527 research outputs found

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Focal Spot, Winter 2006/2007

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1104/thumbnail.jp

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Abstract Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.https://deepblue.lib.umich.edu/bitstream/2027.42/146524/1/41205_2018_Article_30.pd

    Digital Leg Volume Quantification: Precision Assessment of a Novel Workflow Based on Single Capture Three-dimensional Whole-Body Surface Imaging

    Get PDF
    Whole-body three-dimensional surface imaging (3DSI) offers the ability to monitor morphologic changes in multiple areas without the need to individually scan every anatomical region of interest. One area of application is the digital quantification of leg volume. Certain types of morphology do not permit complete circumferential scan of the leg surface. A workflow capable of precisely estimating the missing data is therefore required. We thus aimed to describe and apply a novel workflow to collect bilateral leg volume measurements from whole-body 3D surface scans regardless of leg morphology and to assess workflow precision. For each study participant, whole-body 3DSI was conducted twice successively in a single session with subject repositioning between scans. Paired samples of bilateral leg volume were calculated from the 3D surface data, with workflow variations for complete and limited leg surface visibility. Workflow precision was assessed by calculating the relative percent differences between repeated leg volumes. A total of 82 subjects were included in this study. The mean relative differences between paired left and right leg volumes were 0.73 ± 0.62% and 0.82 ± 0.65%. The workflow variations for completely and partially visible leg surfaces yielded similarly low values. The workflow examined in this study provides a precise method to digitally monitor leg volume regardless of leg morphology. It could aid in objectively comparing medical treatment options of the leg in a clinical setting. Whole-body scans acquired using the described 3DSI routine may allow simultaneous assessment of other changes in body morphology after further validation

    Brain growth and development in fetuses with congenital heart disease

    Get PDF
    Introduction and Objectives: In the current era of excellent surgical results for congenital heart disease (CHD), focus has become directed on quality of life for these children. Previous studies have shown that neurodevelopmental outcome in CHD is impaired. The mechanisms are incompletely understood but there is increasing evidence that the origins of this are in fetal life. This thesis aims to describe the in utero brain growth in a cohort of fetuses with CHD and relate this to the circulatory abnormalities and fetal Doppler parameters. Methods: Pregnant women with a fetus with CHD were prospectively recruited. The congenital heart defect was phenotyped using fetal echocardiography and patients subdivided into three physiological groups on the basis of the anticipated abnormality of cerebral blood flow and oxygen delivery: (1) isolated reduced flow to the brain; 2) reduced oxygen saturation of cerebral blood flow; (3) combination of reduced oxygen and flow. Fetal brain MRI was performed. In addition to standard biometric measurements, snapshot to volume reconstruction (SVR) was used to construct a 3D data set from the oversampled raw data. From these 3D volumes the total brain volume and ventricular volumes were measured by manual segmentation. Serial measurements of fetal growth were also made and umbilical artery and middle cerebral artery Doppler parameters were analysed. Results: 29 women were included; comparison was made with 83 normal MRI controls. Fetuses with CHD were found to have smaller brain volumes compared to controls when adjusting for advancing gestation (p<0.01). This difference becomes more pronounced with advancing gestation, suggesting a slower rate of in utero brain growth. Measurements of growth found that the fetuses with CHD were smaller throughout gestation with a highly significant difference at the later growth scan. (p<0.001). Cerebral and umbilical artery Doppler data showed evidence of reduced cerebrovascular resistance in fetuses with CHD but did not show a difference in the umbilical artery Doppler. Conclusion: Fetuses with CHD have evidence of impaired brain growth with advancing pregnancy and an increased rate of overall growth restriction. Doppler evidence of cerebral vasodilation supports the mechanism of reduced oxygen delivery as an underlying cause.Open Acces
    • …
    corecore