9,906 research outputs found

    Adaptive ℋ∞-control for nonlinear systems: a dissipation theoretical approach

    Get PDF
    The adaptive ℋ∞-control problem for parameter-dependent nonlinear systems with full information feedback is considered. The techniques from dissipation theory as well as the vector and parameter projection methods are used to derive the adaptive ℋ∞-control laws. Both of the projection techniques are rigorously treated. The adaptive robust stabilization for nonlinear systems with ℒ2-gain hounded uncertainties is investigated

    Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation

    Full text link
    This article constitutes the final and main part of a three-paper sequence, whose goal is to prove global well-posedness and scattering of the energy critical Maxwell-Klein-Gordon equation (MKG) on R1+4\mathbb{R}^{1+4} for arbitrary finite energy initial data. Using the successively stronger continuation/scattering criteria established in the previous two papers, we carry out a blow-up analysis and deduce that the failure of global well-posedness and scattering implies the existence of a nontrivial stationary or self-similar solution to MKG. Then, by establishing that such solutions do not exist, we complete the proof.Comment: 64 page

    Nonconcentration of energy for a semilinear Skyrme model

    Full text link
    We continue our investigation of a model introduced by Adkins and Nappi, in which omega mesons stabilize chiral solitons. The aim of this article is to show that the energy associated to equivariant solutions does not concentrate.Comment: 12 pages, 2 figure

    A vector field method for relativistic transport equations with applications

    Full text link
    We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless transport equations, without any compact support requirements (in xx or vv) for the distribution functions. In the second part of this article, we apply our method to the study of the massive and massless Vlasov-Nordstr\"om systems. In the massive case, we prove global existence and (almost) optimal decay estimates for solutions in dimensions n4n \geq 4 under some smallness assumptions. In the massless case, the system decouples and we prove optimal decay estimates for the solutions in dimensions n4n \geq 4 for arbitrarily large data, and in dimension 33 under some smallness assumptions, exploiting a certain form of the null condition satisfied by the equations. The 33-dimensional massive case requires an extension of our method and will be treated in future work.Comment: 72 pages, 3 figure

    Decay of the Maxwell field on the Schwarzschild manifold

    Get PDF
    We study solutions of the decoupled Maxwell equations in the exterior region of a Schwarzschild black hole. In stationary regions, where the Schwarzschild coordinate rr ranges over 2M<r1<r<r22M < r_1 < r < r_2, we obtain a decay rate of t1t^{-1} for all components of the Maxwell field. We use vector field methods and do not require a spherical harmonic decomposition. In outgoing regions, where the Regge-Wheeler tortoise coordinate is large, r>ϵtr_*>\epsilon t, we obtain decay for the null components with rates of ϕ+α<Cr5/2|\phi_+| \sim |\alpha| < C r^{-5/2}, ϕ0ρ+σ<Cr2tr1/2|\phi_0| \sim |\rho| + |\sigma| < C r^{-2} |t-r_*|^{-1/2}, and ϕ1α<Cr1tr1|\phi_{-1}| \sim |\underline{\alpha}| < C r^{-1} |t-r_*|^{-1}. Along the event horizon and in ingoing regions, where r<0r_*<0, and when t+r1t+r_*1, all components (normalized with respect to an ingoing null basis) decay at a rate of C \uout^{-1} with \uout=t+r_* in the exterior region.Comment: 37 pages, 5 figure
    corecore