4,067 research outputs found

    A Fuzzy Approach to the Synthesis of Cognitive Maps for Modeling Decision Making in Complex Systems

    Get PDF
    The object of this study is fuzzy cognitive modeling as a means of studying semistructured socio-economic systems. The features of constructing cognitive maps, providing the ability to choose management decisions in complex semistructured socio-economic systems, are described. It is shown that further improvement of technologies necessary for developing decision support systems and their practical use is still relevant. This work aimed to improve the accuracy of cognitive modeling of semistructured systems based on a fuzzy cognitive map of structuring nonformalized situations (MSNS) with the evaluation of root-mean-square error (RMSE) and mean average squared error (MASE) coefficients. In order to achieve the goal, the following main methods were used: systems analysis methods, fuzzy logic and fuzzy sets theory postulates, theory of integral wavelet transform, correlation and autocorrelation analyses. As a result, a new methodology for constructing MSNS was proposed—a map of structuring nonformalized situations that combines the positive properties of previous fuzzy cognitive maps. The solution of modeling problems based on this methodology should increase the reliability and quality of analysis and modeling of semistructured systems and processes under uncertainty. The analysis using open datasets proved that compared to the classical ARIMA, SVR, MLP, and Fuzzy time series models, our proposed model provides better performance in terms of MASE and RMSE metrics, which confirms its advantage. Thus, it is advisable to use our proposed algorithm in the future as a mathematical basis for developing software tools for the analysis and modeling of problems in semistructured systems and processes. Doi: 10.28991/ESJ-2022-06-02-012 Full Text: PD

    Hierarchical Multi-resolution Mesh Networks for Brain Decoding

    Full text link
    We propose a new framework, called Hierarchical Multi-resolution Mesh Networks (HMMNs), which establishes a set of brain networks at multiple time resolutions of fMRI signal to represent the underlying cognitive process. The suggested framework, first, decomposes the fMRI signal into various frequency subbands using wavelet transforms. Then, a brain network, called mesh network, is formed at each subband by ensembling a set of local meshes. The locality around each anatomic region is defined with respect to a neighborhood system based on functional connectivity. The arc weights of a mesh are estimated by ridge regression formed among the average region time series. In the final step, the adjacency matrices of mesh networks obtained at different subbands are ensembled for brain decoding under a hierarchical learning architecture, called, fuzzy stacked generalization (FSG). Our results on Human Connectome Project task-fMRI dataset reflect that the suggested HMMN model can successfully discriminate tasks by extracting complementary information obtained from mesh arc weights of multiple subbands. We study the topological properties of the mesh networks at different resolutions using the network measures, namely, node degree, node strength, betweenness centrality and global efficiency; and investigate the connectivity of anatomic regions, during a cognitive task. We observe significant variations among the network topologies obtained for different subbands. We, also, analyze the diversity properties of classifier ensemble, trained by the mesh networks in multiple subbands and observe that the classifiers in the ensemble collaborate with each other to fuse the complementary information freed at each subband. We conclude that the fMRI data, recorded during a cognitive task, embed diverse information across the anatomic regions at each resolution.Comment: 18 page

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    A Hybrid Fuzzy Cognitive Map/Support Vector Machine Approach for EEG-Based Emotion Classification Using Compressed Sensing

    Full text link
    © 2018, Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature. Due to the high dimensional, non-stationary and non-linear properties of electroencephalogram (EEG), a significant portion of research on EEG analysis remains unknown. In this paper, a novel approach to EEG-based human emotion study is presented using Big Data methods with a hybrid classifier. An EEG dataset is firstly compressed using compressed sensing, then, wavelet transform features are extracted, and a hybrid Support Vector Machine (SVM) and Fuzzy Cognitive Map classifier is designed. The compressed data is only one-fourth of the original size, and the hybrid classifier has the average accuracy by 73.32%. Comparing to a single SVM classifier, the average accuracy is improved by 3.23%. These outcomes show that psychological signal can be compressed without the sparsity identity. The stable and high accuracy classification system demonstrates that EEG signal can detect human emotion, and the findings further prove the existence of the inter-relationship between various regions of the brain

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    • …
    corecore