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Abstract: Boundary representation models are data models that represent the topology of a building
or city model. This leads to an issue in combination with geometry, as the geometric model necessarily
has an underlying topology. In order to allow topological queries to rely on the incidence graph only,
a new notion of topological consistency is introduced that captures possible topological differences
between the incidence graph and the topology coming from geometry. Intersection matrices then
describe possible types of topological consistency and inconsistency. As an application, it is examined
which matrices can occur as intersection matrices, and how matrices from topologically consistent
data look. The analysis of CityGML data sets stored in a spatial database system then shows that
many real-world data sets contain many topologically inconsistent pairs of polygons. It was observed
that even if data satisfy the val3dity test, they can still be topologically inconsistent. On the other
hand, it is shown that the ISO 19107 standard is equivalent to our notion of topological consistency.
In the case when the intersection is a point, topological inconsistency occurs because a vertex lies
on a line segment. However, the most frequent topological inconsistencies seem to arise when the
intersection of two polygons is a line segment. Consequently, topological queries in present CityGML
data cannot rely on the incidence graph only, but must always make costly geometric computations if
correct results are to be expected.
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1. Introduction

Spatial data models that are designed for the purpose of analysis beyond mere visualisation need
the following properties:

• correctness,
• consistency.

Correctness refers here to correctness of geometry and of topology. If data are stored redundantly,
then consistency issues arise. However, storing data without redundancy does not guarantee
consistency. For example, CityGML has a geometry model and a separate topology model. As geometry
itself has an underlying topology, it follows that, by design, CityGML does not guarantee the absence
of contradictions between the topology coming from geometry and its topological model. It is the
scope of this article to exhibit the carelessness with respect to this kind of topological consistency when
CityGML is used for modelling spatial data.

Topological queries like “find all objects at the boundary of object A” or “how close are objects
A and B topologically”, where topological nearness of A and B means that there is a short sequence
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A = x0, x1, . . . , xm = B such that xi is in the boundary of xi+1 or xi+1 is in the boundary of xi,
can be expected to be most efficiently answered by using the incidence graph of the topological model
for given spatial data. The incidence graph is a structure that models the relation “is bounded by”,
and answering those queries ideally need not resort to the application of geometric operations like
intersection because the incidence graph correctly models the topology. Geometric operations become
costly especially when many objects are geometrically close, but topologically not. On the other hand,
if objects are topologically near but not geometrically, then they are not considered for the topological
query if geometry is used as a basis. Index structures based on Euclidean geometry (like e.g., R-tree)
become sub-optimal because they need to take into account objects that are further away than necessary.
Thus, a desideratum is a topological index that relies on the topological model only, ignoring the
underlying geometry. This is the topic of ongoing work. A necessary condition for the correctness of
such an approach is that the topology underlying the geometrical model coincides with that of the
topological model. In other words, it is assumed that the model is topologically consistent, a notion that
will be made more precise in this article.

CityGML has become a widespread format for urban building data in various levels of detail (LoDs).
Biljecki et al. [2] give an overview of different applications of 3D city models. If the data stored in
CityGML is to be used for efficient analysis beyond visualisation, they are necessary to be topologically
consistent. Otherwise, topological queries yield incorrect results. However, in this present study it turns
out that real-world CityGML datasets mostly have different kinds of topological inconsistencies.

The incidence graph is a finite representation of the topology of a spatial model. It has a
simple relational database representation through one table for the objects, and another for the
topology-defining relation [3]. It is also shown that its storage complexity is quadratic in the number
of objects, and this is in general the most efficient to be expected [4]. Furthermore, this data model is
universal in that it captures any possible finite topological representation of data [3]. The literature
contains various differing notions of topological consistency, cf. e.g., [5–8]. Bradley [9] gives an
overview of topological data models and introduces topological consistency in the context of smart
cities. Jahn et al. [10] give a first definition of topological consistency which relates geometry and
the incidence graph in the context of distributed big geographical data, and define a measure for
topological inconsistency based on Betti numbers of finite partially ordered sets. Alam et al. [11]
have a list of consistency rules for topology and semantics in which they do not allow more than two
polygons to have a common edge. Gröger and Plümer [12] require a consistent model to represent a
finite tesselation of R3. This excludes polygons not bordering a solid, like e.g., a building with free
walls. Ledoux and Meijers [13] define a notion of topological consistency which is a special case of
the one considered here. They, for example, do not allow polygons with holes or punctures, and they
develop an algorithm for extruding planar polygons for serving as building models. Biljecki et al. [14]
reduce redundancies in synthetic CityGML data and thus improve the topological consistency.

Applications of such topological consistency are shown, e.g., in Steuer et al. [15], where the volume
of buildings in CityGML is approximated by overcoming topological errors. This approach is useful
for indoor routing and healing of building models. In general, we emphasise that any topological
query in one way or the other makes use of the underlying topology and thus naturally can be applied
to the incidence graph in the case that the data are topologically consistent in our sense.

The contribution of this article can be summarised as follows:

• A new definition of topological consistency that ensures the equality of the incidence graph and
the topology coming from geometry,

• In contrast to the definitions in the literature, all possible incidence graphs are accepted as
topologically consistent, if the above requirement is fulfilled,

• A definition of intersection matrices for capturing the possible types of topological consistency
and inconsistency,

• A deduction of which intersection matrices can possibly occur, and which intersection matrices
come from topologically consistent data,
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• An analysis of intersection matrices for polygon pairs in various CityGML data sets,
• The fact that complying with the ISO 191907 standard guarantees topological consistency and

vice versa.

The latter result means that consistency evaluation methods based on the ISO 19107 standard
can detect all kinds of topological inconsistencies. However, correctly modeled CityGML data are
not required to be topologically consistent. Hence, costly geometric computations are needed for
evaluating topological queries in CityGML.

The literature contains methods for checking topological consistency based on checking for errors
contained in a proper subset of all possible errors. One prominent example for this turns out to be
val3dity [16]. Hence, one can conclude that passing the val3dity test does not necessarily mean the
data to comply with the ISO 19107 standard.

In Section 2, we explain first how topology and geometry are modelled in CityGML, followed by
a detailed introduction to our notion of topological consistency. The intersection matrix is then
introduced as a first means for recognising topological consistency and distinguishing between
different types of topological inconsistencies when the configuration consists of two polygons. Section 3
contains our results for a collection of CityGML data sets, followed by a discussion in Section 4 and a
conclusion and outlook in Section 5.

2. Methodology

After an explanation of how topology is modelled in CityGML, we will give a definition of
topological consistency which is given if and only if the topology of the incidence graph coming
from a boundary representation of geometry coincides with the topology underlying the geometry.
An intersection matrix then shows which primitive types (point, line, polygon, etc.) have a non-empty
intersection with other primitive types. In the end, we explain how this concept was implemented in
order to evaluate CityGML data.

2.1. Topology in CityGML

The geometrical and topological models of CityGML are closely related [17,18]. The spatial
properties of CityGML objects are represented by objects of the geometry model of the Geography
Markup Language (GML3) [19]. This model is based on the ISO Standard 19107 “Spatial
Schema”, which represents three-dimensional geometries according to the well-known Boundary
Representation [20]. The GML3 geometry model consists of primitives that can be combined to form
complexes, composite geometries, or aggregates. For every dimension, there is a geometrical primitive,
such as Point, Curve, Surface and Solid. Points are represented as coordinate triples. The representation
of surfaces and curves is restricted to planar polygons. Planar polygons are given by lists of coordinate
triples which form the outer and inner boundaries. All coordinates of the outer boundary and of the
optional inner boundaries (forming holes in the polygon) must be located in the same plane. Similarly,
only straight lines, complying with the GML3 class LineString, are allowed in CityGML.

On the other hand, CityGML provides the explicit modelling of topology, for example the sharing
of geometry objects between features or other geometries. One part of space should be represented
only once by a geometry object and be referenced by all features or more complex geometries which
are defined or bounded by this geometry object. Thus, redundancy should be avoided and explicit
topological relationships between the parts should be preserved. Instead of implementing topology
with own XML-tags, CityGML uses the XML concept of XLinks, which is provided by GML3. However,
there is no need to model the topology in this way to get a valid CityGML file.

We see from the explanations above that there are two competing topological models in CityGML:
the one derived from the boundary representation of geometry, and the one provided by the XLink
concept. It is now obvious that it is easy to model topological contradictions, i.e., CityGML is by design
not consistent. In the following subsections, we will see that it is possible to violate consistency even
by using the boundary representation model only.
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2.2. Topological Consistency

Spatial models of geometry can be finite. For this, the geometry K is partitioned into pieces (often
these are cells), and then each piece is considered as an element of a finite set X. In order to model the
boundary relationship between the pieces, a topology is defined on the finite set X which represents
that boundary relationship. It turns out that X becomes a partially ordered set (aka poset). This allows
for using the finite poset X alone for topological queries on K without resorting to the geometry in
K. Figure 1 illustrates this process, where a configuration K of two polygons forms a partition of
geometry K (left) into points, lines and surfaces as the pieces (called faces). The finite poset X = X(K)
is illustrated in Figure 1 (right), where the individual faces are now considered as elements without any
further structure by themselves. Structure is given by the partial ordering called bounded by, where a
face f is bounded by another face f ′, if the piece F′ corresponding to f ′ is part of the boundary of the
piece F corresponding to f . Consistency issues arise, when a geometry K is given by a configuration of
several geometric objects, as then it may happen that K is not a partitioning because pieces overlap.
The remainder of this section is devoted to developing the theory which makes this aspect of the
topology of spatial entities precise, leading to a general definition of topological consistency.

Figure 1. A topologically consistent configuration given as a partitioned space K (left) and its face
poset X(K) (right).

Consider a topological model of spatial objects modelled as a polytope complex, i.e., a cw
complex [21] whose (open) cells are the interiors of polytopes of various dimensions. Assume that all
vertices are given coordinates. The incidence graph represents the topology of the model correctly, if
and only if the intersection of two distinct open cells is empty. The topology of the incidence graph is
that of a finite partially ordered set X, where the partial order is given by the “bounded-by”-relation:

x ≤ y ⇔ y is bounded by x.

This is a so-called T0-topology. It is well-known that the T0-topologies on a finite set are in one-to-one
correspondence with the partial orders on that set [22].

We are aware of the fact that our main reference [22] for finite topological spaces is in German.
Readers who are not willing to struggle with that language can find the results of that article needed
for the present article in the beginning of [23] which deals with topics far more deeper than what
is relevant for the task of the present article. We want to remark, however, that most articles on the
theory of finite topological spaces usually cite results in [22] without translating the proofs into English,
when it comes to presenting the basic results of that theory.

We also want to remark that in this subsection; we use some standard notions from topology
which we do not always explain. The reader who would like to learn about the relevant definitions
from topology is referred to textbooks on topology, e.g., [24].

The relationship between cw complexes and finite T0-topolgies is as follows. If C is a cw-complex,
then there is a surjective map

π : C → X,
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where X is the finite set whose elements are the cells of C. The topology on X is the final topology of π

(cf. [24]), and it turns out that this is given by the T0-topology as described above [25]. We are going to
develop this idea more precisely in what follows.

A cw complex C has for each n-cell c of C a so-called characteristic map

fc : Bn → C,

which is a continuous map from the n-ball Bn to C, and which takes the interior of Bn homeomorphcially
to c, and the boundary of Bn to the union of k-cells of C with k < n. We will assume that the restriction
of fc to the boundary of Bn is a homeomorphism onto its image. A cw complex satisfying this condition
is called regular.

Let ≤ be the partial ordering on X given as

a ≤ b : ⇔ π−1(a) ⊆ clC
(

π−1(b)
)

,

where clC denotes the closure in C [24]. We have

Lemma 1. The final topology on X for π coincides with the T0-topology given by ≤.

Proof. First, we will prove that π is continuous, if X is given the T0-topology induced by≤. For this, let

Nx := {y ∈ X | x ≤ y}.

This is the unique minimal open neighbourhood of x w.r.t. the T0-topology [22]. Now, if π−1(x) is a
k-cell, then

π−1(Nx) =
⋃

y∈Nx

π−1(y)

is the union of π−1(x) with the union of all m-cells with m > k and containing π−1(x) in their
boundaries. This is an open set for the topology on C [21]. As the Nx form a basis for the T0-topology
on X [22], it follows that π is continuous, if X is given the T0-topology.

Now, we will show that π is open, i.e., maps open sets to open sets, if X is given the T0-topology
induced by ≤. Let U ⊂ C be an open set. For x ∈ C, let cx be the unique cell containing x. Then, for

V :=
⋃

x∈U
cx,

it holds true that
π(U) = π(V).

Now, V is the union of open neighbourhoods Wx of points x ∈ C that are minimal with respect to the
condition that they are unions of cells. It follows that

π(Wx) = Nπ(x)

is the minimal open neighbourhood of π(x). Hence, π(U) is the union of Nx, i.e., open.
As π is continuous and open, if X is given the T0-topology, it follows that this is the final topology

for π. Namely, if T is a topology on X such that π is continuous, let O ⊂ X be open w.r.t. T . As π

is continuous, it follows that π−1(O) is open in C. As π is open for the topology on X given by ≤,
it follows that W = π(π−1(W)) is open for this T0-topology. Hence, the topology given by ≤ is finer
than T .

The elements of this T0-topological space X we also call cells. The space X is called the cell poset of
C, and the map π is called the canonical cell map.
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We are interested in the closure of cells:

Lemma 2. It holds true that
clX(a) := clX {a} = {y ∈ X | y ≤ x}

for a ∈ X.

Proof. This is proved in [22].

An important example is that of polyhedra. Let P be a polyhedron in Rn. It has an associated
regular cw-complex P whose cells are the open faces of P. We denote the cell poset of P as X(P) and
call it the face poset of P. If an n-face f of P is allowed to have k holes, then it is no longer a cell, but there
is also a cell-like complex P associated with P, called face complex, which is obtained for this face by a
continuous map of the unit ball Bn with k holes to P such that the interior maps homeomorphically
to f , and the boundary maps homeomorphically into the union of the `-faces of P with ` < n. Thus,
this is a generalisation of regular cell complex to the case of cells having holes.

Again, there is the face poset X(P) with the canonical face map

π : P → X(P),

which is continuous and open (the proof of Lemma 1 carries over to this more general case).
Now, we assume K to be a finite set of polyhedra in Rn, possibly with holes which are open

polyhedra. We call K a configuration. We define

X(K) :=
⋃

P∈K
X(P)

and endow it with the T0-topology given by the following partial ordering ≤:

a ≤ b : ⇔ a, b are faces of P ∈ K and a ≤P b,

where ≤P is the partial ordering defining the T0-topology on X(P).
In contrast to the case of a cw complex or a poyhedron with holes, there is in general not a natural

continuous projection π : K → X(K).

Definition 1. A configuration K is topologically consistent, if

a ∩ b = ∅ or a = b

for every a, b ∈ X(K).

This definition is equivalent to the existence of a canonical face map:

Lemma 3. A configuration K is topologically consistent, if and only if the map

π : K → X(K), x 7→ fx

is well-defined, where
K =

⋃
P∈K

P

and fx is the face containing x. In this case, K can be given the structure of a face complex whose ‘cells’ are
homeomorphic to balls with finitely many holes.
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Proof. K is topologically consistent, if and only if K is partitioned into faces of polygons from K with
holes. This is equivalent to π being well-defined. In this case, the face complex structure is given by
imitating a regular cw complex structure, only that the characteristic maps are from balls with holes
instead of just balls.

This notion leads to a method of deciding whether a configuration of cells K is a true cw or face
complex by inspecting the finite topological space X(K).

For example, let K consist of two distinct polygons P and P′ whose cells are the faces, edges and
vertices. Assume that a vertex v of P lies in the interior of an edge e of P′. Then, K has overlapping
cells, and thus K is not a cw complex. On the other hand, we have in X = X(K) that

∅ 6= v ∩ e 6= e.

This means that K is not topologically consistent.
The definition of topological consistency here extends the definition of [9] and differs from that

of [10] or [26]. Observe that our definition of topological consistency also includes the situation where
the ‘cells’ of a complex are allowed to have polytope-shaped holes. In that case, it is the topology of the
incidence graph which is correctly represented by the model, if and only if it is topologically consistent.
Notice that the model can consist of a single, a few, or many objects which may or may not form one or
several buildings.

The philosophy behind our definition of topological consistency is that the incidence graph
coming from the boundary representation models the “desired” topology, whereas the actual geometric
embeddings of the primitives (by giving their corners coordinates) produces a topology which may
be different from the incidence graph topology. This idea is captured in the definition of geometric
realization ([27], Section 4.49):

“geometric complex whose geometric primitives are in a 1-to-1 correspondence to the
topological primitives of a topological complex, such that the boundary relations in the
two complexes agree”

and this is what we also mean when we say that the topology coming from geometry coincides with
the topology of the incidence graph.

An analysis of CityGML data showed that it is possible to have topologically inconsistent models
in CityGML with or without using XLink (cf. Section 2.1).

2.3. Comparison with Other Notions of Topological Consistency

The introduction refers to several different notions of topological consistency in the literature,
and some possible but consistent situations which they do not capture. It follows that the notion of
topological consistency in the literature implies topological consistency in our sense, but not every
configuration which is topologically consistent in our sense is topologically consistent in the literature.

Another issue is the kind of topological consistency inherent in the ISO 19107 standard.
A validation tool for ISO/OGC standards is given by the tool val3dity. An inspection of the list
of possible errors which val3dity can find reveals that not all configurations passing the val3dity test
are topologically consistent in our sense. In the following subparagraph, we give some examples.

Comparison with the ISO 19107 Standard and Val3dity

In Section 4.45 of [27], the notion of geometric complex is defined as a

“set of disjoint geometric primitives where the boundary of each geometric primitive can be
represented as the union of other geometric primitives of smaller dimension within the same
set” (emphasis added by the authors).
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An immediate consequence of the disjointness requirement is

Theorem 1. Any configurationK complies with the ISO 19107 standard if and only if it is topologically consistent.

A common publically available tool for comparing with the ISO/OGC standards is val3dity [16].
Consulting the documentation of val3dity reveals a long list of possible errors. We find that there are
some errors not contained in that list, as they are not considered to be errors by val3dity. For example,
when a pair A, B of distinct shells is taken, the following constraints are not captured:

• Vertex with Face. A Vertex of a A may not have a non-empty intersection with a face of B.
• Edge with Edge. A non-empty intersection of an edge of A with an edge of B must be an edge both

of A and B.
• Edge with Face. An edge of A may not have a non-empty intersection with a face of B.
• Face with Face. A non-empty intersection of a face of A with a face of B must be a face of both A

and B.

These constraints follow from the disjointness requirement in the definition of geometric complex
in the ISO 19107 standard. Thus, we have

Corollary 1. If a configuration passes the val3dity test, it is not necessarily topologically consistent.

Proof. This is an immediate consequence of Theorem 1 and our observation on the non-captured errors.

One can easily see that these consistency rules must be satisfied, if one wants to use the incidence
graph e.g., for querying connectedness: If in A and B there are no common vertices, edges or faces,
then the two shells are not connected, unless they violate the above rules. These consistency rules are
satisfied by our notion of topological consistency.

2.4. Intersection Matrix

Based on the definition of topological consistency in Section 2.2, it becomes clear that it is necessary
to intersect each polygon P with each other polygon P′ to check the topological consistency. For this
purpose, we define an intersection matrix as follows in two steps: Let K,K′ be two configurations in
Rn, and let X, X′ be their corresponding face posets as in in Section 2.2. Then, we define the matrix

jK,K′ : X× X′ → {0, 1}′, (x, x′) 7→
{

1, x ∩ x′ 6= ∅,

0, otherwise.

Now, there is a map
δ : X → N, x 7→ dim(x),

where dim(x) is the dimension of face x. Now, there is an induced matrix

ιK,K′ : δ(X)× δ(X′)→ {0, 1}, (n, n′) 7→
{

1, ∃(x, x′) ∈ δ−1(n)× δ−1(n′) : , jK,K′(x, x′) = 1,

0, otherwise.

We call this matrix the intersection matrix for K and K′. If δ(X) = δ(X′), then we will write

IK,K′

instead of ιK,K′ in order to emphasise it as a symmetric square matrix.
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In this study, we are mainly interested in the (symmetric) intersection matrix IP ,P ′ , where P ,
respectively P ′, is the configuration of the faces, edges and vertices of polygons P, respectively P′.
Notice that we can write

δ(P) = δ(P ′) = {V, E, F},

where V = 0 stands for vertex, E = 1 stands for edge, and F = 2 stands for face. The above means that
IP ,P ′ is a table of the form

V E F
V a x y
E x b z
F y z c

with a, b, c, x, y, z ∈ {0, 1}. Notice that our intersection matrix is not related to Egenhofer’s
9-intersection matrix from [28]. For polygons P, P′, we will also write IP,P′ instead of IP ,P ′ , and I
instead of IP,P′ when it is clear which pair of polygons is being considered.

As an example, consider the situation in Figure 2. Although we are mainly interested in
polygons, we will consider this simple example consisting of vertices and edges (and no faces).
Hence, the intersection matrices are 2× 2-matrices. Both configurations of points and line segments
are topologically inconsistent, as in each case there are two line objects whose intersection is a point
which is not an object of the configuration. The intersection matrices for the configurations, viewed as
consisting of line segments, are

IF,G =

(
0 0
0 1

)
and IH,H =

(
1 0
0 1

)
.

The configuration on the right of Figure 2 can be viewed as the boundary of a topologically
inconsistent polygon. Another type of topologically inconsistent polygon is given when one vertex lies
in the interior of an edge. Then, the intersection matrix of the boundary configuration is(

1 1
1 0

)
or

(
1 1
1 1

)

depending on whether two edges intersect in their interiors or not.

F

•

G • •

•

H

• •
• •

•

Figure 2. Two topologically inconsistent situations.

A topologically consistent configuration of two distinct triangles (this time with faces) is shown
in Figure 3. The corresponding intersection matrix is the following 3× 3-matrix:

IG,G′ =

1 0 0
0 1 0
0 0 0

 = diag(1, 1, 0).

In Figure 4e, a three-dimensional constellation of two polygons is depicted that has the same
corresponding intersection matrix.
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•

P P′• •

•

Figure 3. A topologically consistent configuration of two distinct triangles G (left) and G′ (right).

2.5. Intersection Matrices of CityGML Data

CityGML has many different ways for defining entities in different contexts. However, in the
case of surfaces in R3, the geometry used is that of polygons with holes by defining circular lists of
coordinate triples (points in R3) representing the vertices. From this information, it is possible to
extract the vertices, edges and face of a polygon in order to compute intersection matrices. For example,
it is possible to store the same configuration as a CompositeSurface or as a MultiSurface, although
not all of the latter kind are allowed to be of the former kind, if the specifications of CityGML are
followed correctly. We remark that, in this study, we do not check whether the data sets actually follow
the specifications of CityGML correctly, we are only interested in extracting the cell posets of polygons
in order to compute intersection matrices. Thus, the intersection matrix or the fact whether a polygon
pair is topologically consistent or not does not depend on its (possibly incorrect) representation within
a CityGML-file.

2.6. Diagonal Intersection Matrices

We will see below that, when intersecting two topologically consistent planar polygons P and P′

in 3D, there are 54 ways in which the intersection matrix I can be populated. Of these, precisely four
possible configurations can be topologically consistent. In these cases, I is a diagonal matrix:

Theorem 2. If a configuration of two boundary representation geometries is topologically consistent, then its
intersection matrix is a diagonal matrix.

Proof. If the intersection matrix is not a diagonal matrix, this means that geometric objects of different
dimensions intersect. This, however, means that Definition 1 is violated, i.e., the configuration is not
topologically consistent.

However, intersection matrix I being a diagonal matrix does not imply that the configuration is
topologically consistent, as the following theorem shows.

Theorem 3. Let a configuration of two planar polygons P, P′ in R3 be given, and let I be its intersection matrix.
Then, the following statements hold true:

1. I 6= diag(0, 0, 1).
2. If I = diag(0, 0, 0) or I = diag(1, 0, 0), then this configuration is topologically consistent.
3. If I = diag(0, 1, 0), I = diag(0, 1, 1), or I = diag(1, 0, 1), then this configuration is topologically

inconsistent.
4. If I = diag(1, 1, 0) or I = diag(1, 1, 1) and P, P′ lie in the same plane, then this configuration is

topologically consistent. In the latter case, it follows that P = P′.
5. If I = diag(1, 1, 0) or I = diag(1, 1, 1) and P, P′ do not lie in the same plane, then this configuration is

topologically inconsistent.

Proof. 1. P and P′ are closed subsets of R3. Hence, their intersection is also closed. However,
if I = diag(0, 0, 1), then this intersection equals the non-empty intersection of the interiors of P and P′
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which is open in the connected space P ∪ P′. However, the only subsets of P ∪ P′ which are closed and
open are the empty set and the whole space P ∪ P′. This cannot be.

2. In case I = diag(0, 0, 0), the intersection is empty. Hence, the configuration is topologically
consistent. In case I = diag(1, 0, 0), the intersection is given by the intersection of vertices from P with
vertices from P′. As distinct vertices cannot intersect, the configuration is topologically consistent.

3. Assume I = diag(0, 1, 0). In this case, only edge pairs have a non-empty intersection, and this
must be a single point lying in their interiors. Hence, they cannot be the same edge.

Assume now, I = diag(0, 1, 1). This case is similar to the case I = diag(0, 1, 0), except that also
the interiors of P and P′ intersect. Again, all intersecting edge pairs must intersect in single points in
their interiors, hence cannot be equal.

Assume finally that I = diag(1, 0, 1). In this case, the interiors of P and P′ cannot coincide, as
otherwise the two boundary curves must coincide. However, then also some edge has an intersection
with some other boundary object.

In all three cases, it follows that the configuration is topologically inconsistent.
4. If I = diag(1, 1, 0) or I = diag(1, 1, 1) and P, P′ lie in the same plane, then edges intersect other

edges in whole edges or not at all. This suffices to see that the configuration is topologically consistent.
In the latter case, it follows that P = P′.

5. If P and P′ do not lie in the same plane, then line segments can intersect only in single points in
their interiors. Hence, the configuration is topologically inconsistent.

In [1], the intersection matrix diag(1, 1, 0) is erroneously said to always come from a topologically
consistent configuration of 3D polygon pairs.

Theorem 4. All diagonal matrices except diag(0, 0, 1) occur as intersection matrices. The two ambiguous
matrices according to Theorem 3 can be realised with topologically consistent as well as with topologically
inconsistent configurations of polygon pairs in R3.

Proof. Clearly, diag(0, 0, 0) can be realised as an intersection matrix.
We have realised four diagonal intersection matrices in CityGML: realisations of inconsistent

configurations modelled in CityGML with intersection matrices diag(0, 1, 0) and diag(1, 1, 1) are shown
in Figure 4d,f. The topologically consistent configuration having the latter intersection matrix is given
by P = P′.

Topologically consistent configurations with intersection matrices diag(1, 0, 0) and diag(1, 1, 0)
are shown in Figure 4a,e.

In order to realise diag(1, 1, 0) in a topologically inconsistent manner, let P be a polygon and P′ a
non-convex polygon with two vertices touching P in a vertex and a line, respectively.

The matrix diag(0, 1, 1) can be realised as follows: let P and P′ be squares having the same side
length and not lying in the same plane. This configuration can be made such that the intersection of
their interiors is a line segment without endpoints. These missing endpoints can be made to coincide
with intersections of edges of P and P′ by moving P′ parallel to P along the direction of a pair of
opposite edges of P.

The same method also realises diag(1, 0, 1): let the squares P and P′ have two common vertices
which are opposite to another in P as well as in P′.

2.7. Intersection Matrices for Intersection Type Point

If the intersection of two polygons is a point, then there can occur four different intersection
matrices. These four matrices can be given the following descriptive names:
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point–point =

1 0 0
0 0 0
0 0 0

 point–line =

0 1 0
1 0 0
0 0 0

 ,

point–area =

0 0 1
0 0 0
1 0 0

 line–line =

0 0 0
0 1 0
0 0 0

 .

As seen above, ‘point–point’ describes a topologically consistent, whereas ‘point–line’, ‘point–area’
and ‘line–line’ describe topologically inconsistent configurations of two distinct polygons. These four
intersection constellations are depicted in Figure 4a–d, where you can see a simple synthetic example
of a house with different kinds of topological inconsistencies.

(a) point–point (consistent) (b) point–line (inconsistent) (c) point–area (inconsistent)

(d) line–line (inconsistent) (e) line segment (consistent) (f) line segment (inconsistent)

Figure 4. Simple synthetic example of a house with different kinds of topological inconsistencies.
The green geometries depict the different types of intersection constellations.

2.8. Intersection Matrices for Arbitrary Polygon Pairs

Theorem 5. Out of the 26 symmetric 3× 3-matrices with entries in {0, 1}, precisely 54 can occur as intersection
matrices for pairs of planar polygons in R3.

Proof. Let P, P′ be planar polygons in R3. We can define I∂P,∂P′ as the 2× 2-intersection matrix for
the boundaries, ι∂P,int(P′) as a 2× 1-intersection matrix, and Iint(P),int(P′) as a 1× 1-intersection matrix.
Now, we can define



ISPRS Int. J. Geo-Inf. 2019, 8, 278 13 of 22

J∂P,∂P′ =

a b 0
b c 0
0 0 0

 ,

J∂P,int(P′) =

0 0 a
0 0 b
a b 0

 ,

Jint(P),int(P′) =

0 0 0
0 0 0
0 0 a

 ,

where a, b ∈ {0, 1} and

I∂P,∂P′ =

(
a b
b c

)
,

ι∂P,int(P) =

(
a
b

)
,

Iint(P),int(P′) =
(

a
)

.

Clearly, if IP,P′ is a valid intersection matrix, then

IP,P′ = J∂P,∂P′ + J∂P,int(P′) + Jint(P),int(P′)

and the supports of the three matrices are pairwise disjoint.

1. First, observe that all possibilities for each of I∂P,∂P′ , ι∂P,int(P′), Iint(P),int(P′) can be realised by pairs
of planar polygons in R3, so their counts #IA,B, respectively ιA,B, are:

#I∂P,∂P′ = 23,

#ι∂P,int(P′) = 22,

#Iint(P),int(P′) = 2.

2. Observe that any I∂P,∂P′ and any Iint P,int(P′) can be realised simultaneously. Namely, any I∂P,∂P′

can be realised in such a way that int(P)∩ int(P′) = ∅. In addition, if we want int(P)∩ int(P′) 6=
∅, then any I∂P,∂P′ except (

0 0
0 1

)
can be realised with P and P′ in the same plane. The latter intersection matrix can be realised
with P and P′ lying in non-parallel planes and with their interiors intersecting.

3. Simultaneous realisation of ι∂P,int(P′) and Iint(P),int(P′). The case

ι∂P,int(P′) =

(
0
1

)
,

is the only one that needs special attention: In this case, the boundary points of any edge
intersecting int(P′) must have a non-empty intersection with the boundary of P′. This can be
realised with int(P) ∩ int(P′) 6= ∅ in a common plane, or with int(P) ∩ int(P′) = ∅ in R3. In all
other cases, all possible two values of Iint(P),int(P′) are feasible.
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4. Simultaneous realisation of ι∂P,int(P′) and I∂P,∂P′ . If

ι∂P,int(P′) =

(
0
1

)
,

then two vertices of P lie in the boundary of P′. This means that the two matrices(
0 0
0 ∗

)

are impossible. However, all six of the others are realisable in this case. In all three other cases of
ι∂P,int(P′), all eight possibilities for I∂P,∂P′ are realisable.

Summary. In total, there are 12 possibilities in case

ι∂P,int(P′) =

(
0
1

)

and in all three of the other cases, there are 2× 8 = 16 possible realisations. Thus, all in all, there are

12 + 3× 16 = 60

possible intersection matrices for planar polygons in R3.

In [29], example realisations for some of the 60 valid intersection matrices will be shown. In [1],
it has been erroneously stated without proof that there are 49 possible intersection matrices for planar
polygons in R3.

2.9. Implementation

From the previous subsections, we see that it was necessary to first calculate the intersection
geometry (a geometric query), and then to check if the intersection is a union of common boundary
objects (a topological query) for all pairs of polygons.

In order to make these topological and geometric queries, the CityGML data were imported
into a 3D city database schema. 3DCityDB is a free Open Source package consisting of a database
schema and a set of software tools to import, manage, analyse, visualise, and export virtual 3D city
models according to the CityGML standard [30–32]. The database schema results from a mapping
of the object oriented data model of CityGML 2.0 to the relational structure of a spatially-enhanced
relational database management system (SRDBMS). The 3DCityDB supports the commercial SRDBMS
Oracle (with ‘Spatial’ or ‘Locator’ license options) and the Open Source SRDBMS PostGIS which is
an extension to the free RDBMS PostgreSQL and which was used for this work. 3DCityDB is in use
in real-life production systems in many places around the world and is also being used in a number
of research projects. As an example, consider [33]. According to [30], the cities of Berlin, Potsdam,
Munich, Frankfurt, Zurich all keep and manage their virtual 3D city models within an instance of
3DCityDB. The included Importer/Exporter software tool allows for high performance importing
and exporting of CityGML datasets according to CityGML versions 2.0 and 1.0. The tool allows the
processing of very large datasets, even if they include XLinks between CityGML features or XLinks to
three-dimensional GML geometry objects [34,35].

The implementation uses SFCGAL functions [36]. SFCGAL is a wrapper for the Computational
Geometry Algorithms Library [37] that intends to implement 2D and 3D operations on OGC standard
models (Simple Feature Access, CityGML, . . . ). Using the C API of SFCGAL, PostGIS exposes some of
SFCGAL’s functions in spatial databases and can be patched for more functions.
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The first part of the intersection analysis was done directly in the database using SQL queries,
taking advantage of spatial indices. In order to effect this, the Procedural Language/PostgreSQL
Structured Query Language (PL/pgSQL) [38] was used to write a function. PL/pgSQL was introduced
to extend PostgreSQL’s SQL capabilities. For each intersecting pair of polygons, the intersection
geometry was calculated and the geometry type of the intersection geometry was determined and
the results were written into a newly created table in the database. For this purpose, corresponding
SFCGAL functions were used, which are provided by PostGIS. PostGIS aims to support the SQL option
of the OGC Simple Features Access standard [39]. Previously, all polygons were checked for validity,
i.e., they were tested for planarity and self-intersection, and the position and orientation of interior
rings were checked. For the validity check, the SFCGAL function isValid3d was used, which had to be
patched to PostGIS, as the st_isValid function provided by PostGIS can only process two-dimensional
geometries. The numerical uncertainties are defined by the default values used in SFCGAL functions
st_isValid and st_3dintersects.

The intersection matrix operators were then implemented directly in C++ within the SFCGAL
framework, since the SFCGAL functions provided by PostGIS were not sufficient to perform the
necessary queries directly on the database. For this purpose, the pairs of polygons whose intersection
geometry type is Point or a line segment (i.e., LineString consisting of only two points) were first
exported from the database, and then further processed by a C++ function. For now, only these two
types of intersection geometries have been considered, as they occur most often in CityGML datasets
and it is quite easy for them to determine the intersection constellation. If the intersection geometry is
a point, then, as described in Section 2.4, there are four possible intersection matrices, of which exactly
one comes from a topologically consistent configuration. To determine the intersection matrix, it is
first checked if the point of intersection is equal to one of the vertices of one or both of the intersected
polygons. If a matching vertex is found on both polygons, it means that both polygons intersect at
that point. For this configuration, the intersection matrix corresponds to ’point–point’. This case
is topologically consistent. If no matching vertex is found on either of the two polygons, then the
intersection matrix corresponds to ’line–line’, as this is only possible when two edges of the polygons
intersect. If the intersection point is identical to a vertex of one of the two intersected polygons, then it
is further tested whether it lies on one edge of or inside the other polygon. If it lies on one edge of the
other polygon, then the intersection matrix corresponds to ’point–line’ and if it lies within the interior
of the other polygon, the intersection matrix corresponds to ’point–area’.

For the intersection geometry type line segment, a distinction was made only between consistent
and inconsistent, since it would be very costly to determine the exact intersection matrices for all
possible configurations. In fact, the set of all possible configurations of two distinct polygons for a
given intersection matrix has not yet been found, except in the case when the intersection is a point.
To distinguish between consistent and inconsistent intersection constellations of a line segment, it is
sufficient to check if both polygons contain the intersection geometry, i.e., whether the line segment is
identical to an edge of both polygons. If so, the configuration is topologically consistent; otherwise, it
is inconsistent.

3. Results

For this study, real-world CityGML data sets were used as shown in Table 1. The largest data
set contains the whole city of Berlin in LoD2. This data set was generated from extracted cadastral
data. The CityGML files were downloaded from [40]. The data set can be viewed via links provided
on the Github page of the 3dcitydb-web-map project [41]. In addition, five data sets from Karlsruhe
were examined. These data sets come from the “Liegenschaftsamt” of the city of Karlsruhe. Four of
them contain single streets or small residential areas of the city of Karlsruhe, which were generated
from LIDAR data and modelled in LoD2. The data set “Karlsruhe KIT/CS ” covers an area of
1.73 × 1.14 km2. Its layout can be seen in Figure 8. The two other real-world data sets are available
in LoD1. These are the whole city of Potsdam and the village Waldbrücke, which is part of the
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municipality Weingarten near Karlsruhe. The Potsdam data set is included in the download package
of the 3DCityDB and Waldbrücke was downloaded from the CityGML homepage.

Table 1 shows a list of the CityGML data sets used in this study together with the number of
polygons and non-empty intersections of distinct polygons. The column “valid polygons” gives the
proportion of valid polygons within the data set as imported into a 3DCityDB database. Column
“intersections” gives the total number of all non-empty intersections made with valid polygons.
The columns “inconsistent buildings” give the proportion of buildings containing invalid polygons
or a topologically inconsistent point or line segment intersection, or an intersection of types TIN
(Triangulated Irregular Network) or Triangle. In addition, “val3dity” gives the proportion of buildings
containing invalid solids according to val3dity. Notice that the number of non-empty intersections
captures all polygons from the whole data set, even if they belong to different buildings. Thus, if,
e.g., two individual buildings in one data set are not found to have topologically inconsistent pairs of
polygons, it may happen that there is a pair in the union of the two buildings which is topologically
inconsistent. In fact, our method is to check any given pair of polygons for topological (in)consistency,
without taking any other properties into account, like the buildings they belong to.

It can be seen that, for all data sets except Berlin, the vast majority of polygons are valid, i.e.,
are both planar and without self-intersections and if there exists an interior ring, its position and
orientation are correct. In particular, they are topologically consistent. The values may differ from
previous results given in [1] because this time all CityGML objects were imported into the databases
instead of just importing the buildings.

Figure 5 shows the percentages of polygon intersection types when the intersection is non-empty
and the two polygons are distinct. A MultiLineString is a union of LineStrings with at least two
components. TIN stands for Triangulated Irregular Network and means that the configuration is
topologically inconsistent, as the intersection contains a surface strictly contained in the faces of
both polygons. The other types may or may not be topologically consistent. It can be seen that the
intersection is, in the vast majority of instances, either a point or a line segment. This is the reason why
these two types of intersections were further investigated. In addition, the data sets from Karlsruhe
have a high proportion of intersections of the type Point.

Figure 6 shows the relative frequencies of occurrences of the four intersection matrices when the
intersection of two distinct polygons is a point. The majority consists of the topological consistent
case of ‘point–point’. However, most data sets have a large proportion of topologically inconsistent
intersection matrices of type ‘point–line’.

Figure 7 shows the proportion of topologically consistent or inconsistent polygon pairs when the
intersection is a point or a line segment (special case of the type LineString). These are by far the most
frequent intersection types.
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Figure 5. Proportions of the most frequent non-empty polygon intersection types.
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Figure 7. Topologically consistent and inconsistent configurations with point and line segment intersections.

Table 1. List of CityGML data sets used in this study.

Valid Number of Number of Inconsistent Buildings
Data Set Name Polygons [%] Intersections Buildings [%] Val3dity [%]

Berlin 35.1 511,204 51,211 12.5 1.4
Potsdam 100.0 9074 97 22.7 0.0
Karlsruhe 1 86.7 4564 95 84.2 0.0
Karlsruhe 2 92.5 3530 67 55.2 7.5
Karlsruhe 3 90.4 4410 64 51.6 0.0
Karlsruhe 4 80.8 5066 104 68.3 1.9
Karlsruhe KIT/CS 87.8 430,384 1125 44.2 19.1
Waldbrücke 93.6 20,644 491 4.3 1.4

4. Discussion

The results show that there is a high inhomogeneity between the data sets. The distribution of the
intersection types and the proportion of topologically inconsistent constellations seem to depend on
the type of data collection and the Level of Detail.

In [16], a tool is described named val3dity for validating solids against the ISO/OGC specifications
defined in CityGML and various other 3D data formats. This tool also checks if pairs of distinct solids
intersect in their interiors. However, it does not verify if they intersect in a topologically inconsistent
way in their boundaries, as seen in Corollary 1. This would necessitate the check of intersecting polygon
pairs. Different to val3dity, the aim of this work here is to check topological consistency regardless of
the conformity to the corresponding standards. For example, the topologically inconsistent example
house used here for illustration purposes has been run through val3dity and has been found ‘valid’,
when it is modelled as a combination of MultiSurfaces, which is correct according to the CityGML
standard. The comparison of val3dity to our methodology is only possible if building shells are
modelled as Solid, which means one exterior shell minus possible interior shells. The assignment of
polygons to buildings becomes problematic if the building shell is modelled as MultiSurface geometries
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instead of Solid. For this reason, buildings with inconsistent polygons and polygon pairs can only
be determined in case they are modelled as Solid (cf. Table 1). Notice that our approach is to check
any polygon pair which potentially has a non-intersection without regarding any non-geometric
properties like the building they belong to. In this way, e.g., inconsistencies between buildings which
are consistent themselves could be found.

For the data sets “Berlin” and “Karlsruhe KIT/CS”, the inconsistent buildings found by our
topological analysis and those found by val3dity (version 2.1.1) have been compared by their identifiers.
Due to the differing definitions of error or inconsistency, the overlap is relatively small. In the “Berlin”
data set, we have identified 6392 distinct buildings with inconsistencies in the database. For the analysis
with val3dity, we have exported the whole database as one CityGML file. In addition, 723 inconsistent
buildings have been identified by val3dity this way. Both sets of resulting building identifiers have an
overlap of 113 identical building identifiers found by both methods. In the “Karlsruhe KIT/CS” data
set, we found 497 inconsistent buildings, and val3dity found 319 with 78 buildings being in both sets
(cf. Figure 8).

In [42], the most common geometric and semantic errors in CityGML data are analysed. They find
that the most common topological errors are that polygons are not properly oriented, and that
geometries are not properly “snapped”. From what is stated there, one can see that our approach is,
on the one hand, a further differentiation of that error type, and, on the other hand (unlike loc. cit.),
we do not require a building to consist of solids only, as long as the polygons intersect in common
boundary elements, e.g., balconies, porches, and shelters often have geometries which do not form a
shell, i.e., are non-closed surfaces.

Figure 8. Building layout of the “Karlsruhe KIT/CS” data set with topologically inconsistent buildings
found by both methods. Background layer: c©2019 Google, CityGML data: c©City of Karlsruhe,
Liegenschaftsamt, 2019.

5. Conclusions

The aim of boundary representation models is to represent the topology underlying geometric
models. However, in order to correctly represent the topology, the correctness of the incidence graph
of the B-Rep model is needed. This is only the case if the topology underlying the geometric model
coincides with the topology underlying the B-Rep model—in other words, if the data are topologically
consistent in our sense. In the case of CityGML, it is possible to model correctly according to the
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standard and still have a topologically inconsistent model. A consequence is that CityGML does not
comply with the ISO 19107 standard.

Towards distinguishing between different forms of topological inconsistency, the intersection
matrix defined here is a first indicator. However, some matrices are ambiguous: they can come from
both consistent and inconsistent configurations. A classification of these matrices has been done.
In particular, it has been shown which matrices can occur as intersection matrices, and that intersection
matrices of topologically consistent data are diagonal matrices.

The results show that many buildings modelled in CityGML contain a large number of polygon
pairs forming a topologically inconsistent configuration. Some of these buildings pass through the
test of val3dity, which often found other kinds of errors in the buildings studied for this article.
The fact that the observed overlap between our method and val3dity is very small shows that the
notion of topological consistency considered here complements the plethora of consistency definitions
for topological models of geographical objects. The one considered here relates geometry and the
incidence graph in a way that the topology of the underlying geometric model must coincide with
the topology from the incidence graph. In the case of the buildings under study, the distribution of
their inconsistency types varies, the most frequent inconsistent case being when the intersection of
two polygons is a line segment. When the intersection is a point, the most frequent inconsistency is
given by a vertex lying in the interior of a line segment. As efficient topological queries rely on the
correctness of the incidence graph, it follows that the data studied here are not suitable for analysis
which goes beyond mere visualisation. Consequently, when producing a geometry model in CityGML
from point cloud data, it is necessary to include a check for topological consistency in the sense of this
article. Furthermore, a desideratum is to find ways of healing topological inconsistent data, possibly
depending on the type of topological inconsistencies encountered.
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