5,076 research outputs found

    An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis

    Full text link
    An efficient numerical quadrature is proposed for the approximate calculation of the potential energy in the context of pseudo potential electronic structure calculations with Daubechies wavelet and scaling function basis sets. Our quadrature is also applicable in the case of adaptive spatial resolution. Our theoretical error estimates are confirmed by numerical test calculations of the ground state energy and wave function of the harmonic oscillator in one dimension with and without adaptive resolution. As a byproduct we derive a filter, which, upon application on the scaling function coefficients of a smooth function, renders the approximate grid values of this function. This also allows for a fast calculation of the charge density from the wave function.Comment: 35 pages, 9 figures. Submitted to: Journal of Computational Physic

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Wavelet Coorbit Spaces viewed as Decomposition Spaces

    Full text link
    In this paper we show that the Fourier transform induces an isomorphism between the coorbit spaces defined by Feichtinger and Gr\"ochenig of the mixed, weighted Lebesgue spaces Lvp,qL_{v}^{p,q} with respect to the quasi-regular representation of a semi-direct product Rdâ‹ŠH\mathbb{R}^{d}\rtimes H with suitably chosen dilation group HH, and certain decomposition spaces D(Q,Lp,â„“uq)\mathcal{D}\left(\mathcal{Q},L^{p},\ell_{u}^{q}\right) (essentially as introduced by Feichtinger and Gr\"obner), where the localized ,,parts`` of a function are measured in the FLp\mathcal{F}L^{p}-norm. This equivalence is useful in several ways: It provides access to a Fourier-analytic understanding of wavelet coorbit spaces, and it allows to discuss coorbit spaces associated to different dilation groups in a common framework. As an illustration of these points, we include a short discussion of dilation invariance properties of coorbit spaces associated to different types of dilation groups
    • …
    corecore