer, the number of units in our model using NasNet-

Large architecture was the largest value among the other architectures about 4, 032. Also, for our

models using VGG16 and VGG19 architecture, the number of units was equal to 512 that is con-

sidered the smallest units between other architectures. Notably, none of the parameters (weights)

were trained in this layer and even in the next layer, which is dropout. In the fifth layer, regulariza-

tion of the neural network was done using dropout, which randomly zeros out the interdependent

neurons in training time. The fraction rate of dropout was chosen 0.5, which means the neurons

were ignored by a random fraction of 0.5 for each training sample and iteration. Finally, a dense

layer was applied in the last hidden layer with no activation function. The output layer had only

one neuron, indicating the predicated bone age for each input image.
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Table 3.3: Architectures of six models created from various pre-trained models weights for training
network in regression task: (a)Architecture used weights of VGG16, (b) VGG19, (c)MobileNet ,
(d)Inception-V3 , (e)NasNetLarge and (f)InceptionResNet-V2

# layers Models Layer(type) Output shape # Params

(a) Batchnormalization(Batch) (None,224,224,1) 4

(b) Batchnormalization(Batch) (None,224,224,1) 4

1 (c) Batchnormalization(Batch) (None,224,224,1) 4

(d) Batchnormalization(Batch) (None,331,331,1) 4

(e) Batchnormalization(Batch) (None,331,331,1) 4

(f) Batchnormalization(Batch) (None,229,299,1) 4

(a) VGG16(Model) (None,7,7,512) 14,713,536

(b) VGG19(Model) (None,7,7,512) 20,024,384

2 (c) MobileNet(Model) (None,16,16,1024) 3,228,288

(d) Inception−V3(Model) (None,9,9,2048) 21,802,784

(e) NasLargeNet(Model) (None,11,11,4032) 84,915,090

(f) InceptionResNet−V2(Model) (None,9,9,1536) 54,336,160

(a) Batchnormalization(Batch) (None,7,7,512) 2,048

(b) Batchnormalization(Batch) (None,7,7,512) 2,048

3 (c) Batchnormalization(Batch) (None,16,16,1024) 4,096

(d) Batchnormalization(Batch) (None,9,9,2048) 8,192

(e) Batchnormalization(Batch) (None,11,11,4032) 16,128

(f) Batchnormalization(Batch) (None,9,9,1536) 6,144

(a) Globalaveragepooling2D (None,512) 0

(b) Globalaveragepooling2D (None,512) 0

4 (c) Globalaveragepooling2D (None,1024) 0

(d) Globalaveragepooling2D (None,2048) 0

(e) Globalaveragepooling2D (None,4032) 0

(f) Globalaveragepooling2D (None,1536) 0

(a) Dropout(Dropout) (None,512) 0

(b) Dropout(Dropout) (None,512) 0

5 (c) Dropout(Dropout) (None,1024) 0

(d) Dropout(Dropout) (None,2048) 0

(e) Dropout(Dropout) (None,4032) 0

(f) Dropout(Dropout) (None,1536) 0

(a) Dense(Dense) (None,1) 513

(b) Dense(Dense) (None,1) 513

6 (c) Dense(Dense) (None,1) 1025

(d) Dense(Dense) (None,1) 2049

(e) Dense(Dense) (None,1) 4033

(f) Dense(Dense) (None,1) 1537
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After training our models according to the models’ summaries shown in Table 3.3, we trained

our models as discussed in section 3.7.3 by running them in 10 epochs and 331 steps per epochs.

We evaluated the models on the validation set of 1000 X-ray images of hand bones.We used var-

ious architectures and compared them using MAE metric in our experimental results. As Table

3.4 shows the model with InceptionResNet-V2 weights achieved MAE of 14.28 months on the

validation set and chosen as the best predictive model. This high accuracy can be due to the deeper

architecture of this pre-trained model (164 hidden layers) than the others, i.e. MobileNet-V2 with

53 layers, Inception-V3 with 48 layers, VGG19 and VGG16 with 19 and 16 layers, respectively.

The performance of the used MobileNet-V2, NasNetLarge and Inception-V3 weights achieved

substantially better results. Moreover, the model based on VGG16 and VGG19 weights resulted

in the worst performance of MAE, with 20.89 and 19.94 months, respectively.

Table 3.4: Comparison of various models (a) Architecture used VGG16 weights, (b) VGG19

weights, (c) MobileNet-V2 weights, (d) Inception-V3 weights, (e) NasNetLarge weights and (f)

InceptionResNet-V2 weights on X-ray images of hand bones for both genders in terms of mean

absolute error.

Models MAE-months

(a)VGG16 20.86

(b)VGG19 19.94

(c)MobileNet−V2 17.49

(d)Inception−V3 18.40

(e)NasNetLarge 18.47

(f)InceptionResNet−V2 14.28

In next step, we demonstrate the evaluation of our trained models for regression task in Figure

3.18. As can be seen, linear regression models are represented on six different proposed models,

where red dots are the samples of the validation set on the graph, and each point has a x-y coordi-

nate. Each prediction line is shown with a blue line, which is a line passing through all the points

and fits them in the best way.

By drawing a scatter plot, MAE can be visualized by the vertical distance between each point

and its prediction (identity) line. The plot aims to find a line that minimizes the squared distances

among the points to reveal the relationship between actual ages (x) and predicted ages (y). In

Figure 3.18, linear regression models are depicted for the proposed six architectures. As can

be seen, the best MAE results belong to the proposed InceptionResNet-V2 and MobileNet-V2,

respectively, while we observed low density of the points closed to the identity line for the VGG16
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and VGG19 weights.

In addition, several validation samples (radiographs) were randomly chosen from the whole

validation set for each architecture to visualize the predicted and the real bone ages (Figures 3.19

to 3.24).
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Figure 3.18: Linear regression models for the used various architectures (from left to right, top
to bottom: InceptionResNet-V2, NasNetLarge, Inception-V3, Mobilenet, VGG19 and VGG16
weights).

56



Figure 3.19: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting InceptionResNet-V2 weights on validation set.
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Figure 3.20: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting NasNetLarge weights on validation set.
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Figure 3.21: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting Inception-V3 weights on validation set.
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Figure 3.22: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting MobileNet weights on validation set.
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Figure 3.23: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting VGG19 weights on validation set.
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Figure 3.24: Examples of comparison predicted bone ages with its real bone ages of the radio-
graphs by adopting VGG16 weights on validation set.
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3.13 Conclusion

In this chapter, we introduced a computerized method for BAA based on human wrist bones X-ray

images. The method was developed using state-of-the-art deep learning algorithms. The proposed

BAA algorithm allows radiologists to predict the bone age more accurate by eliminating human ob-

servation variations, leading to cost reduction in the hospitals or clinics. In addition, the presented

approach facilitates the BAA by providing a faster process than manual methods. The algorithm

was evaluated through MAE metric for six models, which created from various pre-trained mod-

els weights. Among the proposed deep learning models, the result of the InceptionResNet-V2

architecture indicates more accurate result as an automated method for estimating the bone age.
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Conclusions and Future Work

This thesis has presented an efficient global spectral graph wavelet to analyze 3D carpal bones

shapes. We have demonstrated the superior results of the proposed GSGW through extensive ex-

periments on different 3D shapes of wrist bones compared to the existing method in the literature.

In addition, we investigated an automated BAA algorithm to perform a regression task by applying

state-of-the-art pre-trained models’ weights in our architectures that have a significant impact on

the performance of a hand bone age prediction. In Section 4.1, we discuss the contributions of the

previous chapters and then state the limitations and future work of this research in Section 4.2.

4.1 Contributions of the Thesis

In chapter 2, using the eigensystem of Laplace-Beltrami operator and spectral graph wavelets, we

introduced a global descriptor that is able to decompose a carpal bone surface into its constituent

intrinsic components and represents each surface by a global spectral graph wavelet descriptor.

This global descriptor enjoys several desirable properties including simplicity, compactness, in-

variance to isometric deformations, and computational feasibility. Thereby, this helps facilitate the

statistical analysis of wrist bones. Moreover, our method needs only a small number of eigenfunc-

tions to identify the variations in the bones’ surfaces, and can easily distinguish not only between

carpal bones of different groups (female, male) but also bones from the same group. This property

tremendously simplifies the problem and speeds-up the computation of the shape descriptor, partic-

ularly when dealing with shapes consisting of thousands of vertices, albeit increasing the number

of mesh vertices tends to provide slightly better results. Moreover, the experimental results on the
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carpal bone dataset demonstrate the effectiveness of the proposed GSGW framework.

In chapter 3, we developed an efficient method for evaluation of BAA to address some dis-

advantages of manual BAA approach such as being subjective of bone age estimation and time-

consuming process. The presented methods are automated bone age techniques by applying the

state-of-the-art deep learning architectures (pre-trained models’ weights). So, the high-level fea-

tures are extracted from X-ray images providing fairly accurate prediction of real bone age. Our

system enjoys some nice advantages such as being cost-saving as no radiologists and doctors are

required to perform the BAA, meaning that there is no chance for observation variability by radi-

ologists. Moreover, the automated BAA is a time-saving process as the predicted age is obtained

within a few minutes.

Finally, to give more validity to our results, statistical analysis, i.e. regression analysis, was

performed during the evaluation stage of the methods. It should be noted that the presented BAA

methods achieved fairly good results for MAE, where the best result was 14.28 months for the

model built from IncetionResNet-V2 weights among the other pre-trained models’ weights re-

viewed in this thesis.

4.2 Limitations and Future Work

A number of limitations and interesting future directions are discussed below based on this thesis.

4.2.1 Surface Analysis in Carpal Bones

In chapter 2, while the carpal bone dataset used in this study consists of a small size of individuals,

we plan in the not-too-distant future to test the GSGW approach on a larger population. The used

carpal bone dataset includes subjects who are healthy, young, and who lacked remarkable patho-

logical findings. So, it would be interesting to investigate surface differences in wrist bones when,

for instance, a group is suffering from specific pathologies like osteoarthritis or wrist instability.

Moreover, this dataset does not include information related to the dominant hand of the individ-

uals. Hence, we may consider this information to analyze the bone shape differences in an effort

to find the probable association. Since men and women in the carpal bone dataset are in the same

age range, the factors related to age can also be investigated by considering a different age range

in two groups of men and women. In addition, the other factors that may change the carpal bone

shapes of individuals include the body size, genetic, metabolic and environmental factors can be

regarded, which are not taken into consideration in our experiments because they are not available
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in the carpal bone dataset. For future work, we also plan to apply the proposed framework to other

shape analysis problems, and in particular segmentation and clustering tasks.

4.2.2 Bone Age Assessment

Apparently, a number of challenges for a computerized assessment of bone age still exist among

the available automated systems as discussed in Chapter 3. The main challenge is the lack of

research on the role of other bones in the body and their contributions to automated assessment

of bone age. In fact, the problem is still ambiguous in a case that a hand image of a person is

unavailable for any reason, whether the information given by his/her body bones can be reliable

for BAA system or not. Thus, we plan to investigate hybrid evidence, i.e. radiograph of the left

hand, physical and teeth examination, to further improve the accuracy and a standard method for

BAA system [80].

In addition, lack of sufficient image processing techniques has led to low accuracy for BAA.

Regardless of the used pre-processing techniques (resizing and rotating) on the dataset, other tech-

niques such as extracting region of interest (ROI) and image segmentation can be used to mini-

mize the BAA error rate. Due to the lack of definition of segmentation on radiographs and unique

standard methods for the implementation, image segmentation is still challenging for the current

automated system [81]. We also plan to explore the use of segmentation, which is defined to sep-

arate the specific region of an X-ray hand. Various methods use different regions of X-ray images

such as the carpal bones, phalangeal, ulna epiphyses, and the radius [82]. We will then perform

image segmentation based on attributes of the X-ray image such as bone texture and intensity, and

consequently implement it by a bone region or a contour of bone edge.
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