399,011 research outputs found

    Rough volatility and portfolio optimisation under small transaction costs

    Get PDF
    The first chapter of the thesis presents the study of the linear-quadratic ergodic control problem of fractional Brownian motion. Ergodic control problems arise naturally in the context of small cost asymptotic expansion of utility maximisation problems with frictions. The optimal solution to the ergodic control problem is derived through the use of an infinite dimensional Markovian representation of fractional Brownian motion as a superposition of Ornstein-Uhlenbeck processes. This solution then allows to compute explicit formulas for the minimised objective value through the variance of the stationary distribution of the Ornstein-Uhlenbeck processes. Building on the first chapter, the second chapter of the thesis presents the main result. This is motivated by the problem an agent faces when trying to minimise her utility loss in the presence of quadratic trading costs in a rough volatility model. Minimising the utility loss amounts to studying a tracking problem of a target that depends on the rough volatility process. This tracking problem is minimised at leading order by an asymptotically optimal strategy that is closely linked to the ergodic control problem of fractional Brownian motion. This asymptotically optimal strategy is explicitly derived. Moreover, the leading order of the small cost expansion is shown to depend only on the roughest part of the considered target. It therefore depends on the Hurst parameter. The third chapter is devoted to a numerical analysis of the utility loss studied in the second chapter. For this, we compare the utility loss in a rough volatility model to a semimartingale stochastic volatility model. The parameter values for both models are fitted to match frictionless utility for realistic values. By applying the result obtained in the second chapter of the thesis, the difference between leading order of utility loss can be explicitly compared

    An analysis between implied and realised volatility in the Greek Derivatives Market

    Get PDF
    In this article, we examine the relationship between implied and realised volatility in the Greek derivative market. We examine the differences between realised volatility and implied volatility of call and put options for at-the-money index options with a two-month expiration period. The findings provide evidence that implied volatility is not an efficient estimate of realised volatility. Implied volatility creates overpricing, for both call and put options, in the Greek market. This is an indication of inefficiency for the market. In addition, we find evidence that realised volatility ‘Granger causes’ implied volatility for call options, and implied volatility of call options ‘Granger causes’, the implied volatility of put option

    Extremal behavior of stochastic volatility models

    Get PDF
    Empirical volatility changes in time and exhibits tails, which are heavier than normal. Moreover, empirical volatility has - sometimes quite substantial - upwards jumps and clusters on high levels. We investigate classical and non-classical stochastic volatility models with respect to their extreme behavior. We show that classical stochastic volatility models driven by Brownian motion can model heavy tails, but obviously they are not able to model volatility jumps. Such phenomena can be modelled by Levy driven volatility processes as, for instance, by Levy driven Ornstein-Uhlenbeck models. They can capture heavy tails and volatility jumps. Also volatility clusters can be found in such models, provided the driving Levy process has regularly varying tails. This results then in a volatility model with similarly heavy tails. As the last class of stochastic volatility models, we investigate a continuous time GARCH(1,1) model. Driven by an arbitrary Levy process it exhibits regularly varying tails, volatility upwards jumps and clusters on high levels

    The volatility of realized volatility

    Get PDF
    Using unobservable conditional variance as measure, latent-variable approaches, such as GARCH and stochastic-volatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. By constructing "observable" or realized volatility series from intraday transaction data, the use of standard time series models, such as ARFIMA models, have become a promising strategy for modeling and predicting (daily) volatility. In this paper, we show that the residuals of the commonly used time-series models for realized volatility exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance when modeling and forecasting realized volatility. In an empirical application for S&P500 index futures we show that allowing for time-varying volatility of realized volatility leads to a substantial improvement of the model's fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting. Klassifikation: C22, C51, C52, C5

    On the volatility of volatility

    Get PDF
    The Chicago Board Options Exchange (CBOE) Volatility Index, VIX, is calculated based on prices of out-of-the-money put and call options on the S&P 500 index (SPX). Sometimes called the "investor fear gauge," the VIX is a measure of the implied volatility of the SPX, and is observed to be correlated with the 30-day realized volatility of the SPX. Changes in the VIX are observed to be negatively correlated with changes in the SPX. However, no significant correlation between changes in the VIX and changes in the 30-day realized volatility of the SPX are observed. We investigate whether this indicates a mispricing of options following large VIX moves, and examine the relation to excess returns from variance swaps.Comment: 15 pages, 12 figures, LaTe

    On the pricing and hedging of volatility derivatives

    Get PDF
    We consider the pricing of a range of volatility derivatives, including volatility and variance swaps and swaptions. Under risk-neutral valuation we provide closed-form formulae for volatility-average and variance swaps for a variety of diffusion and jump-diffusion models for volatility. We describe a general partial differential equation framework for derivatives that have an extra dependence on an average of the volatility. We give approximate solutions of this equation for volatility products written on assets for which the volatility process fluctuates on a time-scale that is fast compared with the lifetime of the contracts, analysing both the ``outer'' region and, by matched asymptotic expansions, the ``inner'' boundary layer near expiry
    • …
    corecore