94,694 research outputs found

    Orthonormal dilations of Parseval wavelets

    Full text link
    We prove that any Parseval wavelet frame is the projection of an orthonormal wavelet basis for a representation of the Baumslag-Solitar group BS(1,2)=<u,tutu1=t2>.BS(1,2)=< u,t | utu^{-1}=t^2>. We give a precise description of this representation in some special cases, and show that for wavelet sets, it is related to symbolic dynamics. We show that the structure of the representation depends on the analysis of certain finite orbits for the associated symbolic dynamics. We give concrete examples of Parseval wavelets for which we compute the orthonormal dilations in detail; we show that there are examples of Parseval wavelet sets which have infinitely many non-isomorphic orthonormal dilations.Comment: v2, improved introduction according to the referee's suggestions, corrected some typos. Accepted for Mathematische Annale

    A Multiscale Guide to Brownian Motion

    Full text link
    We revise the Levy's construction of Brownian motion as a simple though still rigorous approach to operate with various Gaussian processes. A Brownian path is explicitly constructed as a linear combination of wavelet-based "geometrical features" at multiple length scales with random weights. Such a wavelet representation gives a closed formula mapping of the unit interval onto the functional space of Brownian paths. This formula elucidates many classical results about Brownian motion (e.g., non-differentiability of its path), providing intuitive feeling for non-mathematicians. The illustrative character of the wavelet representation, along with the simple structure of the underlying probability space, is different from the usual presentation of most classical textbooks. Similar concepts are discussed for fractional Brownian motion, Ornstein-Uhlenbeck process, Gaussian free field, and fractional Gaussian fields. Wavelet representations and dyadic decompositions form the basis of many highly efficient numerical methods to simulate Gaussian processes and fields, including Brownian motion and other diffusive processes in confining domains

    Irreducible wavelet representations and ergodic automorphisms on solenoids

    Full text link
    We focus on the irreducibility of wavelet representations. We present some connections between the following notions: covariant wavelet representations, ergodic shifts on solenoids, fixed points of transfer (Ruelle) operators and solutions of refinement equations. We investigate the irreducibility of the wavelet representations, in particular the representation associated to the Cantor set, introduced in \cite{DuJo06b}, and we present several equivalent formulations of the problem

    Stack-run adaptive wavelet image compression

    Get PDF
    We report on the development of an adaptive wavelet image coder based on stack-run representation of the quantized coefficients. The coder works by selecting an optimal wavelet packet basis for the given image and encoding the quantization indices for significant coefficients and zero runs between coefficients using a 4-ary arithmetic coder. Due to the fact that our coder exploits the redundancies present within individual subbands, its addressing complexity is much lower than that of the wavelet zerotree coding algorithms. Experimental results show coding gains of up to 1:4dB over the benchmark wavelet coding algorithm

    Approximation algorithms for wavelet transform coding of data streams

    Get PDF
    This paper addresses the problem of finding a B-term wavelet representation of a given discrete function fnf \in \real^n whose distance from f is minimized. The problem is well understood when we seek to minimize the Euclidean distance between f and its representation. The first known algorithms for finding provably approximate representations minimizing general p\ell_p distances (including \ell_\infty) under a wide variety of compactly supported wavelet bases are presented in this paper. For the Haar basis, a polynomial time approximation scheme is demonstrated. These algorithms are applicable in the one-pass sublinear-space data stream model of computation. They generalize naturally to multiple dimensions and weighted norms. A universal representation that provides a provable approximation guarantee under all p-norms simultaneously; and the first approximation algorithms for bit-budget versions of the problem, known as adaptive quantization, are also presented. Further, it is shown that the algorithms presented here can be used to select a basis from a tree-structured dictionary of bases and find a B-term representation of the given function that provably approximates its best dictionary-basis representation.Comment: Added a universal representation that provides a provable approximation guarantee under all p-norms simultaneousl
    corecore