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Abstract
Pairwise relations between data points are essential for numerous machine
learning algorithms. Many representation learning methods consider pairwise
relations to identify the latent features and patterns in the data. This thesis,
investigates learning of pairwise relations from two different perspectives: offline
learning and online learning.

The first part of the thesis focuses on offline learning by starting with an
investigation of the performance modeling of a synchronization method in
concurrent programming using a Markov chain whose state transition matrix
models pairwise relations between involved cores in a computer process.

Then the thesis focuses on a particular pairwise distance measure, the
minimax distance, and explores memory-efficient approaches to computing this
distance by proposing a hierarchical representation of the data with a linear
memory requirement with respect to the number of data points, from which
the exact pairwise minimax distances can be derived in a memory-efficient
manner. Then, a memory-efficient sampling method is proposed that follows
the aforementioned hierarchical representation of the data and samples the
data points in a way that the minimax distances between all data points are
maximally preserved. Finally, the thesis proposes a practical non-parametric
clustering of vehicle motion trajectories to annotate traffic scenarios based on
transitive relations between trajectories in an embedded space.

The second part of the thesis takes an online learning perspective, and
starts by presenting an online learning method for identifying bottlenecks
in a road network by extracting the minimax path, where bottlenecks are
considered as road segments with the highest cost, e.g., in the sense of travel
time. Inspired by real-world road networks, the thesis assumes a stochastic
traffic environment in which the road-specific probability distribution of travel
time is unknown. Therefore, it needs to learn the parameters of the probability
distribution through observations by modeling the bottleneck identification
task as a combinatorial semi-bandit problem. The proposed approach takes
into account the prior knowledge and follows a Bayesian approach to update
the parameters. Moreover, it develops a combinatorial variant of Thompson
Sampling and derives an upper bound for the corresponding Bayesian regret.
Furthermore, the thesis proposes an approximate algorithm to address the
respective computational intractability issue.

Finally, the thesis considers contextual information of road network segments
by extending the proposed model to a contextual combinatorial semi-bandit
framework and investigates and develops various algorithms for this contextual
combinatorial setting.
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Chapter 1

Introduction

Depending on how the data representation is derived, the difficulty of different
data processing tasks can vary greatly, making an appropriate data represen-
tation essential. Therefore, representation learning is the first step in many
machine learning and data analysis processes with the goal of extracting and
recognizing useful data representations and latent features.

Some representation learning algorithms rely on pairwise similarities or
dissimilarities between data points. If the data points can be represented
by a graph, these (dis)similarities can be expressed by link-based distances.
Link-based distances are distance measures where all paths between a pair of
nodes in a graph are considered to calculate the distance between the pair.
Minimax distance measure is a link-based distance that allows us to extract
elongated manifolds and structures in the data in an unsupervised manner.

This thesis studies pairwise relations from different perspectives: from the
perspective of offline learning, where the data and their pairwise relations are
known, and from the perspective of online learning, where the pairwise relations
are stochastic and unknown and need to be learned. It also investigates and
proposes different learning frameworks for real-world applications, especially in
the domain of autonomous vehicles.

Numerous industries have undergone revolutionary changes as a result of
digitalization. In the automotive industry, these forces are leading to four
disruptive technology-driven megatrends that are mutually reinforcing: diverse
mobility, autonomous driving, electrification and connectivity [1]. The future of
the automotive industry depends on how successfully it can adapt to a market
that has evolved and where consumer acceptance and willingness to pay is
highly dependent on the implementation of sustainable, flexible, reliable and
safe technical solutions that deliver a world-class user experience. The safety
and navigation of autonomous vehicles are two topics explored in this thesis.

An efficient navigation or route planning system for autonomous vehicles
aims to optimize a combination of factors (travel time, energy consumption,
etc.). Bottleneck identification in a road network is a navigation problem where
the bottleneck on a path between a source node and a destination node in a
network is defined as the road segment with the maximum cost. The goal of
identifying and avoiding bottlenecks is then to find a path whose bottleneck
is minimal. Thus, one can model bottleneck identification as the problem of

3



4 CHAPTER 1. INTRODUCTION

computing the minimax edge over the given network/graph to obtain an edge
with the minimum largest gap between the source and destination nodes.

In the last decade, several studies have investigated the navigation problem
networks in different applications. However, most existing methods assume
that the necessary information to compute the optimal path is given. This
assumption may not be true in many situations where the parameters of the
models are unknown and stochastic. Therefore, the algorithm must learn the
parameters of the model while solving the navigation problem. Using Bayesian
methods to model these parameters allows us to use prior knowledge to update
and learn the model parameters.

The contributions of this thesis, which are carried by five papers, are as
follows:

• Paper A investigates a synchronization method on multiprocessors and
modeling its performance by considering the core pairwise relations.

• Paper B proposes two memory-efficient approaches to compute minimax
distances that requires a linear memory with respect to the size of the
data points.

• Paper C develops an unsupervised framework to cluster vehicle motion
trajectories. This framework is based on minimax distances and does
not require the specification of hyper-parameters and can be used as a
validation tool to assess the quality of synthetic trajectories.

• Paper D develops a combinatorial semi-bandit framework for learning
minimax distances (bottleneck) over stochastic networks, including a
combinatorial version of Thompson Sampling. Since the problem is
computationally intractable, the paper proposes an alternative problem
formulation that approximates the original objective. It also establishes
an upper bound for the corresponding Bayesian regret.

• Paper E proposes a unified online learning framework based on contex-
tual combinatorial semi-bandits that enables bottleneck identification in
addition to learning the specifications of the underlying network. This
framework adapts to several combinatorial semi-bandit algorithms. It also
proposes an extension of the neural network approach for combinatorial
bandits.

The rest of the thesis is organized as follows. Chapter 2 provides background
information on pairwise relations, online learning and concurrent program-
ming. Chapter 3 describes the research challenges addressed in each paper
and the contributions made to address these challenges. Finally, Chapter 4
concludes the thesis and provides an outlook on future work.



Chapter 2

Background

The following chapter presents some of the topics and concepts used throughout
this thesis.

2.1 Representation Learning
The first phase in many machine learning and data analysis tasks is to apply
one or more representation learning methods to the input data points to find
meaningful data representations and discover hidden patterns. The success
of this step can greatly affect the performance of data processing tasks. One
category of representation learning methods focuses on a pairwise relation of
data points, such as kernel methods, PCA, LDA, etc. A powerful structure for
representing relational data is a graph, such as information networks, social
networks, and biological networks, where the links between data points are
represented by the edges of the graph. Link-based distances can be defined
between data points represented by a weighted graph where nodes are associated
with data points and edges indicate the similarity/dissimilarity of data point
pairs.

Link-based distances are based on all possible paths between pairs of nodes.
For example, shortest path distance is a link-based distance in which the
similarity of a pair of nodes is derived from the shortest path between the pair.
Minimax distance is another link-based distance determined by the minimum
largest distance along all possible paths between a pair of data points and
captures the transitive dissimilarity of data points. It is therefore well suited
for separating data clustered in non-convex manifolds.

2.1.1 Minimax Distances
Minimax distance is a distance based on transitive connections, used in appli-
cations where the underlying structures and patterns in the data are better
represented by extracting transitive relations, than by direct (dis)similarities.
The work in [2] used minimax distances in path-based clustering applications,
and [3]–[5] investigated minimax distances in K-nearest neighbor search.

Given a data set D with N data points, the first step in minimax distance
computation is to construct a weighted graph where the nodes indicate the

5



6 CHAPTER 2. BACKGROUND

data points and the edges indicate the direct (dis)similarities of a pair of
nodes using a dissimilarity function, e.g., squared Euclidean distance. More
formally: Given a data set D = {d1,d2, . . . ,dN} where di is the feature vector
of data point i ∈V and V = {1,2, . . . ,N} is the corresponding index set, D can
be represented by a weighted graph G(V,E,f) where the nodes indicate the
data points indices V, and the edge weights are determined by a dissimilarity
function f , where Eij = f(di,dj), for all i, j ∈V. The dissimilarity function f
must satisfy semi-metric requirements (which for all j, i ∈V: i) f(di,dj)≥ 0,
ii) if f(di,dj) = 0, then i = j, and iii) f(di,dj) = f(dj ,di)) .

The minimax distance between a pair of nodes in graph G, i, j ∈V is the
smallest largest edge among all possible paths between i and j and can be
expressed as Equation 2.1, where Mij indicates the minimax distance between
i and j, for all i, j ∈V; and Pi,j is the set of all possible paths between i and j
in graph G. A path p ∈ P , is characterized by a set of consecutive edges, each
denoted by (n,m) ∈E where n,m ∈V and n ̸= m is a pair of vertices at two
ends of edge En,m with a weight of f(dn,dm).

Mij = min
p∈Pi,j

max
(n,m)∈p

En,m, (2.1)

The Floyd-Marshall algorithm [6] is the classic approach to find pairwise
distances within a data set. It tracks all possible paths between each pair of
nodes, so the complexity of the algorithm is O

(
N3) for a data set with N data

points. Studies in [7]–[9] show that the minimax distance of any pair of nodes
in graph G is equal to the minimax distance of the same pair in the minimum
spanning tree of G. A minimum spanning tree (MST) of G is an acyclic subgraph
of G where the sum of the edge weights is minimal and there is a unique path
between arbitrary pairs of nodes. In a weighted graph with positive edges,
an MST is not necessarily unique (if the edge weights are not identical), but
the sum of edges of different MSTs over G is the same. Thus, an efficient
approach to computing minimax distances is to first find the MSTs of graph
G. Prim’s is an efficient algorithm for a dense graph with runtime complexity
of O(|E|+ |V| log |V|), and Kruskal algorithm is the preferred algorithm for a
sparse graph with runtime of O(|E| log |V|). [9] proposed an efficient algorithm
to compute the minimax distance with a runtime of O(N2).

2.1.2 Minimax Distances in Application
Minimax distances provide an efficient way to determine the transitive-aware
relation of data points. This thesis investigates this property of minimax
distances in two different applications: i) the use of minimax distances in
vehicle motion trajectories, and ii) the use of minimax distances in identifying
bottlenecks in road networks. This subsection provides some background
information on these two applications.

Vehicle motion trajectories

Autonomous vehicles are often considered as an important direction for the
future of transportation, where consumer acceptance and willingness to pay is
highly dependent on the development of safe and reliable technical solutions
that can deliver a satisfactory user experience. With the increasing complexity
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of Autonomous Driving (AD), field operational testing is no longer sufficient
to ensure their safety. Therefore, the development of data-driven approaches
in AD safety becomes one of the most challenging tasks in the area of AD.

Nowadays, various sensors are installed in vehicles, such as LiDAR and
cameras. These sensors provide a huge amount of raw data that needs to
be processed to be useful for the task at hand, such as a scenario database
for scenario-based verification tasks. Depending on the use case, different
approaches [10] can be used to assign the data collected by the sensors to
specific scenarios: Rule-based approaches are used to find standard scenario
classes where prior knowledge is required to set rules and thresholds to label each
scenario. However, these approaches can be inaccurate where the parameters
are close to their corresponding thresholds or the thresholds are not set correctly
for some reason (e.g., because there are not enough samples). To overcome
the above challenges, machine learning approaches have been proposed as
complementary methods, especially to handle unknown scenarios.

This thesis proposes an unsupervised approach to cluster motion trajectories
that exploits the transitive-aware relation of trajectories. Given a dataset of
trajectories, where a trajectory is a time series of the relative position of a
nearby vehicle with respect to an ego vehicle, the goal is to associate each time
series with a particular scenario that is unknown to the algorithm.

Regardless of whether safety testing is performed in-the-field or via sim-
ulations, the testing is more focused on naturalistic scenarios. However, it
is essential to test the safety of AD in some high-risk and diverse scenarios
that rarely occur in real life. Consequently, there is a need to augment real-
world data with generated trajectories. For this reason, studies have used [11],
[12] Generative Adversarial Networks (GANs) to generate synthetic scenarios.
GANs have two main components: a generative model that attempts to gener-
ate a syntactic pattern, and a discriminator model that attempts to distinguish
its input as either real (from the domain) or fake (synthetic) [13].

Road networks bottleneck identification

A road network can be mathematically represented in different ways depending
on the desired use case. This thesis studies bottleneck identification problems
in road networks represented by a weighted graph G(V,E ,w), where nodes V
correspond to intersections and edges E to road segments.

Nodes and edges in a road network can have various properties and at-
tributes, such as coordinates for intersections and length for road segments.
Edge weights w, where we denotes the edge weight of e ∈ E , is defined by
a particular attribute of edges. Considering edge (i, j) ∈ E denotes an edge
between nodes i and j where i, j ∈ V, and graph G is directed if w(i,j) ̸= w(j,i).
It is assumed that graph G has no self-loop.

The bottleneck in a road network between a specific source and a destination,
is the edge with the maximum edge weight that one cannot avoid. Therefore,
a bottleneck over the network is equal to the minimax edge. By negating the
edge weights, the identification of the bottleneck can also be considered as the
widest path or maximum capacity path problem [14].

Based on Section 2.1.1, the first step in finding minimax distances between
nodes in a graph G is to find a minimum spanning tree (MST). The common
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algorithms to find an MST (Prim’s and Kruskal’s) are applied to an undirected
graph; however, the direction of a segment is critical information in most road
network applications. A modification of Dijkstra’s algorithm [15] can be used
to find the MST when G is directed.

In classical bottleneck identification problems, the edge weights are given.
However, in real-world applications, the edge weights of a road network may
be uncertain and stochastic. In this thesis, the edge weights are assumed to be
stochastic, with fixed and unknown distribution parameters, and the bottleneck
identification problem is formulated as an online learning problem, as explained
in Section 2.2, to learn the distribution parameters while solving the bottleneck
identification problem.

2.2 Online Decision Making
Online learning provides a framework to analyze sequential decision making.
The goal is to derive a policy π that maximizes a long-term goal in horizon T .
It is common to consider the long-term goal to be regret minimization, where at
time t ∈ [T ] the instantaneous regret is the difference between the algorithm’s
performance and the optimal performance, and the cumulative regret is the
sum of regrets received up to time t.

In an online learning setting, a learner (agent) and its environment interact
at each time step t of horizon T . In particular, at time step t, the environment
reveals some information about the current state St ∈ S to the learner. Then,
the learner chooses an action a ∈ At where At are all possible actions at time
step t, based on the current state St and the learner’s policy π. Consequently,
the learner receives a reward Rt from the environment. Then, the learner
updates its policy π based on Rt and the environment also enters a new state
St+1.

Multi-armed bandit is a special framework for making decisions over time
under uncertainty. A bandit agent does not consider state transitions, which
means that the learner’s available choices and rewards for the next step are
not affected by its decisions in the current time step.On the contrary, when
the environment is influenced by the agent’s choices (i.e., state transitions),
reinforcement learning models are applicable [16].

2.2.1 Multi-armed Bandit Algorithm
The term multi-armed bandit is originated from a gambling scenario in which
a gambler faces several identical slot machines, each with possibly different
payoffs. In this scenario, the gambler aims to play an arm that maximizes
the cumulative payoff. However, since the gambler receives a reward only for
the chosen arm, they have to explore and try different arms to acquire new
information. Therefore, in each round, the gambler should decide whether to
try to make the optimal short-term decision based on the available information
or to explore to gain more knowledge.

The problem of multi-armed bandits has many different variants and setting.
This thesis focuses on the stochastic bandit problem represented by Algorithm
1, where the agent has the same set of possible actions At with size K to choose
from for all t ∈ [T ]. In this thesis, the concept of arms is used interchangeably
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Algorithm 1 Stochastic multi-armed bandits problem
Input: A, T , and Da

1: for t← 1, . . . ,T do
2: at← Choose arm at ∈ At to play according to bandit algorithm
3: r(at)← Observe reward based on Dat

4: Update algorithm’s parameter using observed reward r(at)
5: end for

with actions. Then, the agent chooses action at to play according to its
algorithm and observes a corresponding reward r(at), where r(at) is i.i.d.
drawn from a fixed and unknown distribution Dat . The goal of the algorithm
is to maximize its total reward over the time horizon T .

However, maximizing total reward is often framed as a regret minimization
problem. Assuming mean reward vector µ ∈ RK , where µ(a) := E [Da], the
best mean reward is µ∗ := maxa∈A µ(a), and the gap of arm a is defined by
∆(a) := µ∗−µ(a), which describes how bad arm a is compared to the best arm.
Then the cumulative regret at time T , R(T ) is defined by Eq. (2.2).

R(T ) =
T∑

t=1

(
µ∗−µ(at)

)
(2.2)

Due to possible randomness in actions and rewards, usually the expected
regret E [R(t)] is of interest. Different bandit algorithms are compared based on
their dependencies between expected regret and time horizon (and sometimes
number of arms). Some of the most important algorithms for bandit problems
are briefly presented here.

Epsilon-greedy algorithm

The ϵ-greedy algorithm is a simple approach that optimizes for short term ben-
efits (exploitation) with probability of 1−ϵ and uniformly randomly chooses an
arm a∈A with probability of ϵ (exploration). The probability of random choice
can be constant, ϵ, or decreasing by time t, ϵt. Assuming that ϵt ∼ t−1/3, then
the ϵt-greedy algorithm achieves the regret bound E [R(t)]≤ t2/3O(K log t)1/3,
at every time t≤ T . [17].

Upper confidence bound algorithms

Upper Confidence Bound (UCB) is a class of bandit algorithms based on the
principle of taking optimistic decisions in uncertain environments. That is, at
each time step t, the algorithm plays the arm with the highest empirical average
of reward up to time t plus a confidence radius which is inversely proportional
to the number of times the arm has been played [17], [18].

The UCB policy leads to sublinear regret because an arm is selected based
on either a high empirical average of reward or a high confidence radius. If a
non-optimal arm is played due to its high confidence radius, it is later discarded
due to the inverse relationship between the confidence radius and the number
of times an arm was played. The notion of confidence radius itself is often
derived from the concentration properties of the reward distributions. Suppose
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Algorithm 2 Upper Confidence Bound
Input: A, T , δ, and Da

1: for t← 1, . . . ,T do
2: at← argmaxa∈A UCBa(t−1, δ)
3: Observe reward r(at)
4: Update upper confident bounds
5: end for

that for each arm a ∈ A, the reward is a 1-subgaussian random variable with
mean µ(a) and µ̂(a) = 1

nΣn
i=1r(ai) where n indicates how many times that arm

was played. Then, by Chernoff-Hoeffding bound Eq. (2.3) is derived for all
confidence levels δ ∈ (0,1). The confidence level should be small enough to
ensure optimism with high probability, but not too small, which leads to trying
suboptimal arms for too many time steps [16], [17].

P
(

µ(a)≥ µ̂(a)+

√
2log(1/δ)

N(t,a)

)
≤ δ (2.3)

Algorithm 2 shows a UCB agent [17]. In line 2 of the algorithm, UCBk(t−
1, δ) is defined by Eq. (2.4), where µ̂(a)(t−1) indicates the empirical average
of arm a’ reward by time t, and N(t,a) is a random variable indicating how
many times arm a ∈ A has been played by time t.

UCBa(t−1, δ) =
{
∞, if N(t,k) = 0;
µ̂(a)(t−1) +

√
2log(1/δ)

N(t,a) , otherwise.
(2.4)

However, there are many variants of the UCB algorithms; all (that I am
aware of) consist of a term for exploitation and a term for exploration based
on optimism. The exact regret bounds of these algorithms can be discussed
individually.

Thompson Sampling algorithm

The Bayesian bandit is another variant of the stochastic bandit in the presence
of prior knowledge, assuming that the parameters of the arms’ reward distri-
butions are drawn from a known prior distribution. The Thompson Sampling
(TS) algorithm proposed by Thompson [19] is a natural randomized Bayesian
algorithm for minimizing regret by assuming the existence of uncomplicated
prior distributions over the parameters of the arms’ reward distributions, where
the agent chooses an arm based on the arms’ posterior probabilities of being
the optimal arm at time t ∈ [T ].

Recently, TS has attracted considerable attention in various problems,
including online learning with derived theoretical guarantees [20], with differnt
applications such as finding the shortest paths in graphs [21]–[24].

Algorithm 3 shows TS for stochastic multi-armed bandit (MAB) where
the reward distributions of the arms are Gaussian, with the reward means θa

drawn from a Gaussian prior distribution N (µa,0,σa,0) and a known variance
ς2 (for simplicity, as in other works [25], [26]). Given a Gaussian prior and a
Gaussian likelihood, the posterior has the same parametric form as the prior
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Algorithm 3 Thompson Sampling
Input: A, T , N (µa,0,σa,0)

1: for t← 1, . . . ,T do
2: for a ∈ A do
3: θ̃a← Sample from posterior N (µa,t−1,σ2

a,t−1)
4: end for
5: at← argmaxa∈A θ̃a

6: r(at)← observe reward of playing at

7: µat,t,σ
2
at,t ← Update the parameters of the posterior distribution for

arm at

8: end for

due to conjugacy, and the update of the parameters of the Gaussian posterior
is derived in a closed form.

2.2.2 Combinatorial Bandit Setting
This thesis focuses on stochastic combinatorial semi-bandit setting [27], where
the agent chooses a super arm at ⊆A at each time step t in horizon T . A super
arm at is a subset of base arms a∈A. Sometimes there are constraints on super
arms; therefore I is called the set of feasible super arms where at ∈ I ⊆ 2A.

Many of the bandit algorithms mentioned in Section 2.2.1 have been adapted
to the combinatorial setting, such as UCB for combinatorial setting [28], and
its Bayesian variants [29]. Bottleneck avoidance problems have been studied
with a variant of UCB in a combinatorial pure exploration setting [30] with a
different problem formulation and method, compared to what is presented in
this thesis. The main distinction between their environment and the classical
combinatorial semi-bandit environment in terms of how agents interact with
the environment is that they allow agents to test individual arms sequentially
to find the best feasible solution to the combinatorial problem, as opposed to
being constrained to select a subset of actions at once for each time step. In
order to define the setting as explained, the feedback from each edge should be
observable.

Similar to UCB, Thompson Sampling has been adapted to combinatorial
bandit setting with intact theoretical guarantees [20], one application being to
finding shortest paths in graphs [21]–[24].

2.3 Concurrent Programming
Multiprocessor architecture leads to more efficient data processing by providing
the capability for parallel computations. A multiprocessor contains two or
more processing units that can execute threads simultaneously. These units
share some resources, such as caches, at some level and interact through shared
memory. In asynchronous thread execution, the threads can be executed
at different speeds so that the steps of the threads can be interleaved. By
using appropriate synchronization methods, the correctness of these threads is
maintained.
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Algorithm 4 Compare And Swap (CAS)
function CAS (int∗ p, int old, int new)

1: if ∗p = old then
2: return False
3: end if
4: ∗p← new
5: return True

2.3.1 Atomic Primitives
Hardware instructions, known as atomic primitives, consist of a series of steps
that are executed sequentially (without interruption). With concurrent accesses,
atomics provide consistency and accuracy. The most frequent application of
atomics is when multiple threads modify a single shared object. Atomics can
be viewed as a congestion that can affect the performance and scalability of
multithreaded applications because the changes made by each thread must be
serialized to ensure correctness. Atomics are used extensively in the development
of concurrent data structures [31]–[33].

The maximum number of threads that can reach an agreement with the
atomic primitive without waiting is called the consensus number and is a crucial
aspect of an atomic. Compare And Swap (CAS), Fetch And Increment (FAI),
Test And Set (TAS) presented respectively in Algorithm 4, Algorithm 5, and
Algorithm 6 are the most common atomics with consensus number equal to ∞,
2, and 2, respectively [31].

2.3.2 Cache Coherence
In a multiprocessor system, each core has its own cache, known as the L1
cache. A core can have more than one exclusive cache. When a core executes
a thread on a particular memory location, the target memory location should
be available in the core’s L1 cache. However, copies of that memory location
might be in other caches. Cache coherence techniques are required to ensure
consistency of shared data resources that are available locally in multiple caches.
Depending on the number of defined cache states, cache coherence protocols
are classified into different categories. The focus of this thesis is on MESI [34]
and MESIF [35].

The MESI protocol consists of four states, Modified (M), Exclusive (E),
Shared (S), Invalid (I). In MESIF there is a fifth state called Forward (F).
In the Modified state, the content is exclusive to the current cache and has
been modified from the value in main memory. In the Exclusive state, the
content is exclusive to the current cache but is identical to the value in main

Algorithm 5 Test And Set (TAS)
function TAS (int∗ p)

1: int old←∗ p
2: ∗p← True
3: return old
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Algorithm 6 Fetch And Increment (FAI)
function FAI (int∗ p, int add)

1: int old←∗ p
2: ∗p + = add
3: return old

memory. The Shared state indicates that other caches have an identical copy
of this cache line and that it matches the value in main memory. The Invalid
state means that the value in the current cache is invalid. In MESIF there is
another state called Forward. If there are multiple copies of a memory address
in different caches, one of them holds the F state to forward the cache value in
the response to a copy request.

2.3.3 Execution Time
Atomics are typically used to provide exclusive access when modifying the state
of a shared object, making them a natural candidate to become the bottlenecks
that hinder the scalability of multithreaded programs. In Chapter 5, we model
atomics’ execution time, which consists of two factors:

Stall time: Thread contention occurs when one or more threads are waiting
to access and modify a particular cache line. When contention occurs, one
thread gains exclusive access to the cache line and executes an atomic, so that
preventing the other threads from having exclusive access until the current
atomic execution is ended. When the current execution is finished, another
thread accesses the cache line in accordance with the scheduling strategy of
the hardware. This time interval that a thread must wait to access the cache
line is called the stall time and is the first element of the execution time.

Atomic execution time: The period of time that begins with the acquisi-
tion of the cache line and ends with the completion of atomic execution, and is
the second element of execution time. This component is affected by the state
of the system when the thread acquires the cache line. For example, instead of
having to fetch the specified cache line from memory, execution will be faster
if it is already in the L1 of the core where the thread is currently executing.
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Chapter 3

Thesis Challenges and
Contributions

This thesis explores the pairwise relations between data points in the context
of offline and online learning models. The following chapter provides a brief
overview of the problems studied in the two settings, the methods used, and
the contributions developed in each of the attached papers.

3.1 Offline Learning Models

3.1.1 Paper A
Atomic primitives are essential for concurrent programming. Therefore, several
studies introduce benchmarks to investigate the behavior of atomic primitives
and their latency/bandwidth when reading and writing data in multi-core
architectures with complex memory hierarchies [36]–[39].

In these studies, however, the cache coherence states of the data are explicitly
specified, and the measurements are made with complete control over the state
of the system, including the location of the cache containing a copy of the
data and the order of the threads running on the shared memory locations.
For example, to measure the latency of an atomic primitive on a cache line
in the modified state (Section 2.3.1), in the studies cited, a specific location
in the L1 cache should first be brought into the modified state by a thread
modifying the shared memory location. Then another waiting thread executes
the atomic primitive on that line, and a timer counts the execution time of
that thread. While this measurement gives us some insight, it does not show
the performance metrics in uncontrolled instances like real applications.

In paper A, we study the performance of atomic primitives in a less controlled
setting. Inspired by the results of [39] showing that the latency of atomic
primitives strongly depends on the location of the targeted data and the cache
coherence state, we propose a method based on modeling cache line bounces
between threads (more precisely, between cores executing the threads) accessing
the shared cache lines. Thus, to model the performance of atomics, we observe
a sequence of threads executing the atomics, and then model the sequence of

15
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events with a stochastic process that satisfies the Markov property.
This paper proposes a representation of the process by a Markov chain with

a transition matrix determined by some properties of the target architecture:
the number of cores and their arrangement, and the degree of cache sharing.
The focus is on two hardware platforms, a medium-scale multi-core platform
(Intel Xeon E5) and a large-scale many-core platform (Intel Xeon Phi). Then,
the proposed method measures the cost of each state transition in terms of
latency, throughput, fairness, and energy consumption. Finally, using the state
transition matrix and the cost of each transition, we model the performance of
atomics, and provide a detailed evaluation of the desired performance metrics
to demonstrate that our model accurately captures the performance.

3.1.2 Paper B
The transitive relations between data points rather than their direct (dis)simil-
arities provide a better representation of the underlying patterns of data in
various applications, e.g., minimax distances in clustering problems. Minimax
distance measure is a link-based distance, where to calculate the minimax
distance between two data points, all different paths between these two points
should be considered [40].

Therefore, the first step in computing the minimax distance of a pair of data
points is to find all possible paths between them. This step is computationally
and memory-wise intensive. However, there are some studies [41]–[43] that
provide computationally efficient methods for computing pairwise minimax
distances; to our knowledge, there is no other study on memory-efficient
methods for pairwise minimax distances, and no improvement in the memory
requirement of O(N2) has been obtained for this problem.

In paper B, we present two memory-efficient methods to reduce memory
requirements and achieve linear space complexity: i) At the expense of higher
computational cost, we propose a method to determine the exact minimax
distances between each pair of objects. ii) With the goal of reducing the
computational cost, we introduce an effective sampling strategy based on
minimax distances where the use of minimax distances is limited to the sample
space. We show that the required information for minimax distances between
any data points can be captured by the proposed sampling method.

Assuming that it is not possible to store the pairwise distances of a data
set with size N directly in linear memory, in the first approach we propose an
algorithm that arranges the data in a hierarchy of components. The relations
between intra-component data and inter-component data allow us to encode
pairwise minimax distances of N objects, and store the compressed information
with linear memory requirements. We also present a method for decoding the
minimax distance of arbitrary nodes.

While the proposed algorithm can compute exact pairwise distances, the
memory efficiency comes at the price of a heavy computational burden. To
reduce this, we also propose an approximate sampling method based on the
hierarchy of components mentioned above. A sample in this context refers to
any data point within a component. We claim that the minimax distances
between our samples coincide with the pairwise minimax distances of the entire
data points. We demonstrate the sampling framework for the downstream task
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of clustering, for which it is well suited, but note that it could be similarly
applied to many tasks. To evaluate our method, we apply a clustering task to
the samples and then generalize the labels of the samples to the objects outside
the samples.

3.1.3 Paper C
To ensure the safety of Autonomous Driving (AD) vehicles, they would have to
be driven more than a hundred million kilometers. However, the efficiency of
in-the-field testing of AD is arguable. An alternative approach is scenario-based
verification and validation, where a driving scenario trajectory is a time series
consisting of information about surrounding vehicles relative to an ego-vehicle
over different time periods. It is common to consider the relative lateral
and longitudinal positions of the vehicle w.r.t. the ego vehicle as elements
of a trajectory. To create such a dataset, collected raw sensor data must be
processed and then categorized into different driving patterns (e.g. cut- in,
overtaking, etc.). However, there are many scenarios that are not very frequent
but often hazardous. Therefore, the collected data is not sufficient and should
be augmented by synthetic data, which can be generated by generative models
such as Generative Adversarial Networks (GAN) [13] or other variants of GAN
such as Recurrent Auto-Encoder GAN [44]–[46].

Knowledge-based approaches allow us to categorize given trajectories based
on established rules and thresholds. These rules are known in advance and
are determined by a team of experts. Although this method is simple and
effective in many cases and uses expert knowledge, it can be error-prone in
cases where the thresholds have too small margins and can also omit unknown
driving events. Therefore, as a complementary approach, we investigate the
use of machine learning tools, in particular the clustering approach, to speed
up and verify the obtained scenario labels. However, these approaches have
their own challenges due to the nature of the problem, where we need to label
a huge amount of data in the form of time series with different lengths. For
example, padding is used to address varying length of each time-series in some
domains, but this is non-trivial to define neutral padding for trajectories [47],
[48].

To deal with trajectories of different lengths, model-based clustering tech-
niques such as Mixture of Hidden Markov Models [49] have been used for
trajectories, where each trajectory is appointed to a generative model. How-
ever, the weakness of this approach is the sensitivity of the models to the
initialization step; also, it is very computationally intensive. Later, deep neural
networks were used for clustering trajectories, where a neural network first
transforms the trajectories by summarizing their critical parts and enriching
them with the context-derived features of their geographical location. Then, it
learns a powerful representation of the trajectories in latent space and finally
clusters the trajectories [50]. Despite some improvements by the above study,
neural network approaches still suffer from the high computational cost and
sensitivity to hyper-parameter tuning.

In Paper C, we propose a non-parametric framework to cluster vehicle
trajectories with different lengths. In our approach, we first determine the
temporal relations of the trajectories and then embed the dissimilarities of the



18 CHAPTER 3. THESIS CHALLENGES AND CONTRIBUTIONS

trajectories with t-SNE into a vector space. We then extract the transitive
relations in the embedded space using minimax distances and apply multidi-
mensional scaling to represent the trajectories in a vector space, allowing us to
apply clustering methods such as the Gaussian Mixture Models (GMM). We
evaluate our approach on real-world and synthetic trajectory data sets and
obtain promising results, despite the complexity introduced by trajectories of
different lengths. Furthermore, we extend our approach to validate the augmen-
tation of the real datasets with the synthetic data generated by variations of
GAN concluding the consistency of the generated and real-world trajectories.

3.2 Online Learning Models

3.2.1 Paper D
A bottleneck in a path connecting a source and a destination is defined as
the edge with the highest cost or weight according to some defined criteria.
In a bottleneck identification problem, the objective is to find the path with
the smallest bottleneck. Therefore, a bottleneck identification problem can be
considered as a minimax problem. The widest path problem and the maximum
capacity path problem [14] are equivalent to the bottleneck identification
problem.

The applications of the mentioned problems can be defined in a specific
context. For example, in the context of a road network, a bottleneck between a
source and a destination is a road segment along a path between them, the cost
of which is simultaneously maximal w.r.t. the edges on the path, and minimal
w.r.t. maximum edge of all possible paths. For example, if weights indicate
travel time, the bottleneck is the largest road segment that cannot be avoided
when commuting between source and destination.

A classic problem setting for identifying bottlenecks in a network assumes
that the network is deterministic and the edge weights are given. However, this
assumption does not hold for many applications where the network is unknown
or stochastic and a learning algorithm must learn unknown parameters while
finding the bottleneck.

In Paper D, we propose an online bottleneck identification framework with
the goal of finding a path that minimizes the maximum stochastic edge weight
along that path (the minimax path). We treat the problem as a combinatorial
semi-bandit problem, where choosing a path is viewed as playing a super-arm.
We use combinatorial Thompson Sampling to solve the problem. We make the
Bayesian assumption that the mean values of the edge weights are drawn from
a known prior distribution. We then derive an upper bound of Õ(K

√
T ) where

K is the number of base arms and T is the horizon, with a detailed proof in
Appendix A.

The mentioned objective requires computing the expected maximum of
Gaussian random variables which is computationally intractable when there
are many base arms. Therefore, we use an approximate objective [51] modified
to find a super-arm that minimizes the maximum expected edge weight of
the base arm. We then evaluate combinatorial Thompson Sampling with our
proposed formulation in two real-world networks, a road network, and a social
network.
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3.2.2 Paper E
Paper E builds on the work in Paper D, where we formulate a bottleneck
identification problem in a combinatorial semi-bandit environment. In this
work, however, we aim to exploit additional information available for each
base arm, referred to as its context. For example, in road networks, each road
segment may have some attributes such as length, coordinates, speed limit,
etc., which may affect the reward. For a contextual multi-armed bandit, the
reward for each time step depends on the context and the action played at that
time.

The relations between the expected rewards of the arms and the correspond-
ing observed feature vectors serve as inspiration for several typical assumptions
made in contextual bandit problems regarding the expected reward function.
Studies in [52]–[54] use ridge regression to estimate the parameters of the
reward function under the assumption that the reward function is linear with
context. Other works [55], [56] have proposed LinUCB-based combinatorial
MAB algorithms with application-specific objectives. The Thompson Sampling
algorithm with linear arm rewards has been explored by [26], [57].

In paper E, we develop a unified online learning method based on contextual
combinatorial semi-bandits, learning the properties of the underlying network
in addition to identifying bottlenecks. We consider the approximate objective
mentioned in Section 3.2.1, where the goal is to find a super-arm that minimizes
the maximum expected loss of the base arm given the contextual information.
In this framework, we study an ϵ-greedy agent, LinUCB, BayesUCB, as well as
Thompson Sampling in a contextual combinatorial semi-bandit environment.
We also propose an extension of the neural network approach, NeuralUCB
[58], for a combinatorial environment. We then evaluate our approach on a
real-world application, a road network.
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Chapter 4

Concluding Remarks &
Future Works

This thesis studies offline and online models for learning pairwise relations in
data. From the perspective of offline learning, it introduces a performance
model built upon the bounces of cache lines around executing cores, where
various performance metrics such as energy consumption, throughput, latency,
and fairness are modeled and discussed. Evaluation of the model has shown that
the model is capable of capturing atomic’s behavior on two modern multicore
processors.

Then, the thesis focuses on minimax distance as a pairwise measure capable
of detecting latent features and patterns in a data set. First, two memory-
efficient approaches were presented to reduce the memory required to compute
minimax distances. Both methods are based on the proposed hierarchical
representation, where it assigns data points into hierarchical components, and
the relations of a pair of data can be interpreted differently depending on
whether they are in the same component or not. Later in this thesis, minimax
distances were explored in clustering motion trajectories, leading to a clustering
framework that does not require the specification of hyper-parameters.

The second part of the thesis focuses on the use of online learning approaches
to introduce two frameworks to find a minimax distance of any pair of data
points when the edge weights are not deterministic. Then, the proposed
methods were applied to the problem of identifying bottlenecks in networks,
mainly in road networks.

Both frameworks (Paper E and D) use different bandit algorithms in the
context of stochastic combinatorial multi-armed bandits. We considered a
stochastic criterion as weights of edges in the networks and use a Bayesian
approach for probabilistic modeling of the criterion associated with each edge. In
Paper E, we used combinatorial versions of Thompson Sampling and BayesUCB.
Due to interactivity of computing the expected maximum of Gaussian random
variables when there are many of such variables, we employed an approximate
problem formulation alternating maximization and expectation operations. We
derived an upper bound for the Bayesian regret of combinatorial Thompson
Sampling applied to the online minimax path problem. Finally, we evaluated
the approximate method on several real-world networks and datasets.

21
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The second online framework (Paper D) is a unified contextual combinatorial
bandit framework for identifying bottlenecks in networks that takes into account
the available contextual information. Again, we used the minimax concept
to find the path containing a bottleneck edge given contextual information.
We adapted Thompson Sampling, BayesUCB, LinUCB, and ϵt-greedy to our
framework, and proposed a NeuralUCB method for a combinatorial setting.
We evaluated the performance of the proposed framework on a real-world
application for a road network.

The MAB neglects several important factors of the environment in many
real-world applications. For example, the number of available arms at each
time step is considered fixed in a simple MAB environment. However, in many
applications, such as identifying bottlenecks in a road network, the available
arms at time t may be a subset of a known finite set of arms, or even a subset of
an infinite number of arms (in other applications). Moreover, the assumption
of an i.i.d. reward model may not be realistic for many real-world problems
where there is a latent structure that induces correlations between options. By
learning and utilizing the correlation or structure between arms, the agent can
reduce the exploitation in bandit algorithms.

Another possible research direction is to investigate how the contextual
bandit can address the cold-start in online minimax distance problems, where
the agent starts with a very limited amount of contextual information. This
research direction is correlated to the problem of dealing with missing contextual
data.
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