12,400 research outputs found
The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots
This review considers a problem in the development of mobile robot adhesion
methods with vertical surfaces and the appropriate locomotion mechanism design.
The evolution of adhesion methods for wall-climbing robots (based on friction,
magnetic forces, air pressure, electrostatic adhesion, molecular forces,
rheological properties of fluids and their combinations) and their locomotion
principles (wheeled, tracked, walking, sliding framed and hybrid) is studied.
Wall-climbing robots are classified according to the applications, adhesion
methods and locomotion mechanisms. The advantages and disadvantages of various
adhesion methods and locomotion mechanisms are analyzed in terms of mobility,
noiselessness, autonomy and energy efficiency. Focus is placed on the physical
and technical aspects of the adhesion methods and the possibility of combining
adhesion and locomotion methods
Wall Climbing Robot for Inspection of Wall Using Digital Image Processing
This paper presents a wall-climbing robot for crack detection on the surface of the wall. It uses active suction cups as the attaching components and servo motors and vacuum pumps to generate motion and adhering capabilities. The proposed robot can move on a wall by attaching suction cups to the wall and removing them from the wall. Active suction cups requires additional energy from the vacuum pumps to maintain adhesion. Therefore, the proposed robot can climb the wall but requires a constant amount of energy supply. The prototype has been designed, fabricated and tested. The primary objective of the robot is to detect cracks. For that purpose the robot uses digital image processing to aid visual inspection. Canny edge detection method is used to detect edges. Images are stored in the database and are later inspected visually by the operator. A Li-Po battery was used to power up the robot. However due to load and large number of servos motors of high torque capacities being used, the battery drained quickly and could not supply continuous power. A new model which improves the powering problems is thus being designe
Simple expert systems to improve an ultrasonic sensor-system for a tele-operated mobile-robot
Walking and climbing service robots for safety inspection of nuclear reactor pressure vessels
Tele-operated climbing and mobile service robots for remote inspection and maintenance in nuclear industry
Design and development of wall climbing robot
This research work presents the design of a robot capable of climbing vertical and rough planes, such as stucco walls. Such a capacity offers imperative non military person and military preferences, for example, observation, perception, look and recover and actually for diversion and amusements. The robot's locomotion is performed using rack and pinion mechanism and adhesion to wall is performed by sticking using suction cups. The detailed design is modelled and fabrication is performed. It utilizes two legs, each with two degrees of freedom. And a central box containing the required mechanisms to perform the locomotion and adhesion is designed to carry any device to perform works on wall. A model of the robot is fabricated in a workshop using general tools. This model show how the mechanisms in the robot will work and how they are assembled together
SAFER: Search and Find Emergency Rover
When disaster strikes and causes a structure to collapse, it poses a unique challenge to search and rescue teams as they assess the situation and search for survivors. Currently there are very few tools that can be used by these teams to aid them in gathering important information about the situation that allow members to stay at a safe distance. SAFER, Search and Find Emergency Rover, is an unmanned, remotely operated vehicle that can provide early reconnaissance to search and rescue teams so they may have more information to prepare themselves for the dangers that lay inside the wreckage. Over the past year, this team has restored a bare, non-operational chassis inherited from Roverwerx 2012 into a rugged and operational rover with increased functionality and reliability. SAFER uses a 360-degree camera to deliver real time visual reconnaissance to the operator who can remain safely stationed on the outskirts of the disaster. With strong drive motors providing enough torque to traverse steep obstacles and enough power to travel at up to 3 ft/s, SAFER can cover ground quickly and effectively over its 1-3 hour battery life, maximizing reconnaissance for the team. Additionally, SAFER contains 3 flashing beacons that can be dropped by the operator in the event a victim is found so that when team members do enter the scene they may easily locate victims. In the future, other teams may wish to improve upon this iteration by adding thermal imaging, air quality sensors, and potentially a robotic arm with a camera that can see in spaces too small for the entire rover to enter
Tree pruning/inspection robot climbing mechanism design, kinematics study and intelligent control : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatu Campus, New Zealand
Forestry plays an important role in New Zealand’s economy as its third largest export earner. To achieve New Zealand Wood Council’s export target of $12 billion by 2022 in forest and improve the current situation that is the reduction of wood harvesting area, the unit value and volume of lumber must be increased.
Pruning is essential and critical for obtaining high-quality timber during plantation growing. Powerful tools and robotic systems have great potential for sustainable forest management. Up to now, only a few tree-pruning robotic systems are available on the
market. Unlike normal robotic manipulators or mobile robots, tree pruning robot has its unique requirements and features. The challenges include climbing pattern control, anti-free falling, and jamming on the tree trunk etc. Through the research on the
available pole and tree climbing robots, this thesis presents a novel mechanism of tree climbing robotic system that could serve as a climbing platform for applications in the forest industry like tree pruning, inspection etc. that requires the installation of powerful or heavy tools. The unique features of this robotic system include the passive and active anti-falling mechanisms that prevent the robot falling to the ground under either static or dynamic situations, the capability to vertically or spirally climb up a tree trunk and the flexibility to suit different sizes of tree trunk. Furthermore, for the convenience of tree pruning and the fulfilment of robot anti-jamming feature, the robot platform while the robot climbs up should move up without tilting. An intelligent platform balance control system with real-time sensing integration was developed to overcome the climbing tilting problem. The thesis also presents the detail kinematic and dynamic study, simulation, testing and analysis.
A physical testing model of this proposed robotic system was built and tested on a cylindrical rod. The mass of the prototype model is 6.8 Kg and can take 2.1 Kg load moving at the speed of 42 mm/s. The trunk diameter that the robot can climb up ranges from 120 to 160 mm. The experiment results have good matches with the simulations and analysis.
This research established a basis for developing wheel-driven tree or pole climbing robots. The design and simulation method, robotic leg mechanism and the control methodologies could be easily applied for other wheeled tree/pole climbing robots. This
research has produced 6 publications, two ASME journal papers and 4 IEEE international conference papers that are available on IEEE Xplore. The published content ranges from robotic mechanism design, signal processing, platform balance control, and robot climbing behavior optimization. This research also brought interesting topics for further research such as the integration with artificial intelligent module and mobile robot for remote tree/forest inspection after pruning or for pest control
A Vision-based Scheme for Kinematic Model Construction of Re-configurable Modular Robots
Re-configurable modular robotic (RMR) systems are advantageous for their
reconfigurability and versatility. A new modular robot can be built for a
specific task by using modules as building blocks. However, constructing a
kinematic model for a newly conceived robot requires significant work. Due to
the finite size of module-types, models of all module-types can be built
individually and stored in a database beforehand. With this priori knowledge,
the model construction process can be automated by detecting the modules and
their corresponding interconnections. Previous literature proposed theoretical
frameworks for constructing kinematic models of modular robots, assuming that
such information was known a priori. While well-devised mechanisms and built-in
sensors can be employed to detect these parameters automatically, they
significantly complicate the module design and thus are expensive. In this
paper, we propose a vision-based method to identify kinematic chains and
automatically construct robot models for modular robots. Each module is affixed
with augmented reality (AR) tags that are encoded with unique IDs. An image of
a modular robot is taken and the detected modules are recognized by querying a
database that maintains all module information. The poses of detected modules
are used to compute: (i) the connection between modules and (ii) joint angles
of joint-modules. Finally, the robot serial-link chain is identified and the
kinematic model constructed and visualized. Our experimental results validate
the effectiveness of our approach. While implementation with only our RMR is
shown, our method can be applied to other RMRs where self-identification is not
possible
- …
