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“Never give up on a dream just because of the time it will
take to accomplish it. The time will pass anyway”
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Abstract
In various data science and artificial intelligence areas, representation
learning is a performance-critical step. While different representation
learning methods can detect different descriptive and latent features,
many representation learning methods reflect on pairwise relations. The
thesis consists of two parts, studying pairwise relations from two points
of view: i) Pairwise relations between the states of a Markov chain.
ii) Pairwise relations between objects in a dataset based on a desired
(dis)similarity measure.

In the first part of the thesis we consider Markov chains, noting that
pairwise relations between its states are naturally modelled by the state-
transition matrix. We propose a method for modeling the performance
of a synchronization method for a multi-processor architecture. Our
model introduces and builds upon a cache line bouncing process that
models the interaction of threads accessing the shared cache lines.

In the second part of the thesis, we consider representation learning
using the transitive-aware Minimax distance, which enables the extrac-
tion of elongated manifolds and structures in the data. While recent
work has made Minimax distances computationally feasible, little atten-
tion has been put to its memory footprint, which is naturally O(N2), the
cost of storing all pairwise distances. We do however compute a novel
hierarchical representation of the data, requiring O(N) memory, from
which pairwise Minimax distances can then be efficiently inferred, in
total requiring O(N) memory, at the cost of higher computational cost.

An alternative sampling-based approach is also derived, which com-
putes approximate Minimax distances, also in O(N) memory but with
a significantly reduced computational cost, while still yielding a good
approximation, as verified by impressive results on a clustering bench-
marks.

Finally, we develop an unsupervised learning framework for cluster-
ing vehicle trajectories based on Minimax distances. The performance
of the framework is validated on real-world datasets collected from real
driving scenarios, on which satisfactory performance is demonstrated.

Keywords: Representation Learning, Pairwise Relations, Minimax
Distance, Memory Efficiency, Motion trajectory clustering, Concurrent
programming, Performance Modeling
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Chapter 1

Introduction

The difficulty of many data processing tasks can vary immensely de-
pending on how the data representation is inferred, thus a proper data
representation can be crucial. To this end, representation learning is
concerned with the development of machine learning algorithms to dis-
cover useful representations and latent features, and consequently is the
first step in many machine learning and data analytic tasks.

Representation learning can be categorized as traditional feature
learning and deep learning models [1]. Traditional feature learning is a
broad family consisting of algorithms that can be supervised or unsuper-
vised, linear or nonlinear, generative or discriminative, global or local.
In general, global methods try to extract global information from data
in the learned feature space, while local methods focus on preserving
local similarity between data when learning the new representations.

Some representation learning algorithms take pairwise relations or
graph structure into consideration. The pairwise relation between data
points, mostly defined by similarities or dissimilarities, is an essential
concept for many machine learning algorithms such as Kernel PCA [2],
discriminant analysis (LDA) [3], isomap [4], kernel methods [5], and
t-SNE [6].

Pairwise relations can be useful not only for a static set of data points,
but also for modeling dynamic processes. Markov chains are statistical
models that describe a sequence of events, where the probability of each
event occurring depends on the state of the previous event. A Markov
chain is determined by its state transition matrix, which defines the
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2 CHAPTER 1. INTRODUCTION

probability of a transition from each of the states to the others. Now,
for applications that will be covered in this thesis, pairwise relations
between the states themselves can be useful for modeling the state
transition probabilities.

In several applications, the underlying structures and patterns in data
are better represented when extracting transitive relations, rather than
using the direct (dis)similarities. The meaning of a transitive relation
is that it is inferred from different paths that connect the data points
with each other. In particular, for the clustering application the Minimax
distance between a pair of data points, i.e. the minimum largest gap
among all possible paths between them, exploits the local geometry of
data points while extracting transitive relations between them in such a
way that elongated manifolds and structures can easily be separated.

In this thesis, an important concept for modeling pairwise relations
is the Minimax distance. The Minimax distance is an unsupervised
and non-parametric representation learning technique, for which prior
knowledge about the shape of the clusters and the structure of data is
not required. Although the main drawback of the Minimax distance
technique is that for a standard algorithm the computational and memory
cost is high, there have been recent studies to improve the computational
aspect [7]. In contrast, we focus on reducing the memory cost, for
which, to the best of our knowledge, there has been no prior research.

The contributions of this thesis, which are carried by three papers,
are as follows:

• Paper I: Introduces a method to model the performance of a
synchronization method on multi-processors by considering the
core’s pairwise relations.

• Paper II: Develops two approaches for the memory-efficient
computation of Minimax distances requiring a linear memory
with respect to the size of the dataset.

• Paper III: Develops an unsupervised framework based on Min-
imax distances to cluster vehicle trajectories. This framework
does not require fixing hyper-parameters and can be applied as a
validation tool to assess the quality of synthetic trajectories.



3

The rest of the thesis is organized as follows. Chapter 2 provides
background on representation learning and concurrent programming.
Chapter 3 describes the research challenges covered by each paper
and the contributions to address these challenges. Finally, Chapter 4
concludes the thesis and discusses future work.
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Chapter 2

Background

In this chapter, we cover some background information on representation
learning. Also, we present preliminaries to two case studies: concurrent
programming and vehicle motion trajectories.

2.1 Representation Learning

Quite generally, data can be represented by a set of objects characterized
by either feature vectors or pairwise dissimilarities. In particular, object
(dis)similarities can yield valuable knowledge and can be helpful for
a lot of applications in different machine learning domains [8], such
as semantic similarity [9], recommendation systems [10], and object
detection [11] in machine vision.

Furthermore, a graph-based representation of object (dis)similarities
provides not only a simple way to picture object relationships, but
can also be used to represent (dis)similarities numerically, in a straight-
forward manner. Consider a dataset D= {d1,d2, . . . ,dN}where di is the
feature vector of object i∈O and O= {1,2, . . . ,N} is the corresponding
index set. D can be represented by a graph G(O,E) where the nodes are
denoted by the object indices O, and the edge weights are determined
by a dissimilarity function, e.g. the squared Euclidean distance between
object features defined by Ei j = |di−d j|2, i, j ∈O.

A graph-based data representation allows us to consider link-based
distances between the objects. Link-based distances are unsupervised
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6 CHAPTER 2. BACKGROUND

representations and distance measures such that for a pair of nodes in a
graph, all the paths between them are considered. Based on this general
definition, we can distinguish three categories of link-based distances:
i) Distance measures that are defined as the summation of edge weights
along a path connecting a pair of objects [12]. ii) Distance measures
that are based on the shortest path between a pair of objects [13]. iii)
Minimax distance measures, which are determined by the minimum
largest gap along all possible paths between a pair of objects. Link-
based distances are useful for detecting transitive relations in data; thus,
these measures are suitable for separating data that is clustered into
non-convex manifolds [14].

2.1.1 The Minimax Distance
The Minimax distance is an efficient link-based measure which de-
termines the minimum largest gap among all feasible paths between
the objects in a graph. Minimax distances perform better than other
link-based methods in particular to extract the transitive relations [15].
Consider again a graph G(O,E). Next, consider the following property,
which is highly desired for our applications, and strictly fulfilled for the
Minimax distance:
If object i ∈O is similar to l ∈O, and l is similar to j ∈O, then objects
i and j are considered as similar objects as well, even if their direct
pairwise similarity is low.
Due to the above property, we can conclude that the Minimax distance
is a transitive-aware distance measure.

Minimax distances have been first studied on path-based clustering
applications [16], and more recently in K-nearest neighbor search [12,
14,17]. The classic approach for obtaining pairwise distances of all pairs
of objects within a dataset is to use a modified variant of Floyd-Marshall
algorithm with a computational cost of O(N3) [18], where N is the size
of the dataset.

A more efficient algorithm to obtain pairwise Minimax distances
proposed in [7] requires only O(N2) runtime. The approach is based
on the fact that Minimax distances over a graph are preserved for a
Minimum Spanning Tree (MST) of the graph [19], and can thus be
computed for the MST instead, which is more efficient. For an undi-
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rected connected graph G(O,E), a spanning tree is a connected acyclic
sub-graph of G which covers all vertices of G. A graph G might have
more than one spanning tree. If G has positive edge weights, a minimum
spanning tree for G is a tree that gives the minimum total cost (sum of
edge weights). Furthermore, if all edge weights in G are identical, then
the minimum spanning tree T over G is unique; otherwise, there are
more than one MST with equal cost.

Assuming we are interested to obtain Minimax distances between
all pairs of N objects in our dataset, we need to consider all edges.
That is, we are dealing with a complete graph, for which the MST is
to be computed. Prim’s and Kruskal are two well-known algorithms to
obtain an MST with a runtime of O(|E|+ |O|log|O|) and O(|E|log|O|)
respectively, making Prim’s preferable for complete graphs. Further-
more, for complete graphs, the memory requirement is O(N2) for both
algorithms.

In order to compute pairwise Minimax distances of a dataset effi-
ciently, we can first form a minimum spanning tree T (O,ET ), where
ET ∈ E. Since T is a tree, there is a unique path between any two nodes,
i, and j. Thus, the longest edge along this path is the Minimax distance
between i and j.

2.2 Concurrent Programming
Multi-processor architectures provide the possibility of parallel compu-
tation. A multiprocessor contains two or more processing units, cores,
which can execute threads simultaneously. These cores might share
caches at some level. Parallel threads executing on a multi-processor
chip interact through shared memory. In an asynchronous thread ex-
ecution, threads can execute at a different pace; thus, the steps of the
threads can be interleaved. To maintain the correctness of these threads,
we need to implement the appropriate synchronization.

2.2.1 Atomic Primitives

Atomic primitives (atomics) are hardware instructions that consist of a
number steps to be executed atomically (without interruption). Atom-
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ics ensure consistency and correctness in the presence of concurrent
accesses. The most common application of atomics is when multiple
threads are modifying a shared object. Since each thread’s modification
needs to be serialized to ensure correctness, atomics can be seen as
a congestion point that can limit the performance and scalability of
multi-threaded programs.

Atomics are massively used in designing concurrent data struc-
tures [20–22]. A critical property of atomics is the consensus number,
which indicates the highest number of threads reaching a consensus
with the atomic primitive in a wait-free fashion [20].

In this thesis, the most common atomic primitives are studied: Com-
pare And Swap (CAS), Fetch And Increment (FAI), Test And Set (TAS),
which are shown in Algorithm 1a, Algorithm 1b, and Algorithm 1c,
with consensus number ∞, 2, and 2, respectively [20].

Algorithm 1a Compare And Swap (CAS) function

1: function CAS(int∗ p, int old, int new)
2: if ∗p = old then
3: Return False
4: end if
5: ∗p← new
6: Return True
7: end function

Algorithm 1b Test And Set (TAS) function

1: function TAS(int∗ p)
2: int old←∗ p
3: ∗p← True
4: Return old
5: end function

Algorithm 1c Fetch And Increment (FAI) function

1: function TAS(int∗ p, int add)
2: int old←∗ p
3: ∗p += add
4: Return old
5: end function
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2.2.2 Cache Coherency Protocol

Each core in a multi-processor system has its private cache, called L1
cache. A core might have more than one exclusive cache. When a core
executes a thread on a specific memory location, the targeted memory
location should be available in L1 of the core. However, there might be
some copies of the target memory address in other caches. To guarantee
the consistency of shared data resources that are locally available in
multiple caches, we need cache coherency protocols. Cache coherency
protocols are classified according to the number of cache states. In this
thesis we focus on MESI [23] and MESIF [24], explained below.

The MESI protocol consists of four states, Modified (M), Exclusive
(E), Shared (S), Invalid (I). In MESIF, we have the fifth state called
Forward (F). In the Modified state, the content is exclusive to the current
cache and has been modified from the main memory value. In the
Exclusive state, the content is exclusively in the current cache but is
the same as the main memory value. The Shared state indicates that
other caches have an identical copy of this cache line, and it is the same
as the main memory value. The Invalid state means that the value in
the current cache is invalid. In MESIF, we have one more state, called
Forward. If there are multiple copies of a memory address in different
caches, one of them holds the F state to forward the cache value in the
response of a copy request.

2.2.3 Execution Time

The execution time of atomic primitives are determined by two fac-
tors, which we shall return to after explaining the concept of thread
contention.

Thread contention is a state in which one or more threads are waiting
to access and modify a cache line. In the event of a contention, one
thread gets the exclusive ownership of the cache line and executes
atomics while others have to stall and try to win exclusive ownership
after the current atomic execution terminates. Once the current execution
terminates, based on the scheduling policy of the hardware, another
thread acquires the cache line. A period that a thread needs to stall
between requesting to execute an atomic on a specific cache line and
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acquiring the cache line defined as stall time, and it is the first factor of
the execution time. Therefore, the contention affects the stall time for
an atomic primitive.

The second factor is the atomic execution time, which is the time
between acquiring the cache line and finishing the atomic execution .
This factor depends on the system’s state when the thread acquires the
cache line. For example, if the specified cache line is already in L1 of
the core running the thread, the execution takes less time than the case
that the cache line should be brought to the L1 of the core from memory.

2.3 Vehicle Motion Trajectories

In various real-world applications, there are vast amounts of raw data
that can help to improve the application. One such application is Au-
tonomous Drive (AD) vehicles, which is highly data-dependent, but
for which vast amounts of raw data can be collected by sensors. Pos-
sible AD use cases include vehicle software development as well as
verification.

However, although raw data may be available in abundance, fur-
ther processing of the data can be very valuable for the task at hand.
As letting human experts carry out such processing is very costly, a
representation learning approach is highly preferable.

More specifically, in this thesis we consider unsupervised repre-
sentation learning on a database of driving scenarios (vehicle motion
trajectories), for two intended AD use cases: i) Automatic driving
scenario specification, for vehicle software verification purposes. ii)
Live driving scenario detection by an AD. In both cases, we do not
assume any specification on the data, but yet identify a common value
in extracting patterns and structures in the data.

We will now give further details on the motivation for the first
use case, i.e. automatic driving scenario specification. In order to
confidently assess the safety of AD vehicles through test driving in-
the-wild, statistical analyses have shown that more than hundreds of
millions of kilometers would have to be driven. One step in the direction
to alleviate these issues is known as scenario-based verification, where
one creates a scenario database by collecting data, from which driving
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scenarios are then extracted. If the scenarios represent and cover the
real-world scenarios well, such a database can be used as a source
for generating test cases for AD verification, in virtual as well as real
test driving environments. We assume that raw data of vehicle motion
trajectories is available, and consider clustering such trajectories into
driving scenarios, in an unsupervised manner. We regard the motion
trajectories to be centered around an ego vehicle, and to be constituted
by a sequence of the relative position of a nearby vehicle, the behavior
of which is to be classified into a driving scenario. Trajectories can
vary in length, which introduces some challenge. The driving scenarios
(unknown by the algorithm) could be e.g. a cut-in by an overtaking
vehicle.

There are different approaches to extract driving scenarios from raw
data collected by sensors [25], one of which is clustering. A cluster-
ing approach to the problem aims at grouping the available data into
meaningful driving scenarios. Previous work on trajectory clustering
include K-means trajectories clustering [26], which however suffers
from local optima and inability to extract elongated clusters. Clustering
based on Hidden Markov Model [27] and Neural Network models [28]
have also been pursued, but at great computational expense, yielding
unsuitable methods for real-time application. Moreover, they might
need labeled data for training, as well as they are very sensitive to some
certain parameter settings.

As discussed, availability of a large and diverse scenario database is
vital for the development and verification of AD vehicles. However, the
amount of diverse real data available can rarely be too much, and class
imbalance can often be expected. Consequently, rather than verifying
AD solutions only on a limited amount of real data collected from the
field, augmentation with synthetically generated, but realistic, motion
trajectories is desirable. To this end, one approach is to use Generative
Adversarial Nets [29], which combine a generative model that tries to
capture the data distribution with a discriminative model that predicts
whether data is synthetically generated by the generative model or
whether it is a real data sample.
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Chapter 3

Challenges and Contributions

3.1 Paper I
There are many studies and benchmarks on atomic primitives in the
literature. However, these studies are proposed under full control over
the state of the system, including cache coherency state, the location of
copies of the cache line, exact shared memory location, and interleav-
ing threads accessing the shared memory locations. It means that for
measuring an element of the performance, for example, the latency of
accessing a cache line with a particular cache location and coherency
state, the benchmark should first bring the cache line to the modified
state in the L1 cache by executing a thread modifying a shared memory
location. It then signals another thread that is pending to access the
shared memory location and measure the latency. Nevertheless, in the
real world, there is no control over the state of the system.

In Paper I, we tackle this research gap by focusing on the pairwise
relation of cache lines in the cores while executing atomics. Our method
relies on modeling cache line bounces between threads accessing the
shared cache lines. In our approach, by observing a sequence of threads
executing the atomic, we conduct the sequence of cores accessing the
shared memory. Then, we model this sequence of events with a stochas-
tic process that maintains the Markov property. We represent the process
with a Markov Chain and model the state transition matrix based on the
hardware characteristics, core count, and proximity. Finally, having the
state transition matrix and cost of each transition, we model the perfor-

13
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mance. Our study defines performance in terms of latency, throughput,
fairness, and energy consumption of atomic primitives.

3.2 Paper II
Computing pairwise relations, including Minimax distance, is costly in
terms of computation and memory. Although there are several studies
on computationally efficient methods to compute pairwise Minimax
distances [7], memory-efficient methods for pairwise Minimax distance
have not received proper attention in the literature. To the best of our
knowledge, no earlier work considers the memory-efficient Minimax
distance there has not been any improvement to the memory requirement
of O(N2) for this problem.

In Paper II, we propose two approaches for memory-efficient Mini-
max computation with linear memory requirement. The first approach
is a novel algorithm to obtain, encode, and store pairwise Minimax dis-
tances of N objects with a linear memory requirement O(N). Also, we
introduce incremental Prim’s algorithm, which allows us to form a mini-
mum spanning tree over a dataset without requiring the corresponding
graph. Despite the memory-efficiency of this algorithm, its computa-
tional cost is high. Therefore we propose a second approach, which is a
generic framework for efficient sampling-based on Minimax distances.
The obtained sample set by this method has maximum consistency with
the Minimax distances over all objects.

3.3 Paper III
Using collected raw sensor data, to label and extract driving scenarios
of interest can be done via different approaches. Knowledge-based
approaches enable us to extract scenarios based on prior fixed rules
and defining a scenario description with some threshold that needs to
be set in advance. The main advantages with this approach is having
insight and control on all steps, and the use of prior knowledge about
driving scenarios. However, similar to many rule-based systems, it can
be subject to errors such as bias and missing unknown cases. Therefore,
as a complementary approach we investigate using exploratory data
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management and machine learning tools, in particular clustering, to
accelerate and verify the obtained scenario labels. The main benefit
of this approach is to find some unknown scenarios, patterns or outlier
trajectories, especially since the rule based tools depend on the scenario
threshold values and thus they might miss or misclassify those events.

In Paper III, we focus on developing an unsupervised learning frame-
work that enables us to cluster given vehicle motion trajectories to differ-
ent driving scenarios. Our approach is based on Minimax distance and
does not require tuning critical hyper-parameters. Also, our method can
successfully handle trajectories of varying lengths. Finally, we utilize
our framework to validate the quality of synthetically generated driving
trajectories, comparing with the original driving scenarios.
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Chapter 4

Conclusion and Future Work

In this thesis, we have studied pairwise relations in data processing
from two perspectives. On the one hand, we considered Markov chains,
noting that pairwise relations between its states are naturally modelled
by the state-transition matrix. Taking on this perspective, we proposed a
method for modeling the performance of a synchronization method for
a multi-processor architecture. Several performance metrics were cov-
ered, including energy consumption, throughput, latency, and fairness.
Our model is based on a cache line bouncing process which models
interacting threads, accessing shared cache lines.

On the other hand, we considered representation learning using
the transitive-aware Minimax distance, enabling us to reveal elongated
manifolds and structures in the data. We focused our attention to the
memory-efficiency of Minimax distance algorithms, and discovered
that little work had been done in that regard, unlike for computational
efficiency. While the memory footprint of a Minimax algorithm is natu-
rally that of storing all pairwise distances, O(N2), we propose a novel
hierarchical representation of the data, requiring only O(N) memory,
and from which pairwise Minimax distances can be efficiently inferred.
Our algorithm encodes the data into the hierarchical representation, and
can compute exact Minimax distances entirely in O(N) memory, at the
expense of a higher computational cost.

Next, an alternative sampling-based approximate approach is pro-
posed. While this algorithm also works in linear memory, the com-
putational load is significantly reduced. The resulting approximate

17
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Minimax distance are very adequate, as verified by satisfactory results
on a clustering benchmarks.

Moreover, we proposed an unsupervised framework to cluster ve-
hicle motion trajectories based on Minimax distances. Our framework
does not demand setting hyper-parameters. Also, it can be used to
validate synthetic data generated by Generative Adversarial Networks
(GANs). We perform evaluations on real-world datasets collected from
real driving scenarios, as well as synthetic datasets generated by GAN,
demonstrating impressive performance of the framework.

In future work, we will explore how to apply Minimax distances in
a noisy environment since Minimax distance, as considered so far, is not
robust to noise. Furthermore, instead of assuming that the base pairwise
relations of objects are given (explicitly or implicitly), in the next step,
we will combine Minimax distances with online learning, while learning
pairwise distances incrementally over time.
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