67 research outputs found

    Numerical Simulations of Spread Characteristics of Toxic Cyanide in the Danjiangkou Reservoir in China under the Effects of Dam Cooperation

    Get PDF
    Many accidents of releasing toxic pollutants into surface water happen each year in the world. It is believed that dam cooperation can affect flow field in reservoir and then can be applied to avoiding and reducing spread speed of toxic pollutants to drinking water intake mouth. However, few studies investigated the effects of dam cooperation on the spread characteristics of toxic pollutants in reservoir, especially the source reservoir for water diversion with more than one dam. The Danjiangkou Reservoir is the source reservoir of the China’ South-to-North Water Diversion Middle Route Project. The human activities are active within this reservoir basin and cyanide-releasing accident once happened in upstream inflow. In order to simulate the spread characteristics of cyanide in the reservoir in the condition of dam cooperation, a three-dimensional water quality model based on the Environmental Fluid Dynamics Code (EFDC) has been built and put into practice. The results indicated that cooperation of two dams of the Danjiangkou Reservoir could be applied to avoiding and reducing the spread speed of toxic cyanide in the reservoir directing to the water intake mouth for water diversions

    Kinetics and Mechanisms of Phosphorus Adsorption in Soils from Diverse Ecological Zones in the Source Area of a Drinking-Water Reservoir.

    Get PDF
    On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils' chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters

    Structural Characteristics and Driving Factors of the Planktonic Eukaryotic Community in the Danjiangkou Reservoir, China

    Get PDF
    Planktonic eukaryotes are widespread in aquatic ecosystems, and the study of their community composition and driving factors is of great significance to protecting and maintaining the balance of these ecosystems. This study evaluates five typical ecological sites in the Danjiangkou Reservoir—the water source for the project. This was done to comprehensively understand the composition of Danjiangkou Reservoir planktonic eukaryotes, and ensure the ecological balance of the water source for the South-to-North Water Diversion Project. The diversity of the planktonic eukaryotes in surface water and the factors driving changes in their abundance are analyzed with an 18S ribosomal DNA sequencing approach. Monitoring shows that the Danjiangkou Reservoir has good water quality. The Danjiangkou Reservoir planktonic eukaryote community is mainly composed of 11 phyla, of which Cryptomonadales is dominant, accounting for an average percentage of 65.19% of the community (47.2–84.90%). LEFSe analysis shows significant differences among samples in the abundances of 13 phyla, 20 classes, 23 orders, 26 families, and 27 genera, and there are also significant differences in the diversity of planktonic eukaryotes at different temporal and spatial scales. Redundancy analysis (RDA) show that water temperature, DO, SD, TN, and Chla are significant factors that affect the composition of the planktonic eukaryote community. Spearman rank correlation analysis combined with taxonomic difference analysis shows that Kathablepharidae and Choanoflagellida are not sensitive to environmental or physicochemical factors and that the interannual variations in their abundance are not significant. Network analysis shows that Protalveolata, Basidiomycota, P1-31, Bicosoecida, and Ochrophyta represent important nodes in the single-factor network, while Chytridiomycota, P1-31, Cryptomycota, Ochrophyta, Ichthyosporea, Bicosoecida, Protalveolata, and physicochemical factors (ORP, TN, WT, DO, SD, NH3-N, and NO3-N) represent important nodes in the two-factor network

    Bioassessment of a Drinking Water Reservoir Using Plankton: High Throughput Sequencing vs. Traditional Morphological Method

    Get PDF
    Drinking water safety is increasingly perceived as one of the top global environmental issues. Plankton has been commonly used as a bioindicator for water quality in lakes and reservoirs. Recently, DNA sequencing technology has been applied to bioassessment. In this study, we compared the effectiveness of the 16S and 18S rRNA high throughput sequencing method (HTS) and the traditional optical microscopy method (TOM) in the bioassessment of drinking water quality. Five stations reflecting different habitats and hydrological conditions in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia, were sampled May 2016. Non-metric multi-dimensional scaling (NMDS) analysis showed that plankton assemblages varied among the stations and the spatial patterns revealed by the two methods were consistent. The correlation between TOM and HTS in a symmetric Procrustes analysis was 0.61, revealing overall good concordance between the two methods. Procrustes analysis also showed that site-specific differences between the two methods varied among the stations. Station Heijizui (H), a site heavily influenced by two tributaries, had the largest difference while station Qushou (Q), a confluence site close to the outlet dam, had the smallest difference between the two methods. Our results show that DNA sequencing has the potential to provide consistent identification of taxa, and reliable bioassessment in a long-term biomonitoring and assessment program for drinking water reservoirs

    Measuring dynamic changes in the spatial pattern and connectivity of surface waters based on landscape and graph metrics: A case study of henan province in central china

    Get PDF
    An understanding of the scientific layout of surface water space is crucial for the sustainable development of human society and the ecological environment. The objective of this study was to use land-use/land-cover data to identify the spatiotemporal dynamic change processes and the influencing factors over the past three decades in Henan Province, central China. Multidisciplinary theories (landscape ecology and graph theory) and methods (GIS spatial analysis and SPSS correlation analysis) were used to quantify the dynamic changes in surface water pattern and connectivity. Our results revealed that the water area decreased significantly during the periods of 1990–2000 and 2010–2018 due to a decrease in tidal flats and linear waters, but increased significantly in 2000–2010 due to an increase in patchy waters. Human construction activities, socioeconomic development and topography were the key factors driving the dynamics of water pattern and connectivity. The use of graph metrics (node degree, betweenness centrality, and delta probability of connectivity) in combination with landscape metrics (Euclidean nearest-neighbor distance) can help establish the parameters of threshold distance between connected habitats, identify hubs and stepping stones, and determine the relatively important water patches that require priority protection or development

    Drivers of Spatiotemporal Eukaryote Plankton Distribution in a Trans-Basin Water Transfer Canal in China

    Get PDF
    Planktonic eukaryotes are important components of aquatic ecosystems, and analyses of the whole eukaryotic planktonic community composition and function have far-reaching significance for water resource management. We aimed to understand the spatiotemporal variation and drivers of eukaryotic plankton distribution in the Middle Route Project of the South-to-North Water Diversion in Henan Province, China. Specifically, we examined planktonic assemblages and water quality at five stations along the canal and another one located before the dam in March, June, September, and December 2019. High-throughput sequencing revealed that the eukaryotic plankton community was primarily composed of 53 phyla, 200 genera, and 277 species, with Cryptophyta, Ciliophora, and norank_k_Cryptophyta being the dominant phyla. Redundancy analysis of the eukaryotic community and environmental factors showed that five vital factors affecting eukaryotic plankton distribution were oxidation-reduction potential, nitrate nitrogen, pH, total phosphorus, and water flow velocity. Furthermore, the geographical distribution of eukaryotic communities was consistent with the distance decay model. Importantly, environmental selection dominantly shaped the geographical distribution of the eukaryotic community. In summary, our study elucidates the ecological response of planktonic eukaryotes by identifying the diversity and ecological distribution of planktonic eukaryotes in trans-basin diversion channels

    The Politics of Water Resource Management: State-Guided Framing of China’s South to North Water Diversion Project and its Impact on Citizen Perception

    Get PDF
    Due to China’s geographic and human-exacerbated water scarcity, government leaders have turned to the South to North Water Diversion Project (SNWDP) in order to ensure a reliable source of water for the country’s increasingly parched Northern cities and townships. This thesis examines this inter-basin water transfer project (soon to be the world’s largest) through the lens of how government actors have framed the project. This official framing analysis is presented in tandem with citizen perceptions observed through online commentary in order to evaluate how effective such framing has been. Through such analysis, this research observes a pattern of nationalism and utilitarianism within state framing which is largely echoed in citizen commentary

    Effects of environmental factors on vertical distribution of the eukaryotic plankton community in early summer in Danjiangkou Reservoir, China

    Get PDF
    IntroductionEukaryotic plankton plays crucial roles in ecosystem processes, impacting aquatic ecosystem stability. This study focuses on Danjiangkou Reservoir, a canyon lake in central China, that acts as the water source of the Mid-route of the South-to-North Water Diversion Project.MethodsIn this study, high-throughput 18S rDNA gene sequencing was employed to investigate eukaryotic plankton community at four water depths (0.5 m, 5 m, 10 m, and 20 m). The environmental factors including pH, water temperature (WT), nitrate nitrogen (NO3−-N), ammonia nitrogen (NH4+-N), total nitrogen (TN), conductivity (Cond), and dissolved oxygen (DO) in reservoir areas were measured, and their correlations with abundance and diversity of eukaryotic plankton were analyzed.ResultsThe results showed the presence of 122 genera of eukaryotic plankton from 38 phyla. Eukaryotic plankton communities were mainly composed of Eurytemora, Thermocyclops, Sinocalanus, Mesocyclops, and Cryptomonas. In particular, significant differences in the diversity of eukaryotic plankton communities were found in vertical distribution. The diversity and abundance of eukaryotic plankton communities in 7 sampling sites decreased with the increase of depth from 0.5 to 10 m, while the diversity and abundance of plankton communities increased at 20 m. RDA analysis indicated that pH, depth, WT, NH4+-N, DO, Cond, and NO3−-N could influence the vertical distribution of the eukaryotic plankton community in the Danjiangkou Reservoir. Among these eukaryotic plankton, Eurytemora, Thermocyclops, and Volvox were negatively correlated with pH and WT and positively correlated with depth.DiscussionThis study revealed a novel perspective on the distribution of the eukaryotic plankton community in Danjiangkou Reservoir, particularly in terms of vertical variation, which will be helpful to comprehensively understand ecological processes and to further ensure the water quality safety in this canyon-style reservoir

    Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South‐to‐North Water Diversion

    Get PDF
    Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production

    Algal proliferation risk assessment using Vine Copula-based coupling methods in the South-to-North Water Diversion Project of China

    Get PDF
    The Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC), i.e., the longest inter-basin water diversion project (1,432 km) in the world, has delivered more than 60 billion m3 of water resources to North China and benefiting more than 100 million people since December 2014. However, the abnormal algal proliferation in the main canal under low nutrient background has seriously threatened the water quality safety of this mega project. In this research, 3 years of monitoring data matrix, including water temperature (WT), flow discharge (Q), flow velocity (V), dissolved oxygen (DO), and the algal cell density (ACD), from the main canal of the MRSNWDPC were analyzed. The nonlinear relationships were determined based on multiple regression models, and a composite risk analysis model was constructed by Latin hypercube sampling (LHS) method coupled with Vine Copula function. The impacts of different hydrological and environmental factors on algal proliferation were comprehensively analyzed by Bayesian theory. The results showed that the WT gradually decreased from upstream to downstream, with a narrow range of 16.6–17.4°C, and the annual average concentrations of DO showed a gradual increase from upstream to downstream. The flow velocity of MRSNWDPC had a tendency to increase year by year, and the maximum flow velocity exceeds 0.8 m/s upstream, midstream and downstream by 2018. The ACD accumulated along the main canal, and the annual average ACDs of downstream were the highest, ranging from 366.17 to 462.95 × 104 cells/L. The joint early-warning method considering both water temperature and flow velocity conditions is an effective way for algal proliferation risk warning management. When water temperatures of the upstream, midstream, and downstream were below 26, 26, and 23°C, respectively, the algal proliferation risk can be controlled under 50% by the flow velocity at 0.3 m/s; otherwise, the flow velocity needs to be regulated higher than 0.8 m/s. In order to keep the midstream and downstream avoid abnormal algal proliferation events (ACD ≥ 500 × 104 cells/L), the corresponding ACDs of the upstream and midstream need to be controlled lower than 319 × 104 cells/L and 470 × 104 cells/L, respectively. This study provides a scientific reference for the long-distance water diversion project’s algal control and environmental protection. The proposed coupling Vine Copula models can also be widely applied to multivariate risk analysis fields
    corecore