19 research outputs found

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    From medical images to individualized cardiac mechanics: A Physiome approach

    Get PDF
    Cardiac mechanics is a branch of science that deals with forces, kinematics, and material properties of the heart, which is valuable for clinical applications and physiological studies. Although anatomical and biomechanical experiments are necessary to provide the fundamental knowledge of cardiac mechanics, the invasive nature of the procedures limits their further applicability. In consequence, noninvasive alternatives are required, and cardiac images provide an excellent source of subject-specific and in vivo information. Noninvasive and individualized cardiac mechanical studies can be achieved through coupling general physiological models derived from invasive experiments with subject-specific information extracted from medical images. Nevertheless, as data extracted from images are gross, sparse, or noisy, and do not directly provide the information of interest in general, the couplings between models and measurements are complicated inverse problems with numerous issues need to be carefully considered. The goal of this research is to develop a noninvasive framework for studying individualized cardiac mechanics through systematic coupling between cardiac physiological models and medical images according to their respective merits. More specifically, nonlinear state-space filtering frameworks for recovering individualized cardiac deformation and local material parameters of realistic nonlinear constitutive laws have been proposed. To ensure the physiological meaningfulness, clinical relevance, and computational feasibility of the frameworks, five key issues have to be properly addressed, including the cardiac physiological model, the heart representation in the computational environment, the information extraction from cardiac images, the coupling between models and image information, and also the computational complexity. For the cardiac physiological model, a cardiac physiome model tailored for cardiac image analysis has been proposed to provide a macroscopic physiological foundation for the study. For the heart representation, a meshfree method has been adopted to facilitate implementations and spatial accuracy refinements. For the information extraction from cardiac images, a registration method based on free-form deformation has been adopted for robust motion tracking. For the coupling between models and images, state-space filtering has been applied to systematically couple the models with the measurements. For the computational complexity, a mode superposition approach has been adopted to project the system into an equivalent mathematical space with much fewer dimensions for computationally feasible filtering. Experiments were performed on both synthetic and clinical data to verify the proposed frameworks

    Design and clinical validation of novel imaging strategies for analysis of arrhythmogenic substrate

    Get PDF
    _CURRENT CHALLENGES IN ELECTROPHYSIOLOGY_ Technical advances in cardiovascular electrophysiology have resulted in an increasing number of catheter ablation procedures reaching 200 000 in Europe for the year 2013. These advanced interventions are often complex and time consuming and may cause significant radiation exposure. Furthermore, a substantial number of ablation procedures remain associated with poor (initial) outcomes and frequently require ≥1 redo procedures. Innovations in modalities for substrate imaging could facilitate our understanding of the arrhythmogenic substrate, improve the design of patient-specific ablation strategies and improve the results of ablation procedures. _NOVEL SUBSTRATE IMAGING MODALITIES_ __Cardiac magnetic resonance__ Cardiac magnetic resonance imaging (CMR) can be considered the most comprehensive and suitable modality for the complete electrophysiology and catheter ablation workup (including patient selection, procedural guidance, and [procedural] follow-up). Utilizing inversion recovery CMR, fibrotic myocardium can be visualized and quantified 10–15 min after intravenous administration of Gadolinium contrast. This imaging technique is known as late Gadolinium enhancement (LGE) imaging. Experimental models have shown excellent agreement between size and shape in LGE CMR and areas of myocardial infarction by histopathology. Recent studies have also demonstrated how scar size, shape and location from pre-procedural LGE can be useful in guiding ventricular tachycardia’s (VT) ablation or atrial fibrillation (AF) ablation. These procedures are often time-consuming due to the preceding electrophysiological mapping study required to identify slow conduction zones involved in re-entry circuits. Post-processed LGE images provide scar maps, which could be integrated with electroanatomic mapping systems to facilitate these procedures. __Inverse potential mapping__ Through the years, various noninvasive electrocardiographic imaging techniques have emerged that estimate epicardial potentials or myocardial activation times from potentials recorded on the thorax. Utilizing an inverse procedure, the potentials on the heart surface or activation times of the myocardium are estimated with the recorded body surface potentials as source data. Although this procedure only estimates the time course of unipolar epicardial electrograms, several studies have demonstrated that the epicardial potentials and electrograms provide substantial information about intramyocardial activity and have great potential to facilitate risk-stratification and generate personalized ablation strategies. __Objectives of this thesis__ 1. To evaluate the utility of cardiac magnetic resonance derived geometrical and tissue characteristic information for patient stratification and guidance of AF ablation. 2. To design and evaluate the performance of a finite element model based inverse potential mapping in predicting the arrhythmogenic focus in idiopathic ventricular tachycardia using invasive electro-anatomical activation mapping as a reference standard

    MRI-guided non-invasive epicardial mapping in patients with implanted pacing devices

    Get PDF
    Developing patient-specific 3D heart models to non-invasively localize arrhythmic foci. My research focussed on the application of MRI and complex electrocardiography in patients with MRI conditional pacemaker systems

    GiD 2008. 4th Conference on advances and applications of GiD

    Get PDF
    The extended use of simulation programs has leaned on the advances in user-friendly interfaces and in the capability to generate meshes for any generic complex geometry. More than ten years of development have made Gid grow to become one of the more popular pre ans postprocessing systems at international level. The constant dialogue between the GiD development team and the users has guided the development of giD to cover the pre-post needs of many disciplines in science and engineering. Following gthis philosophy, the biannual GiD Conference has become an important forum for discussion and interchange of experiences among the GiD community. This monograph includes the contributions of the participants to the fourth edition of the GiD Conference held in the island of Ibiza from 8-9 May 2008

    Computational modelling of trabecular bone using fluid structure interaction approach

    Get PDF
    While doing daily physiological activities, trabecular bone will experience certain amount of deformation, which causes movement of the bone marrow. The bone marrow movement could affect the bone remodelling process. The properties of the bone will also be affected as the bone marrow acts as a hydraulic stiffening to the trabecular structure. Previous studies on trabecular bone remodelling did not consider the effects of bone marrow movement. Thus, there is a need to perform combined analyses of the bone marrow movement with trabecular structure to assess its effects on the remodelling process under a realistic condition. The aim of this study is to determine the effect of bone marrow movement onto the trabecular bone structure under mechanical loading using fluid-structure interaction (FSI) approach. Two different models of the trabecular bone, namely idealised and actual were constructed. The idealised models were used to correlate the bone marrow behaviour to the trabecular bone morphology. The actual trabecular bone models were constructed to mimic the presence of the bone marrow within the trabecular bone structure during physiological loading. The effects of different orientation of the trabecular structures were also examined. Three numerical approaches which are finite element method, computational fluid dynamics and FSI were employed to evaluate the importance of bone marrow movement effect towards the trabecular bone mechanical properties. The findings show that the bone cells are able to stimulate the bone remodelling process under the normal walking gait loading. The bone marrow behaviour such as shear stress, pressure and permeability, together with bone porosity and surface area, have a significant relationship with a p-value < 0.05. The longitudinal permeability and stiffness were respectively 83% and 56% higher, compared to the transverse orientation. The shear stress during a normal walking phase was in a range of 0.01- 0.27 Pa. These are sufficient to regulate cell response. It was also found that the stiffness of the trabecular bone structure is 22% higher compared to the models without the bone marrow. This finding suggests that the presence of the bone marrow could help to reduce the deformation and stresses on the trabecular bone structure
    corecore