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Approximation Algorithms for Wavelet Transform Coding of Data
Streams

Abstract
This paper addresses the problem of finding a B-term wavelet representation of a given discrete function ƒ ∈
Rn whose distance from ƒ is minimized. The problem is well understood when we seek to minimize the
Euclidean distance between ƒ and its representation. The first-known algorithms for finding provably
approximate representations minimizing general lp distances (including l∞) under a wide variety of compactly
supported wavelet bases are presented in this paper. For the Haar basis, a polynomial time approximation
scheme is demonstrated. These algorithms are applicable in the one-pass sublinear-space data stream model of
computation. They generalize naturally to multiple dimensions and weighted norms. A universal
representation that provides a provable approximation guarantee under all p-norms simultaneously; and the
first approximation algorithms for bit-budget versions of the problem, known as adaptive quantization, are
also presented. Further, it is shown that the algorithms presented here can be used to select a basis from a tree-
structured dictionary of bases and find a B-term representation of the given function that provably
approximates its best dictionary-basis representation.
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Approximation Algorithms for Wavelet
Transform Coding of Data Streams

Sudipto Guha and Boulos Harb, Student Member, IEEE

Abstract—This paper addresses the problem of finding a B-term
wavelet representation of a given discrete function f 2 Rn whose
distance from f is minimized. The problem is well understood
when we seek to minimize the Euclidean distance between f and its
representation. The first-known algorithms for finding provably
approximate representations minimizing general `p distances (in-
cluding `1) under a wide variety of compactly supported wavelet
bases are presented in this paper. For the Haar basis, a polynomial
time approximation scheme is demonstrated. These algorithms
are applicable in the one-pass sublinear-space data stream model
of computation. They generalize naturally to multiple dimensions
and weighted norms. A universal representation that provides a
provable approximation guarantee under all p-norms simulta-
neously; and the first approximation algorithms for bit-budget
versions of the problem, known as adaptive quantization, are also
presented. Further, it is shown that the algorithms presented here
can be used to select a basis from a tree-structured dictionary of
bases and find a B-term representation of the given function that
provably approximates its best dictionary-basis representation.

Index Terms—Adaptive quantization, best basis selection,
compactly supported wavelets, nonlinear approximation, sparse
representation, streaming algorithms, transform coding, universal
representation.

I. INTRODUCTION

ACENTRAL problem in approximation theory is to repre-
sent a function concisely. Given a function or a signal as

input, the goal is to construct a representation as a linear combi-
nation of several predefined functions, under a constraint which
limits the space used by the representation. The set of prede-
fined functions are denoted as the dictionary. One of the most
celebrated approaches in this context has been that of nonlinear
approximation. In this approach, the dictionary elements that are
used to represent a function are allowed to depend on the input
signal itself.

Nonlinear approximations has a rich history starting from the
work of Schmidt [2]; however, more recently these have come
to fore in the context of wavelet dictionaries [3], [4]. Wavelets
were first analyzed by DeVore et al. [5] in nonlinear approxima-
tion. Wavelets and multifractals have since found extensive use
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in image representation, see Jacobs [6]. In fact, the success of
wavelets in nonlinear approximation has been hailed by many
researchers as “the ‘true’ reason of the usefulness of wavelets
in signal compression” (Cohen et al. [7]). Due to lack of space
we would not be able to review the extremely rich body of work
that has emerged in this context; see the surveys by DeVore [8]
and Temlyakov [9] for substantial reviews.

However, with the rise in the number of domains for which
wavelets have been found useful, several interesting problems
have arisen. Classically, the error in terms of representation has
been measured by the Euclidean or error. This choice is nat-
ural for analysis of functions, but not necessarily for represen-
tation of data and distributions. Even in image compression,
Mallat [3, p. 528] and Daubechies [4, p. 286] point out that while
the measure does not adequately quantify perceptual errors,
it is used, nonetheless, since other norms are difficult to opti-
mize. However, non- measures have been widely used in the
literature. Matias, Vitter and Wang [10], suggested using the
metric and showed that wavelets could be used in creating suc-
cinct synopses of data allowing us to answer queries approxi-
mately. The distance is a statistical distance and is well suited
for measuring distributions. Interestingly, Chapelle, Haffner and
Vapnik [11] show that the norm significantly outperforms the

norm in image recognition on images in the Corel data set
using SVM’s. From a completely different standpoint, we may
be interested in approximating a signal in the norm thus
seeking a high fidelity approximation throughput rather than
an ‘average’ measure such as other norms. This is particularly
of interest if we are trying to process noisy data (we consider

approximations in Section IV-C). While we have devel-
oped a reasonable understanding of error, problems involving
non- error are still poorly understood. This paper takes the first
steps toward filling this gap.

One of the most basic problems in nonlinear approximation
is the following: Given a wavelet basis and a target func-
tion (or signal, vector) , construct a representation as
a linear combination of at most basis vectors so as to mini-
mize some normed distance between and . The -term rep-
resentation belongs to the space

, where is the number of nonzero coeffi-
cients in . The problem is well-understood if the error
of the representation is measured using the Euclidean or dis-
tance. Since the distance is preserved under rotations, by
Parseval’s theorem, we have

It is clear then that the solution under this error measure is to
retain the largest inner products , which are also the

0018-9448/$25.00 © 2008 IEEE
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coefficients of the wavelet expansion of . Note: the fact that
we have to store the inner products or the wavelet coefficients is
a natural consequence of the proof of optimality.

The common strategy for the -term representation problem
in the literature has been “to retain the [ ] terms in the wavelet
expansion of the target function which are largest relative to the
norm in which error of approximation is to be measured” [8, p.
4]. This strategy is reasonable in an extremal setting; i.e., if we
are measuring the rate of the error as a function of . But it is
easy to show that the common greedy strategy is sub-optimal,
see [12]–[17]. In light of this, several researchers [13]–[15],
[17], [18] considered a restricted version of the problem under
the Haar basis where we may only choose wavelet coefficients
of the data. However to date, the only bound on its performance
with respect to the target function’s best possible representation
using terms from the wavelet basis is given by Temlyakov
[19] (see also [9, Sec. 7]. Temlyakov shows that given in the
(infinite dimensional) Banach function space

, if the given basis is -equivalent to the Haar basis
[20], then the error of the common greedy strategy is an factor
away from that of the optimal -term representation. The factor

depends on and properties of , but the dependence is
unspecified. However, from an optimization point of view in the
finite-dimensional setting, the relationship between the factor
and the dimension of the space spanned is the key problem,
which we address here. Three relevant questions arise in this
context. First is whether there are universal algorithms/repre-
sentations that simultaneously approximate all norms. This is
important because in many applications, it is difficult to deter-
mine the most suitable norm to minimize without looking at the
data, and an universal representation would be extremely useful.
The second question concerns the complexity of representing
the optimal solution. It is not immediate a priori that the optimal
unrestricted solution minimizing, for example, the norm for
a function that takes only rational values can be specified by
rational numbers. The third related question pertains to the com-
putational complexity of finding the optimum solution. Can the
solution be found in time polynomial in the size of the input ?
Or better yet, can the solution be found in strongly polynomial
time where the running time of the algorithm does not depend
on the numeric values of the input. We focus on these questions
using the lens of approximation algorithms, where we seek to
find a solution that is close to the optimum—in fast polynomial
time. Note that the use of approximation algorithms does not
limit us from using additional heuristics from which we may
benefit, but gives us a more organized starting point to develop
heuristics with provable bounds.

A natural generalization of the problem above is known as
Adaptive Quantization. The -term representation requires
storing 2 numbers, the coefficient and the index of the corre-
sponding basis vector to be retained. The actual cost (in bits) of
storing the real numbers is, however, nonuniform. Depending
on the scenario, it may be beneficial to represent a function
with a large number of low-support vectors with low precision

’s or a few vectors with more detailed precision ’s. Hence, a
-term representation algorithm does not translate directly into

a practical compression algorithm. A natural generalization,
and a more practical model as noted in [7], is to minimize the

error subject to the constraint that the stored values and indices
cannot exceed a given bit-budget. Note that, again, we are
not constrained here to storing wavelet expansion coefficients.
This bit-budget version of the problem is known as adaptive
quantization, which we will also consider. To the best of our
knowledge, there are no known approximation algorithms for
this problem.

One other natural generalization incorporates a choice of
basis into the optimization problem [8]. We are given a dictio-
nary of bases and our objective is to choose a best basis in
for representing using terms. This bicriteria optimization
problem is a form of highly nonlinear approximation [8]. In
a seminal work, Coiffman and Wickerhauser [21] construct a
binary tree-structured dictionary composed of vec-
tors and containing orthonormal bases. They present a
dynamic programming algorithm that in time finds
a best basis minimizing the entropy of its inner products with
the given function . Mallat [3] discusses generalizations based
on their algorithm for finding a basis from the tree dictionary
that minimizes an arbitrary concave function of its expansion
coefficients. However, finding a basis in that minimizes
a concave function of its inner products with the given is
not necessarily one with which we can best represent (in
an sense) using terms. Combining our approximation
algorithms for the original -term representation problem with
the algorithm of Coiffman and Wickerhauser, we show how one
can construct provably approximate -term representations in
tree-structured wavelet dictionaries. Several of these results
also extend to arbitrary dictionaries with low coherence [22],
[23].

Along with the development of richer representation struc-
tures, in recent years there has been significant increase in the
data sets we are faced with. At these massive scales, the data
is not expected to fit the available memory of even fairly pow-
erful computers. One of the emergent paradigms to cope with
this challenge is the idea of data stream algorithms. In a data
stream model the input is provided one at a time, and any input
item not explicitly stored is inaccessible to the computation, i.e.,
it is lost. The challenge is to perform the relevant computation
in space that is sublinear in the input size; for example, com-
puting the best representation of a discrete signal for
that is presented in increasing order of , in only space.
This is a classic model of time-series data, where the function
is presented one value at a time. It is immediate that under this
space restriction we may not be able to optimize our function.
This harks back to the issue raised earlier about the precision
of the solution. Thus, the question of approximation algorithms
is doubly interesting in this context. The only known results on
this topic [24], [25] crucially depend on Parseval’s Identity and
do not extend to norms other than .

In summary, even for the simplest possible transform coding
problem, namely the -term representation problem, we can
identify the following issues.

• There are no analysis techniques for norms. In fact this
is the bottleneck in analyzing any generalization of the

-term representation problem; e.g., the adaptive quanti-
zation problem.
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• All of the (limited) analyzes in the optimization setting
have been done on the Haar system, which although im-
portant, is not the wavelet of choice in some applications.
Further, in this setting, the bounds on the performance of
the algorithms used in practice which retain wavelet coef-
ficients are unclear.

• Signals that require transform coding are often presented
as a streaming input—no algorithms are known except for

norms.
• The computational complexity of transform coding prob-

lems for structured dictionaries, or even for wavelet bases,
is unresolved.

A. Our Results

We ameliorate the above by showing the following.

1) For the -term representation problem we show that,
a) The restricted solution that retains at most wavelet

coefficients is a approximation to the un-
restricted solution under all distances for general
compact systems (e.g., Haar, Daubechies, Symmlets,
Coiflets, among others).1 We provide a
space and time one-pass algorithm in the data
stream model. We give a modified greedy strategy,
which is not normalization, but is similar to some
scaling strategies used in practice. Our strategy
demonstrates why several scaling based algorithms
used in practice work well.

b) A surprising consequence of the above is an universal
representation using coefficients that si-
multaneously approximate the signal for all dis-
tances up to .

c) The unrestricted optimization problem has a fully
polynomial-time approximation scheme (FPTAS)
for all distances in the Haar system, that is, the
algorithm runs in time polynomial in . The
algorithm is one-pass, space and time for

distances. Therefore, the algorithm is a streaming
algorithm with sublinear space for . For , the
algorithm runs in polylog space and linear time.2

d) For more general compactly supported systems we
display how our ideas yield a quasi-polynomial time
approximation scheme (QPTAS).3 This result is in
contrast to the case of an arbitrary dictionary which,
as we already mentioned, is hard to approximate to
within any constant factor even allowing quasi-poly-
nomial time.4

e) The results extend to fixed dimensions and workloads
with increases in running time and space.

1This statement differs from the statement in the extremal setting that says
that discarding all coefficients below � introduces O(� logn) error, since the
latter does not account for the number of terms.

2For clarity here, we are suppressing terms based on logn; B, and �. The
exact statements appear in Theorems 16 and 18.

3This implies that the running time is 2 for some constant c (c = 1
gives polynomial time).

4Follows from the result of Feige [26].

2) In terms of techniques, we introduce a new lower bounding
technique using the basis vectors , which gives us the
above result regarding the gap between the restricted and
unrestricted versions of the problem. We also show that
bounds using the scaling vectors are useful for these
optimization problems and, along with the lower bounds
using , give us the approximation schemes. To the best
of our knowledge, this is the first use of both the scaling and
basis vectors to achieve such guarantees.

3) We show that the lower bound for general compact systems
can be extended to an approximation algorithm for adap-
tive quantization. This is the first approximation algorithm
for this problem.

4) For tree-structured dictionaries composed of the type of
compactly supported wavelets we consider, our algorithms
can be combined with the dynamic programming algo-
rithm of Coiffman and Wickerhauser [21] to find a -term
representation of the given . The error of the represen-
tation we construct provably approximates the error of a
best representation of using terms from a basis in the
dictionary.

The key technique used in this paper is to lower bound the so-
lution based on a system of linear equations but with one non-
linear constraint. This lower bound is used to set the “scale”
or “precision” of the solution, and we show that the best so-
lution respecting this precision is a near optimal solution by
“rounding” the components of the optimal solution to this preci-
sion. Finally, the best solution in this class is found by a suitable
dynamic program adapted to the data stream setting.

We believe that approximation algorithms give us the correct
standpoint for construction of approximate representations. The
goal of approximation theory is to approximate representation;
the goal of approximation algorithms is to approximate opti-
mization. Data stream algorithms are inherently approximate
(and often randomized) because the space restrictions force
us to retain approximate information about the input. These
goals, of the various uses of the approximation, are ultimately
convergent.

Organization: We begin by reviewing some preliminaries
of wavelets. In Section III we present our greedy approxi-
mation which also relates the restricted to the unrestricted
versions of the problem. Section IV presents applications of
the greedy algorithm; namely, an approximate universal repre-
sentation, approximation algorithms for adaptive quantization,
and examples illustrating the use of non- norms for image
representations. Section V is the main section of the paper
wherein we present our approximation schemes. We detail the
FPTAS for the Haar system and show its extensions to multiple
dimensions and workloads. We subsequently demonstrate
in Section VI how the same ideas translate to a FPTAS for
multidimensional signals and workloads, and a QPTAS under
more general compactly supported wavelets. In Section VII
we present the tree-structured best-basis selection algorithm.
Finally, in Section VIII we display some experimental results
contrasting the performance of an optimal algorithm that is
restricted to choosing Haar expansion coefficients with our
Haar FPTAS.
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II. PRELIMINARIES

The problem on which we mainly concentrate is the
following:

Problem 1( -Term Representation: Given
, a compactly-supported wavelet basis for ,

and an integer , find a solution , with at most
nonzero components such that is minimized.
We will often refer to this problem as the unrestricted -term

representation problem in order to contrast it with a restricted
version where the nonzero components of the solution can only
take on values from the set . That is, in the
restricted version, each can only be set to a coefficient from
the wavelet expansion of , or zero.

A. Data Streams

For the purpose of this paper, a data stream computation is
a space bounded algorithm, where the space is sublinear in the
input. Input items are accessed sequentially and any item not ex-
plicitly stored cannot be accessed again in the same pass. In this
paper we focus on one pass data streams. We will assume that
we are given numbers which cor-
respond to the signal to be summarized in the increasing order
of . This model is often referred to as the aggregated model
and has been used widely [24], [27], [28]. It is specially suited
to model streams of time series data [29], [30] and is natural for
transcoding a single channel. Since we focus on dyadic wavelets
(that are dilated by powers of ), assuming is a power of will
be convenient, but not necessary. As is standard in literature on
streaming [25], [31], [32], we also assume that the numbers are
polynomially bounded, i.e., all ’s are in the range
for some constant .

B. Compactly Supported Wavelets

We include here some definitions and notation that we use
in the main text. Readers familiar with wavelets can easily skip
this section. For thorough expositions on wavelets, we refer the
interested reader to the authoritative texts by Daubechies [4] and
Mallat [3]. For a brief introduction to wavelets, see [33, Ch. 2.3].

A wavelet basis for is a basis where each vector
is constructed by dilating and translating a single function re-
ferred to as the mother wavelet . For example the Haar mother
wavelet, due to Haar [34], is given by

if
if
otherwise.

The Haar basis for is composed of the vectors
where , and

, plus their orthonormal complement .
This last basis vector is closely related to the Haar multireso-
lution scaling function if and , oth-
erwise. In fact, there is an explicit recipe for constructing the
mother wavelet function from using a conjugate mirror
filter [35], [36] (see also Daubechies [3], and Mallat [4]). Notice
that the Haar mother wavelet is compactly supported on the in-
terval . This wavelet, which was discovered in 1910, was

the only known wavelet of compact support until Daubechies
constructed a family of compactly supported wavelet bases [37]
in 1988 (see also [4, Ch. 6]).

The vector is said to be centered at and of scale and
is defined on at most points. For ease of
notation, we will use both and depending on the context
and assume there is a consistent map between them.

The Cascade Algorithm for computing :
Assume that we have the conjugate mirror filter with support

. Given a function , we set ,
and repeatedly compute and

(where
is also a conjugate mirror filter). Notice that if the filter has
support , then we have .
This procedure gives and .

In order to compute the inverse transform, we evaluate
. Observe

that by setting a single or to 1 and the rest to 0,
the inverse transform gives us or . Indeed, this is the
algorithm usually used to compute and .

We will utilize the following proposition which is a conse-
quence of the dyadic structure of compactly supported wavelet
bases.

Proposition 1: A compactly supported wavelet whose filter
has two nonzero coefficients generates a basis for that
has basis vectors with a nonzero value at any point

.

III. GREEDY APPROXIMATION ALGORITHMS FOR GENERAL

COMPACT SYSTEMS AND DATA STREAMS

Recall our optimization problem. Given a compactly sup-
ported wavelet basis and a target vector , we wish to
find with at most nonzero numbers to minimize

.
We present two analyzes below corresponding to and

errors when . In each case, we begin by analyzing
the sufficient conditions that guarantee the error. A (modified)
greedy coefficient retention algorithm will naturally fall out of
both analyzes. The proof shows that several of the algorithms
that are used in practice have bounded approximation guarantee.
Note that the optimum solution can choose any values in the
representation .

In what follows the pair are the usual conjugates; i.e.,
when , and when we simply set

. For simplicity, we start with the case.
1) An Algorithm and Analysis: The main lemma, which

gives us a lower bound on the optimal error, is:

Lemma 2: Let be the minimum error under the norm
and be the optimal solution, then

Proof: For all we have .
Since the equation is symmetric multiplying it by we get
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Adding the above equation for all , since
we obtain (consider only the left side)

The upper bound follows analogously.
A Relaxation: Consider the following program:

minimize

...
...

...

At most of the 's are nonzero. (1)

Observe that is a feasible solution for the above program
and where is the optimum value of the program.
Also, Lemma 2 is not specific to wavelet bases, and indeed we
have when is the standard basis, i.e., is the
vector with in the th coordinate and , elsewhere. The next
lemma is straightforward.

Lemma 3: The minimum of program (1) is the
largest value .

The Algorithm: We choose the largest coefficients based
on . This can be done over a one pass stream,
and in space for any compact wavelet basis. Note
that we need not choose but any such that

. But in particular, we may choose to retain
coefficients and set . The alternate choices may (and
often will) be better. Also note that the above is only a necessary
condition; we still need to analyze the guarantee provided by the
algorithm.

Lemma 4: For all basis vectors of a compact system there
exists a constant s.t., .

Proof: Suppose first that . Consider a basis vector
of sufficiently large scale that has converged

to within a constant (point-wise) of its continuous analog
[3, pp. 264-265]. That is, for

all such that . The continuous function
is given by , which implies

. Note that
we are assuming itself is some constant since it is
independent of and . Combining the above with the fact
that has at most nonzero coefficients, we have

.

By Hölder’s inequality,
. Therefore, for sufficiently large scales

,
and the lemma holds. For basis vectors at smaller (constant)
scales, since the number of nonzero entries is constant, the
norm and the norm are both constant.

Finally, for , the argument holds by symmetry.

Theorem 5: The error of the final approximation is at most
times for any compactly supported wavelet.

Proof: Let be the solution of the system (1), and let
the set of the inner products chosen be . Let is the min-
imum solution of the system (1). The error seen at a point

is . By Lemma
3, this sum is at most , which is at most

times the number of vectors that are
nonzero at . By Proposition 1 the number of nonzero vectors
at is . By Lemma 4, for all
, and since we have that the error is bounded by

.
2) An Algorithm and Analysis for : Under the
norm, a slight modification to the algorithm above also gives

an approximation guarantee.

Lemma 6: Let be the minimum error under the norm and
be the optimal solution, then for some constant

Proof: An argument similar to that of Lemma 2 gives

support of

which implies that

where the last inequality follows from Proposition 1, that each
belongs to basis vectors ( is the constant hidden

by the this -term).
A Relaxation: Consider the following system of equations:

minimize

At most of the 's are nonzero. (2)

The Algorithm: We choose the largest coefficients based
on , which minimizes the system (2). This com-
putation can be done over a one pass stream, and in
space.

Theorem 7: Choosing the coefficients that are
largest based on the ordering is a streaming

approximation algorithm for the unrestricted
optimization problem under the norm.
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Note this matches the bounds, but stores a (possibly) dif-
ferent set of coefficients.

Proof: Let the value of the minimum solution to the above
system of (2) be . Since is feasible for system (2),

. Assume is the set of coefficients chosen, the resulting error
is

Here, the first inequality is Hölder’s inequality combined with
Proposition 1 and the fact that ; the second in-
equality follows from Lemma 4; and the final equality follows
from the optimality of our choice of coefficients for the system
(2). Now since , we have that .

3) Summary and a Tight Example: In the two preceding sec-
tions, we showed the following:

Theorem 8: Let . Choosing the largest coeffi-
cients based on the ordering , which is possible
by a streaming algorithm, gives a
approximation algorithm for the unrestricted optimization
problem (Problem 1) under the given norm. The argument
naturally extends to multiple dimensions.

As is well known, this choice of coefficients is optimal when
(since and ).

Note that the above theorem bounds the gap between the re-
stricted (where we can only choose wavelet coefficients of the
input in the representation) and unrestricted optimizations.

A tight example for the measure. Suppose we are given
the Haar basis and the vector with the top coefficient

and with for ,
and for (where , are
the basis with smallest support). Let where

is a constant that is a power of . The optimal solution can
choose the coefficients which are in the top
levels resulting in an error bounded by . The error of
the greedy strategy on the other hand will be at least
because it will store coefficients only at the bottom of the tree.
Hence it’s error is at least of the optimal.

IV. APPLICATIONS OF THE GREEDY ALGORITHM

Our greedy algorithm extends to a variety of scenarios, which
illustrate the scope and the applicability of the techniques pre-
sented above.

A. A Universal Representation

In this section, we present a strategy that stores
coefficients and simultaneously approximates the optimal rep-
resentations for all -norms. Notice that in Problem 1 we know

the -norm we are trying to approximate. Here, we do not know
and we wish to come up with a representation such that for all

, its error measured with is times
the optimal error where has at most
nonzero components. Notice that we allow our universal repre-
sentation to store a factor more components than any
one optimal representation; however, it has to approximate all
of them concurrently.

We run our algorithm as before computing the wavelet coef-
ficients of the target vector ; however, we need to determine
which coefficients to store for our universal representation. To
this end, define the set:

(3)
For every , we will store the coefficients that are

largest based on the ordering where is the
dual norm to . Hence, the number of coefficients we store is
no more than since . Note that our
dual programs show that for a given , storing more than
coefficients does not increase the error of the representation.
Now let be our resultant representation; i.e., if contains
the coefficients we chose, then ; and let

be the optimal representation under the norm . Consider
first the case when where

(4)

where the first inequality follows since ; the second fol-
lows from Theorem 8; the third follows from the optimality of

for ; and the final inequality is an application of Hölder’s
inequality. However since

; and by their definition

Hence, ; and from expression (4) we
have that as required.
When for , we immediately have

and the result follows.

B. Adaptive Quantization

Wavelets are extensively used in the compression of images
and audio signals. In these applications a small percent saving
of space is considered important and attention is paid to the bits
being stored. The techniques employed are heavily engineered
and typically designed by some domain expert. The complexity
is usually twofold. First, the numbers do not all cost the same
to represent. In some strategies; e.g., strategies used for audio
signals, the number of bits of precision to represent a coefficient

corresponding to the basis vector is fixed, and
it typically depends only on the scale . (Recall that there is a
mapping from to .) Further the ’s are computed with
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a higher precision than the ’s. This affects the space needed
by the top-most coefficients. In yet another strategy, which is
standard to a broad compression literature, it is assumed that

bits are required to represent a number . All of these bit-
counting techniques need to assume that the signal is bounded
and there is some reference unit of precision.

Second, in several systems, e.g., in JPEG2000 [38], a bitmap
is used to indicate the nonzero entries. However the bitmap re-
quires space and it is often preferred that we store only the
status of the nonzero values instead of the status of all values in
the transform. In a setting where we are restricted to space,
as in the streaming setting, the space efficiency of the map be-
tween nonzero coefficients and locations becomes important.
For example, we can represent using

bits instead of bits to specify . Sup-
posing that only the vectors with support of or larger are im-
portant for a particular signal, we will then end up using half the
number of bits. Notice that this encoding method increases the
number of bits required for storing a coefficient at a small scale

to more than . This increase is (hopefully) mitigated by
savings at larger scales. Note also that the wavelet coefficients
at the same level are treated similarly.

The techniques we presented in Section III naturally extend
to these variants of the bit-budget problem. In what follows, we
consider three specific cases.

1) Spectrum Representations: The cost of storing a coef-
ficient corresponding to is fixed. This case includes the
suggested strategy of using
bits.

2) Bit Complexity Representations: The cost of storing the th
coefficient with value is for some (concave)
function . A natural candidate for is

where is the fractional part of and is less
than 1 (thus is positive). This encodes the idea
that we can store a higher “resolution” at a greater cost.

3) Multiplane Representations: Here the data conceptually
consists of several “planes”, and the cost of storing the th
coefficient in one plane depends on whether the th coef-
ficient in another plane is retained. For example, suppose
we are trying to represent a RGBA image which has four
attributes per pixel. Instead of regarding the data as 4 2
dimensional, it may be more useful, for example if the vari-
ations in color are nonuniform, to treat the data as being
composed of several separate planes, and to construct an
optimization that allocates the bits across them.

The fundamental method by which we obtain our approxi-
mate solutions to the above three problems is to use a greedy
rule to lower bound the errors of the optimal solutions using sys-
tems of constraints as we did in Section III. We focus only on
the error for ease of presentation. As before, the techniques
we use imply analogous results for norms.

1) Spectrum Representations: In the case where the cost
of storing a number for is a fixed quantity we obtain a
lower bound via a quadratic program that is similar to (1) using
Lemma 2. That is, minimize with the constraints
and , and for all

(5)

The program above can be solved optimally since the ’s are
polynomially bounded. We sort the coefficients in nonincreasing
order of . If ,
then we include coefficients where

. The value is then a lower bound on the error
of the optimal representation . Note that is a feasible

solution to program (5). Hence, either includes coefficients
in which case it cannot choose coefficient for it

will exceed the space bound , and we have that (the
optimal does not necessarily set ); or, does not
include one of , thus is again greater then or equal to

. A proof similar to that of Theorem 5 shows that the error
of our solution is .

2) Bit Complexity Representations: In the case where the
cost is dependent on we cannot write an explicit system of
equations as we did in the case of spectrum representations.
However, we can guess up to a factor of and verify if the
guess is correct.

In order to verify the guess, we need to be able to solve
equations of the form s.t. (since this
is the format of our constraints). This minimization is solv-
able for most reasonable cost models; e.g., if is monotoni-
cally increasing. As the coefficients are generated, we compute

if , where s.t.
for our guess of the error. If we exceed the allotted

space at any point during the computation, we know that our
guess is too small, and we start the execution over with the
guess . Note that the optimal representation is a feasible so-
lution with value and bit complexity . Applying the anal-
ysis of Section III,1) shows that the first solution we obtain that
respects our guess is a approximation to the optimal
representation.

Since we assume that the error is polynomially bounded,
the above strategy can be made to stream by running
greedy algorithms in parallel each with a different guess of as
above.

3) Multiplane Representations: In this case we are seeking to
represent data that is conceptually in several “planes” simultane-
ously; e.g., RGBA in images. We could also conceptualize im-
ages of the same object at various frequencies or technologies.
The goal of the optimization is to allocate the bits across them.
However, notice that if we choose the th coefficient for say the
Red and the Blue planes (assuming that we are indicating the
presence or absence of a coefficient explicitly which is the case
for a sparse representation), then we can save space by storing
the fact that “coefficient is chosen” only once. This is easily
achieved by keeping a vector of four bits corresponding to each
chosen coefficient. The values of the entries in the bit vector in-
form us if the respective coefficient value is present. Therefore,
the bit vector 1010 would indicate that the next two values in
the data correspond to Red and Blue values of a chosen coeffi-
cient. Similarly, a vector 1011 would suggest that three values
corresponding to Red, Blue and Alpha are to be expected.

In what follows, we assume that the data is dimensional
and it is comprised of planes (in the RGBA example,
and ). We are constrained to storing at most bits total
for the bit vectors, the indices of the chosen coefficients, and
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the values of these coefficients. For simplicity we assume that
we are using the error across all the planes. Otherwise, we
would also have to consider how the errors across the different
planes are combined.

We construct our approximate solution by first sorting the co-
efficients of the planes in a single nonincreasing order while
keeping track of the plane to which each coefficient belongs. As
before, we add the coefficients that are largest in this ordering to
our solution, and stop immediately before the coefficient whose
addition results in exceeding the alloted space . Note that if we
had added the th coefficient of the Red plane first, and there-
after wanted to include the Blue plane’s th coefficient, then we
need only account for the space of storing the index and the
associated bit vector when we add the coefficient for the first
(in this case Red) plane. The subsequent th coefficients only
contribute to the cost of storing their values to the solution. (We
can think of the cost of storing each coefficient as fixed after
the ordering of the coefficients is determined.) This strategy is
reminiscent of the strategy used by Guha, Kim and Shim [39]
to lower bound the optimum error for a similar problem in the

setting.
The first coefficient that we did not choose using this greedy

selection process is a lower bound on the optimal representation
error. Now, an argument similar to that of Theorem 5 shows that
the error of the resulting solution is a factor away from
the error of the optimal solution.

C. Sparse Image Representation Under Non- Error
Measures

In this section, we give three examples that demonstrate
uses for our greedy algorithm in compressing images. A non-
streaming version of the algorithm for Haar and Daubechies
wavelets was implemented in MATLAB using the
toolbox5 [40]. Pseudocode of the implementation is provided
below in Fig. 1. The algorithm takes four parameters as input:
the image , the number of coefficients to retain , the -norm
to minimize, and the type of Daubechies wavelet to use. The
last parameter, , determines the number of nonzero coeffi-
cients in the wavelet filter. Recall that the Haar wavelet is the
Daubechies wavelet with smallest support; i.e., it has .

The first example illustrates a use of the measure for
sparse representation using wavelets. Minimizing the maximum
error at any point in the reconstructed image implies we should
retain the wavelet coefficients that correspond to sharp changes
in intensity; i.e., the coefficients that correspond to the “de-
tails” in the image. The image we used, shown in Fig. 2(a),
is composed of a gradient background and both Japanese and
English texts.6 The number of nonzero wavelet coefficients in
the original image is . We set and ran Algo-
rithm daubGreedy with and under the Haar wavelet
(with ). When , the algorithm outputs the optimal

5For compatibility with our version of MATLAB, slight modifications on the
toolbox were performed. The toolbox can be obtained from http://www.gts.tsc.
uvigo.es/~wavelets/.

6The Japanese text is poem number 89 of the Kokinshu anthology [41]. The
translation is by Helen Craig McCullough.

Fig. 1. Pseudocode of the greedy algorithm’s implementation.

-term representation that minimizes the error measure. That
is, the algorithm simply retains the largest wavelet coeffi-
cients (since and for all ). When , or

, the algorithm outputs a -approximate -term
representation as will be explained in Section III. The results
are shown in Fig. 2. Notice that the representation essen-
tially ignores the gradient in the background, and it retains the
wavelet coefficients that correspond to the text in the image. The

representation also does better than the representation in
terms of rendering the Japanese text; however, the English trans-
lation in the former is not as clear. The attribution in the rep-
resentation, on the other hand, is completely lost. Although the
differences between the three representations are not stark, this
example shows that under such high compression ratios using
the norm is more suitable for capturing signal details than
other norms.

The second example illustrates a use of the error measure.
Since the norm is robust in the sense that it is indifferent to
outliers, the allocation of wavelet coefficients when minimizing
the norm will be less sensitive to large changes in intensity
than the allocation under the norm. In other words, it implies
that under the norm the wavelet coefficients will be allocated
more evenly across the image. The image we used, shown in
Fig. 3(a), is a framed black and white matte photograph. The
number of nonzero wavelet coefficients in the original image is

. We set and ran Algorithm daubGreedy with
and under the Daubechies wavelet. The results

are shown in Fig. 3. Notice that the face of the subject is rendered
in the representation more “smoothly” than in the represen-
tation. Further, the subject’s mouth is not portrayed completely
in the representation. As explained earlier, these differences
between the two representations are due to the fact that the
norm is not as affected as the norm by other conspicuous de-
tails in the image; e.g., the frame. The representation, on the
other hand, focuses on the details of the image displaying parts
of the frame and the eyes well, but misses the rest of the subject
entirely. This example foregrounds some advantages of the
norm over the customary norm for compressing images.

The last example highlights the advantage of representing an
image sparsely using a nonlinear wavelet approximation versus
using a rank- approximation of the image. Recall that if
is our image then the best rank- approximation is given by

where is the SVD decomposition of ,
and is comprised of the singular vectors corresponding to
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Fig. 2. Representing an image with embedded text using the optimal strategy that minimizes the ` error, and our greedy approximation algorithm under the `
and ` error measures. The Haar wavelet is used in all three representations, and the number of retained coefficients isB = 3840 (a) The original image. (b) Output
of the optimal ` algorithm (which retains the largest B wavelet coefficients). (c) Output of our greedy algorithm under ` . (d) Output of our greedy algorithm
under ` .

the largest singular values of (see, e.g., [42]). The original
image is shown in Fig. 4(a)7 and the number of nonzero coeffi-
cients in its Haar wavelet expansion is . Fig. 4(c) shows
the best rank- approximation of the image; i.e., it displays

. This representation stores 6144 values cor-
responding to the number of elements in plus . We
set and ran Algorithm daubGreedy with
under the Haar wavelet (Fig. 4(d) and (b)). (The -term repre-
sentation problem implicitly requires storing two numbers:
the values of the solution components that we compute, and
the indices of these components.) It is clear that the nonlinear
approximations offer perceptually better representations that the
approximation offered by the SVD. Also, as in the previous ex-
ample, the representation is again “smoother” than the with
less visible artifacts.

7The image is taken from a water painting by Shozo Matsuhashi. It is untitled.

V. A STREAMING APPROXIMATION FOR

HAAR WAVELETS

In this section, we will provide a FPTAS for the Haar system.
The algorithm will be bottom up, which is convenient from a
streaming point of view. Observe that in case of general norm
error, we cannot disprove that the optimum solution cannot have
an irrational value, which is detrimental from a computational
point of view. In a sense, we will seek to narrow down our
search space, but we will need to preserve near optimality. We
will show that there exists sets such that if the solution co-
efficient was drawn from , then there exists one solution
which is close to the optimum unrestricted solution (where we
search over all reals). In a sense the sets “rescue” us from
the search. Alternately we can view those sets as a “rounding”
of the optimal solution. Obviously such sets exist if we did not
care about the error, e.g., take the all zero solution. We would
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Fig. 3. Representing an image using the optimal strategy that minimizes the ` error, and our greedy approximation algorithm under the ` and ` error measures.
The Daubechies D wavelet is used in all three representations, and the number of retained coefficients is B = 4096. (a) The original image. (b) Output of the
optimal ` algorithm (which retains the largestB wavelet coefficients). (c)Output of our greedy algorithm under ` . (d) Output of our greedy algorithm under ` .

expect a dependence between the sets and the error bound
we seek. We will use a type of “dual” wavelet bases; i.e., where
we use one basis to construct the coefficients and another to re-
construct the function. Our bases will differ by scaling factors.
We will solve the problem in the scaled bases and translate the
solution to the original basis. This overall approach is similar to
that in [43], however, it is different in several details critical to
the proofs of running time, space complexity and approximation
guarantee.

Definition 1: Define and .
Likewise define .

Proposition 9: The Cascade algorithm used with com-
putes and .

We now use the change of basis. The next proposition is clear
from the definition of .

Proposition 10: The problem of finding a representation
with and basis is equivalent to finding the same rep-
resentation using the coefficients and the basis . The
correspondence is .

Lemma 11: Let be the optimal solution using the basis
set for the reconstruction, i.e., and

. Let be the set where each is rounded to the
nearest multiple of . If then

.
Proof: Let . By the triangle inequality

Proposition 1 and the fact that imply
for a small constant . This bound gives
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Fig. 4. Representing an image using the optimal strategy that minimizes the ` error and using our greedy approximation algorithm under the ` error measure
versus its best rank-k approximation. Here k = 12, and the number of values stored in all three representations is 6144. The Haar wavelet is used in the two
nonlinear representations (the number of retained wavelet coefficients is B = 3072). (a) The original image. (b) Output of the optimal ` algorithm (which retains
the largest B wavelet coefficients). (c)Output of the best rank-12 approximation. (d) Output of our greedy algorithm under ` .

. Now
, and from the Proof of Lemma 4 we know

that for large is at most times a constant. For
smaller is a constant.

We will provide a dynamic programming formulation using
the new basis. But we still need to show two results; the first
concerning the ’s and the second concerning the ’s. The
next lemma is very similar to Lemma 2 and follows from the
fact that .

Lemma 12: for some
constant .

Now suppose we know the optimal solution , and suppose
we are computing the coefficients and for both and

at each step of the Cascade algorithm. We wish to know

by how much their coefficients differ since bounding this gap
would shed more light on the solution .

Proposition 13: Let be computed from
, then .

Lemma 14: If then
for some constant . (We are using .)

Proof: The proof is similar to that of Lemma 2.
Let . We know . Mul-
tiplying by and summing over all we get

. By defi-
nition, . Further, and has at most

nonzero values. Hence, . The lemma
follows.
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At this point we have all the pieces. Summarizing:

Lemma 15: Let be a solution with nonzero coeffi-
cients and with representation . If ,
then there is a solution with nonzero coefficients and
representation such that for all we have the
following:

i) is a multiple of ;
ii) ; and

iii) ;
and .

Proof: Rewrite where
. Let be the solution where each equals

rounded to the nearest multiple of . Lemmas 12 and 14
bound the ’s thus providing properties ii) and iii). Finally,
Lemma 11 gives the approximation guarantee of .

The above lemma ensures the existence of a solution
that is away from the optimal solution and
that possesses some useful properties which we shall exploit
for designing our algorithms. Each coefficient in this solu-
tion is a multiple of a parameter that we are free to choose,
and it is a constant multiple of away from the ith wavelet
coefficient of . Further, without knowing the values of those
coefficients contributing to the reconstruction of a certain
point , we are guaranteed that during the incremental recon-
struction of using the cascade algorithm, every
in the support of is a constant multiple of away from

. This last property allows us to design our
algorithms in a bottom-up fashion making them suitable for data
streams. Finally, since we may choose , setting it appropriately
results in true factor approximation algorithms. Details of our
algorithms follow.

A. The Algorithm: A Simple Version

We will assume here that we know the optimal error . This
assumption can be circumvented by running instances
of the algorithm presented below “in parallel,” each with a dif-
ferent guess of the error. This will increase the time and space
requirements of the algorithm by a factor, which is
accounted for in Theorem 16 (and also in Theorem 18). We de-
tail the guessing procedure in Section V-A1. Our algorithm will
be given and the desired approximation parameter as inputs
(see Fig. 6).

The Haar wavelet basis naturally form a complete binary tree,
termed the coefficient tree, since their support sets are nested and
are of size powers of (with one additional node as a parent of
the tree). The data elements correspond to the leaves, and the co-
efficients correspond to the nonleaf nodes of the tree. Assigning
a value to the coefficient corresponds to assigning to all
the leaves that are left descendants (descendants of the left child)
and to all right descendants (recall the definition of ).
The leaves that are descendants of a node in the coefficient tree
are termed the support of the coefficient.

Definition 2: Let be the minimum possible contri-
bution to the overall error from all descendants of node using
exactly coefficients, under the assumption that ancestor coef-
ficients of will add up to the value at (taking account of the
signs) in the final solution.

The value will be set later for a subtree as more data arrive.
Note that the definition is bottom up and after we compute the
table, we do not need to remember the data items in the subtree.
As the reader would have guessed, this second property will be
significant for streaming.

The overall answer is —by the time we are
at the root, we have looked at all the data and no ancestors exist
to set a nonzero . A natural dynamic program arises whose idea
is as follows. Let and be node ’s left and right children
respectively. In order to compute , we guess the coeffi-
cient of node and minimize over the error produced by and

that results from our choice. Specifically, the computation is
as follows.

1) A nonroot node computes as follows:

where the upper term computes the error if the th coef-
ficient is chosen and its value is where is
the set of multiples of between and

; and the lower term computes the error
if the th coefficient is not chosen.

2) Then the root node computes

root coefficient is
root not chosen

where is the root’s only child.
The streaming algorithm will borrow from the paradigm of

reduce-merge. The high level idea will be to construct and main-
tain a small table of possibilities for each resolution of the data.
On seeing each item , we will first find out the best choices
of the wavelets of length one (over all future inputs) and then,
if appropriate, construct/update a table for wavelets of length

etc.
The idea of subdividing the data, computing some informa-

tion and merging results from adjacent divisions were used in
[27] for stream clustering. The stream computation of wavelets
in [24] can be viewed as a similar idea—where the divisions
corresponds to the support of the wavelet basis vectors.

Our streaming algorithm will compute the error arrays
associated with the internal nodes of the coefficient

tree in a post-order fashion. Recall that the wavelet basis
vectors, which are described in Section II, form a complete
binary tree. For example, the scaled basis vectors for nodes 4,
3, 1, and 2 in the tree of Fig. 5(a) are ,

and , respectively. The data elements
correspond to the leaves of the tree and the coefficients of the
synopsis correspond to its internal nodes.

We need not store the error array for every internal node
since, in order to compute our algorithm only requires
that and be known. Therefore, it is natural
to perform the computation of the error arrays in a post-order
fashion. An example best illustrates the procedure. Suppose

. In Fig. 5(a), when element arrives, the algo-
rithm computes the error array associated with , call it .
When element arrives is computed. The array
is then computed and and are discarded. Array is
computed when arrives. Finally the arrival of triggers the
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Fig. 5. Upon seeing x node 1 computes E[1; �; �] and the two error arrays
associated with x and x are discarded. Element x triggers the computation
of E[2; �; �] and the two error arrays associated with x and x are discarded.
Subsequently, E[3; �; �] is computed from E[1; �; �] and E[2; �; �] and both the
latter arrays are discarded. If x is the last element on the stream, the root’s
error array, E[3; �; �], is computed from E[2; �; �] (a) The arrival of the first three
elements. (b) The arrival of x .

computations of the rest of the arrays as in Fig. 5(b). Note that
at any point in time, there is only one error array stored at each
level of the tree. In fact, the computation of the error arrays re-
sembles a binary counter. We start with an empty queue of
error arrays. When arrives, is added to and the error
associated with is stored in it. When arrives, a temporary
node is created to store the error array associated with . It is
immediately used to compute an error array that is added to
as . Node is emptied, and it is filled again upon the ar-
rival of . When arrives: 1) a temporary is created to
store the error associated with ; 2) and are used to
create ; is discarded and is emptied; 3) and
are used to create which in turn is added to the queue;
is discarded and is emptied. The algorithm for is shown
in Fig. 6.

1) Guessing the Optimal Error: We have so far assumed that
we know the optimal error . As mentioned at the beginning
of Section V-A, we will avoid this assumption by running mul-
tiple instances of our algorithm and supplying each instance a
different guess of the error. We will also provide every in-
stance of the algorithm with as the approxi-
mation parameter. The reason for this will be apparent shortly.
Our final answer will be that of the instance with the minimum
representation error.

Theorem 16 shows that the running time and space require-
ments of our algorithm do not depend on the supplied error
parameter. However, the algorithm’s search ranges do depend
on the given error. Hence, as long as the ranges
searched by the kth instance will include the ranges specified
by Lemma 15. Lemma 15 also tells us that if we search these
ranges in multiples of , then we will find a solution whose

approximation guarantee is . Our algorithm
chooses so that its running time does not depend on the sup-
plied error parameter. Hence, given and , algorithm
sets . Consequently, its approximation
guarantee is .

Now if guess is much larger than the optimal error ,
then instance will not provide a good approximation of the
optimal representation. However, if , then ’s
guarantee will be because of our
choice of . To summarize, in order to obtain the desired
approximation, we simply need to ensure that one of our guesses
(call it ) satisfies

Setting , the above bounds will be satisfied when
.

Number of guesses: Note that the optimal error if and
only if has at most nonzero expansion coefficients .
We can find these coefficients easily in a streaming fashion.

Since we assume that the entries in the given are polynomi-
ally bounded, by the system of (1) we know that the optimum
error is at least as much as the largest coefficient.
Now any coefficient is the sum of the left half minus
the sum of the right half of the ’s that are in the support of
the basis and the total is divided by the length of the support.
Thus if the smallest nonzero number in the input is then the
smallest nonzero wavelet coefficient is at least . By the
same logic the largest nonzero coefficient is . Hence, it suf-
fices to make guesses.

B. Analysis of the Simple Algorithm

The size of the error table at node is
where and is

the height of node in the Haar coefficient tree (the leaves
have height 0). Note that in the Haar case. Computing
each entry of takes time where

. Hence, letting , the
total running time is for computing the root table
plus for computing all the other
error tables. Now

where the first equality follows from the fact that the number
of nodes at level is . For , when computing we
do not need to range over all values of . For a specific

, we can find the value of that minimizes
using binary search. The running

time thus becomes
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Fig. 6. The Haar streaming FPTAS for ` .

The bottom-up dynamic programming will require us to store
the error tables along at most two leaf to root paths. Thus the
required space is

Finally, since we have set
.

Theorem 16: Algorithm HaarPTAS computes a
approximation to the best -term unrestricted representation
of a signal in the Haar system using
space. Under the norm, the algorithm runs in time

. Under the running time be-
comes .

The extra factor in the space required by the algorithm
accounts for keeping track of the chosen coefficients.

C. An Improved Algorithm and Analysis

For large (compared to ), we gain in running time if we
change the rounding scheme given by Lemma 11. The granu-
larity at which we search for the value of a coefficient will be
fine if the coefficient lies toward the top of the tree, and it will
be coarse if the coefficient lies toward the bottom. The idea is
that, for small norms, a mistake in a coefficient high in the
tree affects everyone, whereas mistakes at the bottom are more
localized. This idea utilizes the strong locality property of the
Haar basis. We start with the lemma analogous to Lemma 11.

Lemma 17: Let be the optimal solu-
tion using the basis set for the reconstruction, i.e.,

and . Here is the height
of node in the Haar coefficient tree. Let be the set
where each is first rounded to the nearest multiple of

then the resulting value is rounded to the
nearest multiple of . If
then .

Proof: As in Lemma 11, we need to estimate
but using the new rounding scheme. Let

be the set of indices such that

The last inequality follows from the fact that components
of are equal to one and the rest are zero. The approximation
hence follows from and our choices of .

The granularity of the dynamic programming tables
is set according to the smallest , which is

. This allows their values to align
correctly. More specifically, when a coefficient is not chosen
we compute (see Section V-A)
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A value will that is not outside the range of and
will be a correct index into these two arrays. We gain

from this rounding scheme, however, when we are searching for
a value to assign to node . If is chosen, we can search for its
value in the range in multiples of . Hence,
as mentioned earlier, the granularity of our search will be fine
for nodes at top levels and coarse for nodes at lower levels. More
formally, if is chosen, we compute

where we search for the best in multiples of . The value
(respectively, ) may not index correctly into

(respectively, ) since where
. Hence, we need to round each value of we wish

to check to the nearest multiple of . This extra rounding is
accounted for in Lemma 17.

Letting be the number of values each table holds and
be the number of entries we search at node , and

using an analysis similar to that of Section V-B, the running time
(ignoring constant factors) becomes

Hence, since based on the granularity
, the running time for each instance of the algorithm is

. The space requirement is the same as
that of the simpler algorithm; namely, .

Theorem 18: The above algorithm (with the new rounding
scheme) is a space algorithm that com-
putes a approximation to the best -term unrestricted
representation of a signal in the Haar system under the norm.
The algorithm runs in time .

Again, and as in Theorem 16, the extra factor in the space
requirement accounts for keeping track of the chosen coeffi-
cients, and the extra factor in both the space and time re-
quirements accounts for the guessing of the error.

We choose the better of the two algorithms (or rounding
schemes) whose approximation and time and space require-
ments are guaranteed by Theorems 16 and 18.

VI. EXTENSIONS

A. PTAS for Multidimensional Haar Systems

Our algorithm and analysis from Section V extend to mul-
tidimensional Haar wavelets when the dimension is a given

constant. For define mother wavelets (see also
[12], [18]). For all integers let

where is the binary representation of and
. For we obtain the -dimensional scaling

function . At scale and for
define

The family is an orthonormal
basis of [3, Th. 7.25]. Note that in multidimen-
sions, we define and

which is analogous to Definition 1. Thus
since .

Also . Each node in the coefficient tree has
children and corresponds to coefficients (assuming
the input is a hypercube). The structure of the coefficient tree
will result in a increase in running time over the
one-dimensional case where .

As in Section V-A, we associate an error array
with each node in the tree where is the result of the choices
of ’s ancestors and is the number of coefficients
used by the subtree rooted at . The size of each table is thus

where is the level of the tree to which
belongs. When computing an entry in the table, we
need to choose the best nonzero subset of the coeffi-
cients that belong to the node and the best assignment of values
to these coefficients. These choices contribute a factor

to the time complexity. We also have to choose
the best partition of the remaining coefficients into
parts adding another factor to the running time. We
can avoid the latter factor by ordering the search among the
node’s children as in [12], [18]. Each node is broken into
subnodes: Suppose node has children ordered in
some manner. Then subnode , will have as its left child and
subnode as its right child. Subnode will have
and as its children. Now all subnode needs to do is search
for the best partition of into two parts as usual. Specifically,
fix and the values given to the coefficients in . For each

with , each subnode starting
from computes the best allotment of coefficients to
its children. This process takes time per
subnode. For the bounds are better. All the error arrays for
the subnodes are discarded before considering the next choice
of and values assigned to its elements. Hence, assuming the
input is of size , and since there are nodes per level
of the coefficient tree, the total running time is

where we dropped the constant factors involving in the final
expression. Finally, recall from Section V-A, that we need to
make guesses for the error .
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B. QPTAS for General Compact Systems

We show a simple dynamic programming algorithm that finds
a -approximation to the wavelet synopsis construction
problem under the norm. The algorithm uses

time and space. Under the norm, the al-

gorithm uses time and space. We will describe
the algorithm for the Daubechies wavelet under the norm.
Recall that the Daubechies filters have nonzero coefficients.

For a given subproblem, call an edge an interface edge if ex-
actly one of its endpoints is in the subproblem. Each interface
edge has a value associated with it which is eventually deter-
mined at a later stage. We will maintain that each subproblem
has at most interface edges. A subproblem has a table

associated with it where for each and each configura-
tion of values on interface edges, stores the minimum
contribution to the overall error when the subproblem uses
coefficients and the interface configuration is . From Lemma
15, setting for some suitably large con-
stant , each interface edge can have one of
values under the norm. Hence, the size of is bounded by

.
The algorithm starts with an initialization phase that creates

the first subproblem. This phase essentially flattens the cone-
shape of the coefficient graph, and the only difference between
it and later steps is that it results in one subproblem as opposed to
two. We select any consecutive leaves in the coefficient graph
and their ancestors. This is at most nodes. We will guess
the coefficients of the optimal solution associated with this set
of nodes. Again, from Lemma 15, each coefficient can take one
of values under the norm. For each of the

guesses, we will run the second phase
of the algorithm.

In the second phase, given a subproblem , we first select the
‘middle’ leaves and their ancestors. Call this strip of nodes

. Note that . The nodes in break into two
smaller subproblems and (see Fig. 7). Suppose we have

and , the two error arrays associated with and re-
spectively. We compute each entry as follows. First, we
guess the nonzero coefficients of the optimal solution associ-
ated with the nodes in and their values. Combined with the
configuration , these values define a configuration (respec-
tively, ) for the interface edges of (respectively, ) in the
obvious way. Furthermore, they result in an error associated
with the leaf nodes in . Hence

Therefore, computing each entry in takes at most
time. The running time of the

algorithm follows.

Theorem 19: We can compute a approximation to
the best -term unrestricted representation of a compact system
under the norm in time .

The result also extends to norms, but remains a quasipoly-
nomial time algorithm. The main point of the above theorem is
that the representation problem is not MAX-SNP-HARD.

Fig. 7. An example subproblem. The shaded nodes belong to the strip S.
The edges crossing the ‘frontier’ are interface edges.

C. Workloads

The algorithm and analysis from Section V also extend to
weighted cases/workloads under the same assumptions as in
[16]. Namely, given and where and

, we wish to find a solution with at most nonzero
coefficients that minimizes

Letting and , we will show how
our approximation algorithm extends to this case with a factor

increase in its space requirement and a factor increase
in running time.

The following three lemmas are analogs of Lemmas 11, 14,
and 12, respectively. The first two are straightforward, but note
the factor in the additive approximation.

Lemma 20: Let be the optimal solution using the basis
set for the reconstruction, i.e., and

. Let be the set where each is rounded to the
nearest multiple of . If then

.

Lemma 21: for
some constant .

Lemma 22: for some
constant .

Proof: For all we have .
Multiplying by and summing over all we get

completing the proof.
Hence, setting for some suit-

ably large constant , we get the desired approximation
with from the analysis above equal to

.
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D. Quality Versus Time

A natural question arises, if we were interested in the re-
stricted synopses only, can we develop streaming algorithms
for them? The answer reveals a rich tradeoff between synopsis
quality and running time.

Observe that if at each node we only consider either storing
the coefficient or , then we can limit the search significantly.
Instead of searching over all to the left and to the
right in the dynamic program (which we repeat below)

we only need to search for —observe that a
streaming algorithm can compute (See [24]). However
we have to “round” to a multiple of since we are
storing the table corresponding to the multiples of between

and . We consider the better
of rounding up or rounding down to the nearest multiple
of . The running time improves by a factor of in this case
since in order to compute each entry we are now considering
only two values of (round up/down) instead of the entire
set. The overall running time is in the general case
and for the variants. The space bound and
the approximation guarantees remain unchanged. However the
guarantee is now against the synopsis which is restricted to
storing wavelet coefficients.

The above discussion sets the ground for investigating a
variety of Hybrid algorithms where we choose different search
strategies for each coefficient. We introduced this idea in [43]
but in the context of a weaker approximation strategy. One
strategy we explore in Section VIII is to allow the root node to
range over the set while considering the better of rounding
up or rounding down to the nearest multiple of for all
other coefficients . We show that this simple modifica-
tion improves on the quality of the restricted synopsis and on
the running time of the unrestricted algorithm.

VII. BEST BASIS SELECTION FROM A DICTIONARY

In this section, we show how our algorithms can be extended
to find representations in certain types of tree-structured dictio-
naries. Specifically, the dictionaries we consider are full binary
tree-structured dictionaries composed of compactly supported
wavelets. Given and such a dictionary , we
now wish to find the best -term representation of in a basis
from . Notice that we seek both the best basis in for repre-
senting using terms and the best -term representation of

in this basis. The error of the representation is its distance
from . We show in Theorem 25 how our algorithms from the
previous sections can be used to find provable approximate an-
swers to this bicriteria optimization problem.

We start with the description of our tree-structured dictio-
naries. Similar to Coiffman and Wickerhauser [21], our dictio-
naries will be composed of vectors, and will contain

bases: equal to the number of cuts in a complete binary
tree.

Let and let be
the discrete dyadic window that is in and
zero elsewhere. Each node in is labeled by

, where is the height of the node in
the tree (the root is at height ), and is the number of nodes
to its left that are at the same height in a complete binary tree.
With each node we associate the subspace of
that exactly includes all functions whose support lies in

. Clearly, .
Now suppose is an orthonormal basis for
. Then

is an orthonormal basis for .

Proposition 23: For any internal node in the dictionary
and are orthogonal, and

We can thus construct an orthonormal basis of via a
union of orthonormal bases of and .

Corollary 24: Let be the set of nodes corre-
sponding to a cut in the dictionary tree. We have

Hence, there are bases in our dictionary.
The main result of this section follows. We prove it under the
error measure. The argument is extended to general error

measures in a straightforward manner.

Theorem 25: If is an (streaming) algorithm that achieves a
-approximation for the -term representation problem under

(for any wavelet included in the dictionary ), then is
a (streaming) -approximation for the bicriteria representation
problem.

Proof: Let be the minimum contribution to the
overall error (as computed by ) from representing the block

using vectors from a basis of . Call the basis
that achieves this error the best basis for and denote it by

. By Proposition 23 there are possible bases
for the space in . Now if is a leaf node, then

, which is the error resulting
from representing the block using vectors from
the basis . Otherwise, if is an internal node,
equals

and
if

else

where is the argument that minimizes the top expression
in .
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Fig. 8. The ` error of the three algorithms, UNREST, REST, and HYBRID for the two data sets. (a) Error for the Saw data set (n = 2048) (b) Error for the
Dow data set (n = 16384).

Suppose OPT chooses the cut with the corre-
sponding partition of and we choose the cut
with partition . By the dynamic program above, we have

(6a)

(6b)

(6c)

OPT (6d)

OPT (6e)

where (6b) follows from the fact that our dynamic program
chooses the best cut and corresponding partition of among

all possible cuts and partitions based on the errors computed by
algorithm ; (6c) follows from the definition of our dynamic
programming table entries ; (6c) follows from the as-
sumption that is a -approximation algorithm; and (6e) fol-
lows from the optimal substructure property of our problem.

VIII. COMPARING RESTRICTED AND UNRESTRICTED

OPTIMIZATIONS

We consider two issues in this section, namely, 1) the quality
of the unrestricted version vis-a-vis the restricted optimum solu-
tion and 2) the running times of the algorithms. We will restrict
our experiments to the norm.
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Fig. 9. Running times for prefixes of the Dow data set.

A. The Algorithms

All experiments reported in this section were performed on a
2-CPU Pentium-III 1.4 GHz with 2GB of main memory, run-
ning Linux. All algorithms were implemented using version
3.3.4 of the gcc compiler.

We show the performance figures of the following schemes:
REST This characterizes the algorithms for the restricted
version of the problem. This is the time space
algorithm in [17] (see also [14], [15], and [18]).
UNREST This is the streaming algorithm for the full gen-
eral version described in Algorithm HaarPTAS based on
the discussion in Section V.8

HYBRID This is the streaming hybrid algorithm proposed
in Section VI-D.

Note that the UNREST and HYBRID algorithms are not the
additive approximation algorithms in [43] (although we kept the
same names).

B. The Data Sets

We chose a synthetic data set to showcase the point made in
the introduction about the suboptimality of the restricted ver-
sions. Otherwise we use a publicly available real life data set
for our experiment.

• Saw: This is a periodic data set with a line repeated eight
times, with 2048 values total.

• DJIA data set: We used the Dow-Jones Industrial Average
(DJIA) data set available at StatLib9 that contains Dow-
Jones Industrial Average (DJIA) closing values from
to . There were a few negative values (e.g., ), which
we removed. We focused on prefixes of the data set of sizes
up to .

8The implementation is available at http://www.cis.upenn.edu/~boulos/
publications.

9See http://lib.stat.cmu.edu/datasets/djdc0093.

C. Quality of Synopsis

The errors as a function of are shown in Fig. 8(a) and
(b). The in the approximation algorithms UNREST and HY-
BRID was set to . All the algorithms gave very similar syn-
opses for the Saw data and had almost the same errors. In case
of the Dow data we show the range onward since the
maximum value is and the large errors for (for all
algorithms) bias the scale making the differences in the more
interesting ranges not visible. The algorithm REST has more
than 20% worse error compared to UNREST or requires over
35% more coefficients to achieve the same error (for most error
values). The HYBRID algorithm performs consistently in the
middle.

D. Running Times

Fig. 9 shows the running times of the algorithms as the prefix
size is varied for the Dow data. As mentioned above was set
to . The grid in the log-log plot helps us clearly identify the
quadratic nature of REST. The algorithms UNREST and HY-
BRID behave linearly as is expected from streaming algorithms.
Given its speed and quality, the HYBRID algorithm seems to be
the best choice from a practical perspective.
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