285 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Neural-Kalman Schemes for Non-Stationary Channel Tracking and Learning

    Get PDF
    This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM), a widely-used method of data transmission in wireless communications, when abrupt changes occur in the channel. In highly mobile applications, new dynamics appear that might make channel tracking non-stationary, e.g. channels might vary with location, and location rapidly varies with time. Simple examples might be the di erent channel dynamics a train receiver faces when it is close to a station vs. crossing a bridge vs. entering a tunnel, or a car receiver in a route that grows more tra c-dense. Some of these dynamics can be modelled as channel taps dying or being reborn, and so tap birth-death detection is of the essence. In order to improve the quality of communications, we delved into mathematical methods to detect such abrupt changes in the channel, such as the mathematical areas of Sequential Analysis/ Abrupt Change Detection and Random Set Theory (RST), as well as the engineering advances in Neural Network schemes. This knowledge helped us nd a solution to the problem of abrupt change detection by informing and inspiring the creation of low-complexity implementations for real-world channel tracking. In particular, two such novel trackers were created: the Simpli- ed Maximum A Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF) schemes. The SMAP is a computationally inexpensive, threshold-based abrupt-change detector. It applies the three following heuristics for tap birth-death detection: a) detect death if the tap gain jumps into approximately zero (memoryless detection); b) detect death if the tap gain has slowly converged into approximately zero (memory detection); c) detect birth if the tap gain is far from zero. The precise parameters for these three simple rules can be approximated with simple theoretical derivations and then ne-tuned through extensive simulations. The status detector for each tap using only these three computationally inexpensive threshold comparisons achieves an error reduction matching that of a close-to-perfect path death/birth detection, as shown in simulations. This estimator was shown to greatly reduce channel tracking error in the target Signal-to-Noise Ratio (SNR) range at a very small computational cost, thus outperforming previously known systems. The underlying RST framework for the SMAP was then extended to combined death/birth and SNR detection when SNR is dynamical and may drift. We analyzed how di erent quasi-ideal SNR detectors a ect the SMAP-enhanced Kalman tracker's performance. Simulations showed SMAP is robust to SNR drift in simulations, although it was also shown to bene t from an accurate SNR detection. The core idea behind the second novel tracker, NNKFs, is similar to the SMAP, but now the tap birth/death detection will be performed via an arti cial neuronal network (NN). Simulations show that the proposed NNKF estimator provides extremely good performance, practically identical to a detector with 100% accuracy. These proposed Neural-Kalman schemes can work as novel trackers for multipath channels, since they are robust to wide variations in the probabilities of tap birth and death. Such robustness suggests a single, low-complexity NNKF could be reusable over di erent tap indices and communication environments. Furthermore, a di erent kind of abrupt change was proposed and analyzed: energy shifts from one channel tap to adjacent taps (partial tap lateral hops). This Thesis also discusses how to model, detect and track such changes, providing a geometric justi cation for this and additional non-stationary dynamics in vehicular situations, such as road scenarios where re ections on trucks and vans are involved, or the visual appearance/disappearance of drone swarms. An extensive literature review of empirically-backed abrupt-change dynamics in channel modelling/measuring campaigns is included. For this generalized framework of abrupt channel changes that includes partial tap lateral hopping, a neural detector for lateral hops with large energy transfers is introduced. Simulation results suggest the proposed NN architecture might be a feasible lateral hop detector, suitable for integration in NNKF schemes. Finally, the newly found understanding of abrupt changes and the interactions between Kalman lters and neural networks is leveraged to analyze the neural consequences of abrupt changes and brie y sketch a novel, abrupt-change-derived stochastic model for neural intelligence, extract some neuro nancial consequences of unstereotyped abrupt dynamics, and propose a new portfolio-building mechanism in nance: Highly Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs). Some communication-engineering-relevant topics, such as a Bayesian stochastic stereotyper for hopping Linear Gauss-Markov (LGM) models, are discussed in the process. The forecasting problem in the presence of expert disagreements is illustrated with a hopping LGM model and a novel structure for a Bayesian stereotyper is introduced that might eventually solve such problems through bio-inspired, neuroscienti cally-backed mechanisms, like dreaming and surprise (biological Neural-Kalman). A generalized framework for abrupt changes and expert disagreements was introduced with the novel concept of Neural-Kalman Phenomena. This Thesis suggests mathematical (Neural-Kalman Problem Category Conjecture), neuro-evolutionary and social reasons why Neural-Kalman Phenomena might exist and found signi cant evidence for their existence in the areas of neuroscience and nance. Apart from providing speci c examples, practical guidelines and historical (out)performance for some HLABAFEO investing portfolios, this multidisciplinary research suggests that a Neural- Kalman architecture for ever granular stereotyping providing a practical solution for continual learning in the presence of unstereotyped abrupt dynamics would be extremely useful in communications and other continual learning tasks.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretaria: Ana García Armada.- Vocal: José Antonio Portilla Figuera

    Reinforcement Learning Curricula as Interpolations between Task Distributions

    Get PDF
    In the last decade, the increased availability of powerful computing machinery has led to an increasingly widespread application of machine learning methods. Machine learning has been particularly successful when large models, typically neural networks with an ever-increasing number of parameters, can leverage vast data to make predictions. While reinforcement learning (RL) has been no exception from this development, a distinguishing feature of RL is its well-known exploration-exploitation trade-off, whose optimal solution – while possible to model as a partially observable Markov decision process – evades computation in all but the simplest problems. Consequently, it seems unsurprising that notable demonstrations of reinforcement learning, such as an RL-based Go agent (AlphaGo) by Deepmind beating the professional Go player Lee Sedol, relied both on the availability of massive computing capabilities and specific forms of regularization that facilitate learning. In the case of AlphaGo, this regularization came in the form of self-play, enabling learning by interacting with gradually more proficient opponents. In this thesis, we develop techniques that, similarly to the concept of self-play of AlphaGo, improve the learning performance of RL agents by training on sequences of increasingly complex tasks. These task sequences are typically called curricula and are known to side-step problems such as slow learning or convergence to poor behavior that may occur when directly learning in complicated tasks. The algorithms we develop in this thesis create curricula by minimizing distances or divergences between probability distributions of learning tasks, generating interpolations between an initial distribution of easy learning tasks and a target task distribution. Apart from improving the learning performance of RL agents in experiments, developing methods that realize curricula as interpolations between task distributions results in a nuanced picture of key aspects of successful reinforcement learning curricula. In Chapter 1, we start this thesis by introducing required reinforcement learning notation and then motivating curriculum reinforcement learning from the perspective of continuation methods for non-linear optimization. Similar to curricula for reinforcement learning agents, continuation methods have been used in non-linear optimization to solve challenging optimization problems. This similarity provides an intuition about the effect of the curricula we aim to generate and their limits. In Chapter 2, we transfer the concept of self-paced learning, initially proposed in the supervised learning community, to the problem of RL, showing that an automated curriculum generation for RL agents can be motivated by a regularized RL objective. This regularized RL objective implies generating a curriculum as a sequence of task distributions that trade off the expected agent performance against similarity to a specified distribution of target tasks. This view on curriculum RL contrasts existing approaches, as it motivates curricula via a regularized RL objective instead of generating them from a set of assumptions about an optimal curriculum. In experiments, we show that an approximate implementation of the aforementioned curriculum – that restricts the interpolating task distribution to a Gaussian – results in improved learning performance compared to regular reinforcement learning, matching or surpassing the performance of existing curriculum-based methods. Subsequently, Chapter 3 builds up on the intuition of curricula as sequences of interpolating task distributions established in Chapter 2. Motivated by using more flexible task distribution representations, we show how parametric assumptions play a crucial role in the empirical success of the previous approach and subsequently uncover key ingredients that enable the generation of meaningful curricula without assuming a parametric model of the task distributions. One major ingredient is an explicit notion of task similarity via a distance function of two Markov Decision Processes. We turn towards optimal transport theory, allowing for flexible particle-based representations of the task distributions while properly considering the newly introduced metric structure of the task space. Combined with other improvements to our first method, such as a more aggressive restriction of the curriculum to tasks that are not too hard for the agent, the resulting approach delivers consistently high learning performance in multiple experiments. In the final Chapter 4, we apply the refined method of Chapter 3 to a trajectory-tracking task, in which we task an RL agent to follow a three-dimensional reference trajectory with the tip of an inverted pendulum mounted on a Barrett Whole Arm Manipulator. The access to only positional information results in a partially observable system that, paired with its inherent instability, underactuation, and non-trivial kinematic structure, presents a challenge for modern reinforcement learning algorithms, which we tackle via curricula. The technically infinite-dimensional task space of target trajectories allows us to probe the developed curriculum learning method for flaws that have not surfaced in the rather low-dimensional experiments of the previous chapters. Through an improved optimization scheme that better respects the non-Euclidean structure of target trajectories, we reliably generate curricula of trajectories to be tracked, resulting in faster and more robust learning compared to an RL baseline that does not exploit this form of structured learning. The learned policy matches the performance of an optimal control baseline on the real system, demonstrating the potential of curriculum RL to learn state estimation and control for non-linear tracking tasks jointly. In summary, this thesis introduces a perspective on reinforcement learning curricula as interpolations between task distributions. The methods developed under this perspective enjoy a precise formulation as optimization problems and deliver empirical benefits throughout experiments. Building upon this precise formulation may allow future work to advance the formal understanding of reinforcement learning curricula and, with that, enable the solution of challenging decision-making and control problems with reinforcement learning

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Contributions in functional data analysis and functional-analytic statistics

    Get PDF
    Functional data analysis is the study of statistical algorithms which are applied in the scenario when the observed data is a collection of functions. Since this type of data is becoming cheaper and easier to collect, there is an increased need to develop statistical tools to handle such data. The first part of this thesis focuses on deriving distances between distributions over function spaces and applying these to two-sample testing, goodness-of-fit testing and sample quality assessment. This presents a wide range of contributions since currently there exists either very few or no methods at all to tackle these problems for functional data. The second part of this thesis adopts the functional-analytic perspective to two statistical algorithms. This is a perspective where functions are viewed as living in specific function spaces and the tool box of functional analysis is applied to identify and prove properties of the algorithms. The two algorithms are variational Gaussian processes, used widely throughout machine learning for function modelling with large observation data sets, and functional statistical depth, used widely as a means to evaluate outliers and perform testing for functional data sets. The results presented contribute a taxonomy of the variational Gaussian process methodology and multiple new results in the theory of functional depth including the open problem of providing a depth which characterises distributions on function spaces.Open Acces

    Fisher-Rao distance and pullback SPD cone distances between multivariate normal distributions

    Full text link
    Data sets of multivariate normal distributions abound in many scientific areas like diffusion tensor imaging, structure tensor computer vision, radar signal processing, machine learning, just to name a few. In order to process those normal data sets for downstream tasks like filtering, classification or clustering, one needs to define proper notions of dissimilarities between normals and paths joining them. The Fisher-Rao distance defined as the Riemannian geodesic distance induced by the Fisher information metric is such a principled metric distance which however is not known in closed-form excepts for a few particular cases. In this work, we first report a fast and robust method to approximate arbitrarily finely the Fisher-Rao distance between multivariate normal distributions. Second, we introduce a class of distances based on diffeomorphic embeddings of the normal manifold into a submanifold of the higher-dimensional symmetric positive-definite cone corresponding to the manifold of centered normal distributions. We show that the projective Hilbert distance on the cone yields a metric on the embedded normal submanifold and we pullback that cone distance with its associated straight line Hilbert cone geodesics to obtain a distance and smooth paths between normal distributions. Compared to the Fisher-Rao distance approximation, the pullback Hilbert cone distance is computationally light since it requires to compute only the extreme minimal and maximal eigenvalues of matrices. Finally, we show how to use those distances in clustering tasks.Comment: 25 page

    Understanding Data Manipulation and How to Leverage it To Improve Generalization

    Get PDF
    Augmentations and other transformations of data, either in the input or latent space, are a critical component of modern machine learning systems. While these techniques are widely used in practice and known to provide improved generalization in many cases, it is still unclear how data manipulation impacts learning and generalization. To take a step toward addressing the problem, this thesis focuses on understanding and leveraging data augmentation and alignment for improving machine learning performance and transfer. In the first part of the thesis, we establish a novel theoretical framework to understand how data augmentation (DA) impacts learning in linear regression and classification tasks. The results demonstrate how the augmented transformed data spectrum plays a key role in characterizing the behavior of different augmentation strategies, especially in the overparameterized regime. The tools developed in this aim provide simple guidelines to build new augmentation strategies and a simple framework for comparing the generalization of different types of DA. In the second part of the thesis, we demonstrate how latent data alignment can be used to tackle the domain transfer problem, where training and testing datasets vary in distribution. Our algorithm builds upon joint clustering and data-matching through optimal transport, and outperforms the pure matching algorithm baselines in both synthetic and real datasets. Extension of the generalization analysis and algorithm design for data augmentation and alignment for nonlinear models such as artificial neural networks and random feature models are discussed. This thesis provides tools and analyses for better data manipulation design, which benefit both supervised and unsupervised learning schemes.Ph.D

    Investigation of iris recognition in the visible spectrum

    Get PDF
    mong the biometric systems that have been developed so far, iris recognition systems have emerged as being one of the most reliable. In iris recognition, most of the research was conducted on operation under near infrared illumination. For unconstrained scenarios of iris recognition systems, the iris images are captured under visible light spectrum and therefore incorporate various types of imperfections. In this thesis the merits of fusing information from various sources for improving the state of the art accuracies of colour iris recognition systems is evaluated. An investigation of how fundamentally different fusion strategies can increase the degree of choice available in achieving certain performance criteria is conducted. Initially, simple fusion mechanisms are employed to increase the accuracy of an iris recognition system and then more complex fusion architectures are elaborated to further enhance the biometric system’s accuracy. In particular, the design process of the iris recognition system with reduced constraints is carried out using three different fusion approaches: multi-algorithmic, texture and colour fusion and multiple classifier systems. In the first approach, one novel iris feature extraction methodology is proposed and a multi-algorithmic iris recognition system using score fusion, composed of 3 individual systems, is benchmarked. In the texture and colour fusion approach, the advantages of fusing information from the iris texture with data extracted from the eye colour are illustrated. Finally, the multiple classifier systems approach investigates how the robustness and practicability of an iris recognition system operating on visible spectrum images can be enhanced by training individual classifiers on different iris features. Besides the various fusion techniques explored, an iris segmentation algorithm is proposed and a methodology for finding which colour channels from a colour space reveal the most discriminant information from the iris texture is introduced. The contributions presented in this thesis indicate that iris recognition systems that operate on visible spectrum images can be designed to operate with an accuracy required by a particular application scenario. Also, the iris recognition systems developed in the present study are suitable for mobile and embedded implementations
    corecore