4 research outputs found

    THE MOST COMMON GEOMETRIC AND SEMANTIC ERRORS IN CITYGML DATASETS

    Get PDF

    DETECTION AND EVALUATION OF TOPOLOGICAL CONSISTENCY IN CITYGML DATASETS

    Get PDF
    The topological consistency of Boundary-Representation models, meaning here that the incidence graph is homeomorphic with the underlying topology of geographical data, is checked for several CityGML datasets, and a first classification of topological inconsistencies is performed. The analysis is carried out on a spatial database system into which the datasets have been imported. It is found that real-world datasets contain many topologically inconsistent pairs of intersecting polygons. Also data satisfying the ISO/OGC standards can still be topologically inconsistent. In the case when the intersection is a point, topological inconsistency occurs because a vertex lies on a line segment. However, the most frequent topological inconsistencies seem to arise when the intersection of two polygons is a line segment. Consequently, topological queries in present CityGML data cannot rely on the incidence graph only, but must always make costly geometric computations if correct results are to be expected

    Evaluation of Topological Consistency in CityGML

    Get PDF
    Boundary representation models are data models that represent the topology of a building or city model. This leads to an issue in combination with geometry, as the geometric model necessarily has an underlying topology. In order to allow topological queries to rely on the incidence graph only, a new notion of topological consistency is introduced that captures possible topological differences between the incidence graph and the topology coming from geometry. Intersection matrices then describe possible types of topological consistency and inconsistency. As an application, it is examined which matrices can occur as intersection matrices, and how matrices from topologically consistent data look. The analysis of CityGML data sets stored in a spatial database system then shows that many real-world data sets contain many topologically inconsistent pairs of polygons. It was observed that even if data satisfy the val3dity test, they can still be topologically inconsistent. On the other hand, it is shown that the ISO 19107 standard is equivalent to our notion of topological consistency. In the case when the intersection is a point, topological inconsistency occurs because a vertex lies on a line segment. However, the most frequent topological inconsistencies seem to arise when the intersection of two polygons is a line segment. Consequently, topological queries in present CityGML data cannot rely on the incidence graph only, but must always make costly geometric computations if correct results are to be expected

    Towards a National 3D Mapping Product for Great Britain

    Get PDF
    Knowing where something happens and where people are located can be critically important to understand issues ranging from climate change to road accidents, crime, schooling, transport and much more. To analyse these spatial problems, two-dimensional representations of the world, such as paper or digital maps, have traditionally been used. Geographic information systems (GIS) are the tools that enable capture, modelling, storage, retrieval, sharing, manipulation, analysis, and presentation of geographically referenced data. Three-dimensional geographic information (3D GI) is data that can represent real-world features as objects in 3D space. 3D GI offers additional functionality not possible in 2D, including analysing and querying volume, visibility, surface and sub-surface, and shadowing. This thesis contributes to the understanding of user requirements and other data related considerations in the production of 3D geographic information at a national level. The study promotes Ordnance Survey’s efforts in developing a 3D geographic product through: (1) identifying potential applications; (2) analysing existing 3D city modelling approaches; (3) eliciting and formalising user requirements; (4) developing metrics to describe the usefulness of 3D data and; (5) evaluating the commerciality of 3D GI. A review of current applications of 3D showed that visualisation dominated as the main use, allowing for better communication, and supporting decision-making processes. Reflecting this, an examination of existing 3D city models showed that, despite the varying modelling approaches, there was a general focus towards accurate and realistic geometric representation of the urban environment. Web-based questionnaires and semi-structured interviews revealed that while some applications (e.g. subsurface, photovoltaics, air and noise quality) lead the field with a high adoption of 3D, others were laggards due to organisational inertia (e.g. insurance, facilities management). Individuals expressed positive views on the use of 3D, but still struggled to justify the value and business case. Simple building geometry coupled with non-building thematic classes was perceived to be most useful by users. Several metrics were developed to quantify and compare the characteristics of thirty-three 3D datasets. Results showed that geometry-based metrics such as minimum feature length or Euler characteristic can be used to provide additional information as part of fitness-for-purpose evaluations. The metrics can also contribute to quality control during data production. An investigation into the commercial opportunities explored the economic value of 3D, the market size of 3D data in Great Britain, as well as proposed a number of opportunities within the wider business context of Ordnance Survey
    corecore