6 research outputs found

    Novel illumination algorithms for off-line and real-time rendering

    Get PDF
    This thesis presents new and efficient illumination algorithms for off-line and real-time rendering. The realistic rendering of arbitrary indirect illumination is a difficult task. Assuming ray optics model of light, the rendering equation describes the propagation of light in the scene with high accuracy. However, the computation is expensive, and thus even in off-line rendering, i.e., in prerendered animations, indirect illumination is often approximated as it would otherwise constitute a bottleneck in the production pipeline. Indirect illumination can be computed using Monte Carlo integration, but when restrained to a reasonable amount of computation time, the result is often corrupted by noise. This thesis includes a method that effectively reduces the noise by applying a spatially varying filter to the noisy illumination. For real-time performance, some components of indirect illumination can be precomputed. Irradiance volume and many variations of it precompute reflections and shadowing of a static scene into a volumetric data structure. This data is then used to shade dynamic objects in real-time. The practical usage of the method is limited due to aliasing artifacts. This thesis shows that with a suitable super-sampling approach, a significant quality improvement can be obtained. Another direction is to precompute how light propagates in the scene and use the precomputed data during run-time to solve both direct and indirect illumination based on the known incident lighting. To keep the memory and precomputation costs tractable, these methods are typically restricted to infinitely distant lighting. Those that are not, require a very long precomputation time. This thesis presents an algorithm that adopts a wavelet-based hierarchical finite element method for the precomputation. A significant performance improvement over the existing techniques is obtained. When full global illumination cannot be afforded, ambient occlusion is an attractive alternative. This thesis includes two methods for real-time rendering of ambient occlusion in dynamic scenes. The first method models the shadowing of ambient light between rigid moving bodies. The second method gives a data-oriented solution for rendering approximate ambient occlusion for animated characters in real-time. Both methods achieve unprecedented efficiency.reviewe

    Theory and algorithms for efficient physically-based illumination

    Get PDF
    Realistic image synthesis is one of the central fields of study within computer graphics. This thesis treats efficient methods for simulating light transport in situations where the incident illumination is produced by non-pointlike area light sources and distant illumination described by environment maps. We describe novel theory and algorithms for physically-based lighting computations, and expose the design choices and tradeoffs on which the techniques are based. Two publications included in this thesis deal with precomputed light transport. These techniques produce interactive renderings of static scenes under dynamic illumination and full global illumination effects. This is achieved through sacrificing the ability to freely deform and move the objects in the scene. We present a comprehensive mathematical framework for precomputed light transport. The framework, which is given as an abstract operator equation that extends the well-known rendering equation, encompasses a significant amount of prior work as its special cases. We also present a particular method for rendering objects in low-frequency lighting environments, where increased efficiency is gained through the use of compactly supported function bases. Physically-based shadows from area and environmental light sources are an important factor in perceived image realism. We present two algorithms for shadow computation. The first technique computes shadows cast by low-frequency environmental illumination on animated objects at interactive rates without requiring difficult precomputation or a priori knowledge of the animations. Here the capability to animate is gained by forfeiting indirect illumination. Another novel shadow algorithm for off-line rendering significantly enhances a previous physically-based soft shadow technique by introducing an improved spatial hierarchy that alleviates redundant computations at the cost of using more memory. This thesis advances the state of the art in realistic image synthesis by introducing several algorithms that are more efficient than their predecessors. Furthermore, the theoretical contributions should enable the transfer of ideas from one particular application to others through abstract generalization of the underlying mathematical concepts.Tämä tutkimus käsittelee realististen kuvien syntetisointia tietokoneella tilanteissa, jossa virtuaalisen ympäristön valonlähteet ovat fysikaalisesti mielekkäitä. Fysikaalisella mielekkyydellä tarkoitetaan sitä, että valonlähteet eivät ole idealisoituja eli pistemäisiä, vaan joko tavanomaisia pinta-alallisia valoja tai kaukaisia ympäristövalokenttiä (environment maps). Väitöskirjassa esitetään uusia algoritmeja, jotka soveltuvat matemaattisesti perusteltujen valaistusapproksimaatioiden laskentaan erilaisissa käyttötilanteissa. Esilaskettu valonkuljetus on yleisnimi reaaliaikaisille menetelmille, jotka tuottavat kuvia staattisista ympäristöistä siten, että valaistus voi muuttua ajon aikana vapaasti ennalta määrätyissä rajoissa. Tässä työssä esitetään esilasketulle valonkuljetukselle kattava matemaattinen kehys, joka selittää erikoistapauksinaan suuren määrän aiempaa tutkimusta. Kehys annetaan abstraktin lineaarisen operaattoriyhtälön muodossa, ja se yleistää tunnettua kuvanmuodostusyhtälöä (rendering equation). Työssä esitetään myös esilasketun valonkuljetuksen algoritmi, joka parantaa aiempien vastaavien menetelmien tehokkuutta esittämällä valaistuksen funktiokannassa, jonka ominaisuuksien vuoksi ajonaikainen laskenta vähenee huomattavasti. Fysikaalisesti mielekkäät valonlähteet tuottavat pehmeäreunaisia varjoja. Työssä esitetään uusi algoritmi pehmeiden varjojen laskemiseksi liikkuville ja muotoaan muuttaville kappaleille, joita valaisee matalataajuinen ympäristövalokenttä. Useimmista aiemmista menetelmistä poiketen algoritmi ei vaadi esitietoa siitä, kuinka kappale voi muuttaa muotoaan ajon aikana. Muodonmuutoksen aiheuttaman suuren laskentakuorman vuoksi epäsuoraa valaistusta ei huomioida. Työssä esitetään myös toinen uusi algoritmi pehmeiden varjojen laskemiseksi, jossa aiemman varjotilavuuksiin (shadow volumes) perustuvan algoritmin tehokkuutta parannetaan merkittävästi uuden hierarkkisen avaruudellisen hakurakenteen avulla. Uusi rakenne vähentää epäoleellista laskentaa muistinkulutuksen kustannuksella. Työssä esitetään aiempaa tehokkaampia algoritmeja fysikaalisesti perustellun valaistuksen laskentaan. Niiden lisäksi työn esilaskettua valonkuljetusta koskevat teoreettiset tulokset yleistävät suuren joukon aiempaa tutkimusta ja mahdollistavat näin ideoiden siirron erityisalalta toiselle.reviewe

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Wavelet radiance transport for interactive indirect lighting

    Get PDF
    viewpoint can be modified interactively. The precomputation time was 23 minutes. Global illumination is a complex all-frequency phenomenon including subtle effects caused by indirect lighting. Computing global illumination interactively for dynamic lighting conditions has many potential applications, notably in architecture, motion pictures and computer games. It remains a challenging issue, despite the considerable amount of research work devoted to finding efficient methods. This paper presents a novel method for fast computation of indirect lighting; combined with a separate calculation of direct lighting, we provide interactive global illumination for scenes with diffuse and glossy materials, and arbitrarily distributed point light sources. To achieve this goal, we introduce three new tools: a 4D wavelet basis for concise radiance expression, an efficient hierarchical pre-computation of the Global Transport Operator representing the entire propagation of radiance in the scene in a single operation, and a run-time projection of direct lighting on to our wavelet basis. The resulting technique allows unprecedented freedom in the interactive manipulation of lighting for static scenes. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realis

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation
    corecore