3 research outputs found

    Estimating biophysical variables of pasture cover using sentinel-1 data

    Get PDF
    Over the years, different optical remote sensing platforms and data have been used to estimate aboveground pasture biomass in a variety of landscapes, both heterogeneous and homogenous and at varying spatial scales. Optical methods are often confounded by target visibility, namely presence of cloud cover and haze, and are constrained to daylight conditions. In this study, we used the synthetic aperture radar data from the European Space Agency Sentinel-1 mission to estimate pasture biomass, sward height and leaf area index of a complex extensive grazing ‘farmscape’ comprising of a range of grass vegetation communities We observed that the quality of digital elevation model used in radar data pre-processing significantly influences the ability of eigenvector scattering decomposition in estimating biomass, sward height and leaf area index

    Fire

    Get PDF
    Vegetation plays a crucial role in regulating environmental conditions, including weather and climate. The amount of water and carbon dioxide in the air and the albedo of our planet are all influenced by vegetation, which in turn influences all life on Earth. Soil properties are also strongly influenced by vegetation, through biogeochemical cycles and feedback loops (see Volume 1A—Section 4). Vegetated landscapes on Earth provide habitat and energy for a rich diversity of animal species, including humans. Vegetation is also a major component of the world economy, through the global production of food, fibre, fuel, medicine, and other plantbased resources for human consumptio
    corecore