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Abstract

The first chapter of the thesis presents the study of the linear-quadratic ergodic control
problem of fractional Brownian motion. Ergodic control problems arise naturally in the
context of small cost asymptotic expansion of utility maximisation problems with frictions.
The optimal solution to the ergodic control problem is derived through the use of an infinite
dimensional Markovian representation of fractional Brownian motion as a superposition
of Ornstein-Uhlenbeck processes. This solution then allows to compute explicit formulas
for the minimised objective value through the variance of the stationary distribution of
the Ornstein-Uhlenbeck processes.

Building on the first chapter, the second chapter of the thesis presents the main result.
This is motivated by the problem an agent faces when trying to minimise her utility loss
in the presence of quadratic trading costs in a rough volatility model. Minimising the
utility loss amounts to studying a tracking problem of a target that depends on the rough
volatility process. This tracking problem is minimised at leading order by an asymptot-
ically optimal strategy that is closely linked to the ergodic control problem of fractional
Brownian motion. This asymptotically optimal strategy is explicitly derived. Moreover,
the leading order of the small cost expansion is shown to depend only on the roughest
part of the considered target. It therefore depends on the Hurst parameter.

The third chapter is devoted to a numerical analysis of the utility loss studied in the
second chapter. For this, we compare the utility loss in a rough volatility model to a
semimartingale stochastic volatility model. The parameter values for both models are
fitted to match frictionless utility for realistic values. By applying the result obtained in
the second chapter of the thesis, the difference between leading order of utility loss can be
explicitly compared.
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Introduction

Motivation and Related Literature

Transaction costs such as bid-ask spreads or price impact are a key obstacle for the suc-
cessful implementation of trading strategies. Indeed, many initially promising strategies
produce losses unless the effects of the trading costs are mitigated by an appropriate
implementation that balances the gains and costs of trading.

The stochastic control problems describing how to do this optimally are challenging,
but much progress has recently been made in the practically relevant limiting regime of
small transaction costs. In this case, the trading friction can be viewed as a singular
perturbation of a frictionless baseline problem. The leading-order correction terms can in
turn be described in terms of sensitivity parameters derived from this frictionless model
and the corresponding optimal trading strategy.

To wit, if the frictionless optimiser is an (sufficiently regular) Itô process then the
adjustment due to small transaction costs is described by an ergodic tracking problem for
Brownian motion, where transaction costs are traded off against average-squared devia-
tions. On each small time interval, the original problem only enters locally through the
volatility of the Brownian motion, which corresponds to the volatility of the frictionless
target strategy. This connection to ergodic control of Brownian motion can be made pre-
cise using analytic methods as in Soner and Touzi (2013); Altarovici et al. (2015); Moreau
et al. (2017); Bayraktar et al. (2019) or probabilistic arguments Kallsen and Muhle-Karbe
(2017); Ahrens and Kallsen (2015); Cai et al. (2017b,a); Herdegen et al. (2019), leading
to explicit asymptotic formulas for the optimal trading strategies and their performance
in rather general settings.

Much less is known about frictionless target strategies whose local behavior does not
resemble a Brownian motion. Using probabilistic techniques, Rosenbaum and Tankov
(2011, 2014) study tracking problems for general pure-jump targets. They show that for
small transaction costs, there is again a link to an ergodic control problem where the
target Brownian motion is replaced by an α-stable process matching the local behavior
of the frictionless optimiser. This limiting process still has independent increments, but
since pure-jump processes display less fluctuations than Brownian motion (as measured by
their Blumenthal-Getoor index α ∈ (1, 2)), the impact of transaction costs is of a higher
asymptotic order in these settings. A limiting case are deterministic target strategies which
can be tracked with much less trading, compare, e.g., the equilibrium models of Vayanos
(1998) and Weston (2018).
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In contrast to these models where state variables fluctuate less than Brownian motion,
recent empirical Gatheral et al. (2018); Bayer et al. (2016) and theoretical evidence Jais-
son and Rosenbaum (2015, 2016); Fukasawa (2011); El Euch et al. (2018) documents that
“volatility is rough”, in that its local degree of activity is much higher than for models
driven by Brownian motion. To wit, its local behaviour corresponds to the one of frac-
tional Brownian motion with a Hurst index H substantially smaller than the value 1/2
for standard Brownian motion. As a result, frictionless optimal trading strategies that
depend on the volatility process then naturally display the same high degree of activity,
raising the question how (small) transaction costs should be taken into account in this
context. The present thesis tackles this problem using probabilistic techniques.

Framework

We now outline our framework and main results. We work on a filtered probability space
(Ω,F ,F = (Ft)t≥0,P), where the filtration is generated by a standard Brownian motion
(Wt)t≥0. “Rough” processes (such as volatilities and corresponding target positions) are
modelled using a (Riemann-Liouville) fractional Brownian (fBM) adapted to the filtration
F, with Hurst parameter H ∈ (0, 1/2):1

WH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs, t ≥ 0,

where Γ(z) =
∫∞
0 xz−1e−xdx is the Gamma function.

Financial Market To illustrate how rough trading strategies naturally arise in friction-
less markets with rough volatility, consider a financial market with two assets. The first
one is “safe”, with price normalised to one. The second one is risky, with constant risk
premium µ > 0 as in Chacko and Viceira (2005) and rough volatility as in Gatheral et al.
(2018):

dSt = µdt+ σtdWt. (1)

Here, the volatility process
σt = exp(Y H

t )

is the exponential of a fractional Ornstein-Uhlenbeck (fOU) process as in Gatheral et al.
(2018). That is, as in Cheridito et al. (2003), the dynamics of Y H are

dY H
t = κ(θ − Y H

t )dt+ ηdWH
t , for constants κ, η, θ > 0.

Frictionless Trading Without transaction costs, trading strategies are naturally para-
metrised by the number ϕt of risky shares held at each time t ∈ [0, T ]. Starting from a
fixed initial endowment x, the wealth process generated by a strategy (ϕt)t≥0 is then given
by the stochastic integral Xϕ

· = x+
∫ ·

0 ϕtdSt.
1See Chapter 1 for more details and properties. Our results also apply to the classical fBM case so we

will use RLfBM for this framework.
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As in Kallsen (2002); Martin and Schöneborn (2011); Gârleanu and Pedersen (2013,
2016), we consider the simplest and most tractable frictionless optimisation problem, where
the agent maximises one-period expected returns penalised for the corresponding vari-
ances. The continuous-time version of this criterion is

E
[
Xϕ
T −

γ

2 〈X
ϕ〉T

]
= x+ E

[∫ T

0

(
µϕt −

γσ2
t

2 ϕ2
t

)
dt

]
→ max

(ϕt)t∈[0,T ]
! (2)

Here, T > 0 is the agent’s finite planning horizon and γ > 0 is her constant (absolute) risk
aversion, which trades off the relative importance of expected returns and the risk penalty.
Pointwise maximisation of the integrand immediately yields the frictionless optimiser,
which inherits the roughness of the volatility process:

ϕ̂t = µ

γσ2
t

, t ∈ [0, T ]. (3)

Trading with Frictions Large trades executed quickly adversely affect the correspond-
ing execution prices; as in Almgren and Chriss (2001); Gârleanu and Pedersen (2016);
Moreau et al. (2017); Guasoni and Weber (2017) we assume for tractability that the im-
pact relative to the unaffected price St is linear in trade size and speed. To wit, the
execution price when trading ∆ϕt shares over a time interval [t, t+ ∆t] is

St + λ
∆ϕt
∆t ,

where λ > 0 describes the magnitude of the price impact. The associated trading cost
relative to the frictionless value St∆ϕt is

λ

(∆ϕt
∆t

)2
∆t.

In the continuous-time limit, the frictional wealth process in turn complements its fric-
tionless counterpart by a quadratic cost on the trading rate:

Xϕ,λ
T = x+

∫ T

0
ϕtdSt − λ

∫ T

0
ϕ̇2
tdt,

where the position ϕt starts from an initial allocation x0 and is adjusted at rate ϕ̇t:1

ϕt = x0 +
∫ t

0
ϕ̇sds, t ∈ [0, T ].

In direct analogy to the frictionless case (2) and as in Gârleanu and Pedersen (2013, 2016),
the agent maximises expected returns penalised for risk and trading costs:

E
[
Xϕ,λ
T − γ

2 〈X
ϕ,λ〉T

]
= E

[∫ T

0

(
µϕt −

γσ2
t

2 ϕ2
t − λϕ̇2

t

)
dt

]
→ max

(ϕ̇t)t∈[0,T ]
! (4)

1With superlinear trading costs, the restriction to such absolutely continuous trading strategies is
without loss of generality, compare Guasoni and Rásonyi (2015).
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Using the representation (3) for the frictionless optimiser, we can rewrite this goal func-
tional as

E
[∫ T

0

(
µϕ̂t −

γσ2
t

2 ϕ̂2
t

)
dt

]
− E

[∫ T

0

(
γσ2

t

2 (ϕt − ϕ̂t)2 + λϕ̇2
t

)
dt

]
. (5)

Here, the first term is the frictionless performance of the corresponding optimiser. The
second term collects the performance losses due to transaction costs that the agent seeks
to minimise. This is a tradeoff between the (average squared) displacement of the actual
position from the frictionless optimum and the corresponding trading costs. Accordingly,
the agent solves a linear-quadratic “tracking problem” as in Kohlmann and Tang (2002);
Ankirchner and Kruse (2015); Cai et al. (2017a); Bank et al. (2017); Bank and Voß (2018):1

E
[∫ T

0

{
γ̄t(ϕt − ϕ̂t)2 + λ(ϕ̇t)2

}
dt

]
→ min

(ϕ̇t)t∈[0,T ]
! where γ̄t = γσ2

t

2 . (6)

Here, the target in the tracking problem is given by the frictionless optimiser ϕ̂, which
typically is a rough process for rough volatility models such as (1).

Problems of the form of (6) can generally be solved in terms of BSDEs, see Kohlmann
and Tang (2002); Ankirchner and Kruse (2015); Bank and Voß (2018). This leads to ex-
plicit formulas if both trading costs λ and the risk penalty γt are constant Bank et al.
(2017). In contrast, for stochastic γt the optimal trading rate is expressed in terms of the
solution of a backward-stochastic Riccati equation, which makes it hard to infer compar-
ative statics and also sufficiently slows down the numerical implementation.

We therefore perform a small-cost analysis (6), and exhibit “asymptotically optimal
trading strategies” that minimise the performance losses relative to the frictionless case
at the leading order for small λ. We also provide a closed-form expression for the cor-
responding performance losses. Similarly as in the literature for Itô process targets Cai
et al. (2017a), this is achieved by relating the small-cost limit of the tracking problem (6)
to an ergodic control problem. In the present context with rough target strategies, the
limiting target turns out to be a fractional Brownian motion. In particular, this target
process does not have independent increments and is in fact not even Markovian. How-
ever, by exploiting the linearity of the ergodic control problem and the fact that fBM can
be represented as an integral of standard OU processes, we show in Chapter 1 that the
ergodic control problem can be solved by a superposition of the corresponding explicit
solutions for standard OU processes. It extends earlier results of Kleptsyna et al. (2005)
for the case H > 1/2, where fBM is more regular than BM, to general H ∈ (0, 1).2

Subsequently, in Chapter 2, we prove that a suitable concatenation of the solutions
of the ergodic control problems from Chapter 1 indeed leads to asymptotically optimal

1This holds exactly for the local mean-variance preferences considered here. For more general prefer-
ences, the same equivalence remains true at the leading-order for small transaction costs, compare Rogers
(2004); Janeček and Shreve (2004); Kallsen and Muhle-Karbe (2017); Moreau et al. (2017); Cayé et al.
(2018).

2This parallels results of Carr and Madan (1999) and Hubalek et al. (2006); Černỳ (2007) for option
pricing and mean-variance hedging, where integral representations of general options also allow to construct
solutions for more complex models as superpositions of simpler ones.
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strategies for tracking problems of the form (6). We start by working directly with the
BSDE solutions to the tracking problem (6) and are able to study their convergence
under appropriate rescaling. In the absence of classical stochastic calculus techniques, we
replace the use of Itô’s formula by a Taylor expansion of the target on small intervals.
Moreover, independence of increments is replaced by the mixing property of increments of
fBM. After rescaling, we are able to show the convergence of the processes in (6) towards
their stationary Gaussian counterparts appearing in the ergodic control problem. Using
the formulas obtained in Chapter 1, this permits us to recover leading order formulas
obtained in the case H = 1/2 in Cai et al. (2017a).

Finally, in Chapter 3, we investigate the quantitative properties of the asymptotic
formulas from Chapter 2. More specifically, we study whether the effects of transaction
costs are more or less pronounced for rough volatility models compared to their classical
counterparts. Three potentially competing effects are at work here: on the one hand, the
paths of fractional Brownian motion with Hurst index H < 1/2 fluctuate more wildly than
their counterparts for standard Brownian motion. Whence, conversely to the less wildly
fluctuating target strategies studied in Rosenbaum and Tankov (2014), the asymptotic
order of the performance loss due to small transaction costs is magnified for rough targets.
Accordingly, performance losses are higher than for classical models if transaction costs
are “sufficiently small”. On the other hand, however, fBM with Hurst index H < 1/2
exhibits negative autocorrelation, which can be exploited for tracking such targets unlike
for standard Brownian motion. Finally, for a given level of transaction costs, results for
fBM and standard BM depend on the parameters of the respective stochastic volatility
processes, which should be estimated from the same dataset for a fair comparison.

To address this, we match the moments of a classical stochastic volatility model to their
counterparts in the rough volatility model estimated from an equity time series in Gatheral
et al. (2018). We then compare the corresponding approximate performance losses for
small transaction costs and find that the utility loss for the rough models is smaller for
values of the trading costs parameter in line with empirical estimates in Gârleanu and
Pedersen (2013); Cartea and Jaimungal (2016). However, when the market becomes more
liquid and transaction costs get smaller by a factor ten, the utility losses of the two models
coincide. We also test that these results are not artefacts of our asymptotic analysis, by
confirming through a simulation study that the explicit formulas for small transaction
costs provide an excellent approximation of the ones actually realised.
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Chapter 1

Ergodic Control of Fractional
Brownian Motion

This chapter is based on joint work with Dr. Christoph Czichowsky.

As we have already explained, our goal is to provide an asymptotic expansion of the
utility of the local mean-variance portfolio optimisation problem with rough volatility for
small quadratic costs. Because of the H-self-similarity of fractional Brownian motion, the
leading order coefficient in this expansion will be determined in terms of the optimal value
of the ergodic linear-quadratic tracking problem of fractional Brownian motion. In this
chapter, we provide the solution to this problem for all Hurst parameters H ∈ (0, 1).

In the case H > 1/2, where fractional Brownian motion is more regular than Brow-
nian motion, the solution to the ergodic linear-quadratic tracking problem of fractional
Brownian motion has already be obtained by Kleptsyna et al. (2005). Their argument
uses explicit computations with the kernel representation of fractional Brownian motion
for H > 1/2. In the case H < 1/2, the kernel representation of fBM makes it harder
to carry over their argument. However, the formulas obtained in the paper are extended
to H < 1/2. We prove this by combining two things: the linear-quadratic structure of
the optimisation problem and an infinite-dimensional Markovian representation of fBM.
This Markovian representation goes back to Carmona and Coutin (1998) and represents
fBM as the superposition of Ornstein-Uhlenbeck processes with different speeds of mean
reversion with respect to a Borel measure on (0,∞); see (1.2). It has been more recently
considered in connection with affine representations of fractional processes (Harms and
Stefanovits (2019)) and multi-factor approximations of rough volatility models (Abi Jaber
and El Euch (2019)).

For each OU process, we only have to solve a standard Markovian optimal control prob-
lem that can be solved via the HJB equation. This does not need any non-semimartingale
stochastic calculus. It turns out that the solution to the linear-quadratic ergodic control
problem for each OU process is again given in terms of OU processes with adjusted speed
of mean reversion. Moreover, the optimal value of the control problem corresponds to
the variance of their stationary distributions. The solution for fractional Brownian mo-
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tion is then simply given by the superposition of the solutions to the problems of the
OU processes. This indicates that our results would carry over to processes that can be
represented as superpositions of OU processes with different Borel measures on (0,∞) as
long as they integrate the covariances of the stationary distribution of the adjusted OU
processes.

1.1 Fractional Brownian motion

We start this chapter by reminding key facts on fractional Brownian motion. Most of the
content of this section is extracted from Nourdin (2012).

Definition 1.1.1. For H ∈ [0, 1], the fractional Brownian motion (fBM) of Hurst param-
eter H is a centered continuous Gaussian process BH = (BH

t )t≥0 with covariance function

E
[
BH
t B

H
s

]
= 1

2
(
t2H + s2H − |t− s|2H

)
,

for t, s > 0.

In the case where H = 1/2, we recover the usual covariance structure of Brownian
motion. In addition, in the case where H > 1/2, we have positively correlated increments
of fBM, and whenH < 1/2, the increments are negatively correlated. The next proposition
states key properties of fBM as exposed in Nourdin (2012), Proposition 1.6, Proposition
2.2.

Proposition 1.1.2. The fBM satisfies the following properties

• For a > 0, (a−HBH
at)t≥0

d= (BH
t )t≥0. (Self-similarity)

• For h > 0, (BH
t+h −BH

h )t≥0
d= (BH

t )t≥0. (Stationarity of increments)

• The sample paths of BH are for any α ∈ (0, H), α-Hölder continuous on each com-
pact set. (Hölder continuity)

Hence, in the case when H < 1/2, fBM has rougher paths than Brownian motion
whereas for H > 1/2, fBM has smoother paths. Typical path realisations of fBM for
different values of H can be seen on Figure 1.1.
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Figure 1.1: Path realisation of fBM for different Hurst parameter H values.

Moreover, as previously mentioned, in the case where H 6= 1/2, we have that fBM is
not a semimartingale (Nourdin, Theorem 2.2) and it is not a Markov process (Nourdin,
Theorem 2.3).

We have the following original Mandelbrot and Van Ness (1968) representation of fBM,
for H ∈ (0, 1/2) ∪ (1/2, 1),

BH
t = 1

cH

(∫ 0

−∞

{
(t− u)H−1/2 − (−u)H−1/2

}
dWu +

∫ t

0
(t− u)H−1/2dWu

)
, (1.1)

where

cH =
√

1
2H +

∫ ∞
0

{
(1 + u)H−1/2 − uH−1/2}2

du <∞

and (Wt)t∈R is a two-sided Brownian motion, i.e., Wt = W 1
t for t ≥ 0, Wt = W 2

−t for t < 0,
for (W 1

t )t≥0, (W 2
t )t≥0 two independent classical Brownian motions. The integral on the

positive real line in (1.1) is referred to as (in general up to some multiplicative constant)

WH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs,

known as the Riemann-Liouville fractional Brownian motion (RLfBM). It is worth noticing
that increments of RLfBM are not stationary. Nonetheless, RLfBM shares many properties
with fBM and is often used in place of fBM in rough volatility models. In the asymptotic
framework, both objects behave very similarly, see for example Lim and Sithi (1995).

Alternatively, from Norros et al. (1999), we also have the following representation of
fBM in terms of integral with respect to a Brownian motion on the positive real line,

BH
t =

∫ t

0
KH(t, s)dWs,

12



where for H < 1/2, t > s,

KH(t, s) = bH

{(
t

s

)H−1/2
(t− s)H−1/2 −

(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−1/2uH−3/2du

}

with

bH =
√

2H
(1− 2H)B(1− 2H,H + 1/2) ,

where B(a, b) =
∫ 1

0 x
a−1(1− x)b−1dx, is the Beta function. With this representation, fBM

generates the same filtration as the underlying BM.
From Carmona and Coutin (1998), we have a useful representation of RLfBM as an

infinite dimensional Markov process. More precisely, we have

WH
t =

∫ ∞
0

Y γ
t µ(dγ), (1.2)

for

µ(dγ) = 1
Γ(H + 1/2)Γ(1/2−H)

1
γ1/2+H dγ,

and the Ornstein-Uhlenbeck processes Y γ
t , γ > 0, satisfying the dynamics

dY γ
t = −γY γ

t dt+ dWt

Y γ
0 = 0

or explicitely given by

Y γ
t =

∫ t

0
e−γ(t−s)dWs,

being Ornstein-Uhlenbeck processes sharing the same noise with different speed of mean-
reversion. A similar representation holds for fBM as in Harms and Stefanovits (2019)
Theorem 3.5 but requires a random initial condition. Exploiting representation (1.2) will
be of great use when solving the ergodic control problem of RLfBM.

1.2 Ergodic control of fractional Brownian motion

Consider a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 generated
by a Brownian Motion (Wt)t≥0. We start by studying the linear-quadratic ergodic regular
control problem of a RLfBM target,

min
u∈A

JW (u;α),

JW (u;α) := lim sup
T→∞

1
T
E
[∫ T

0
q(Xt − αWH

t )2dt+
∫ T

0
r(ut)2dt

]
, (1.3)
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with q, r > 0 and α ∈ R,

Xt = x0 +
∫ t

0
usds,

and A the set of adapted strategies u such that JW (u, α) < ∞. These type of strategies
are called regular control. As mentioned at the beginning of this chapter, we will use
the representation (1.2) of RLfBM for the proof of the main statement of this chapter.
We will then make the connection with the ergodic control of fBM. We therefore start by
considering the problem of tracking an Ornstein-Uhlbeck target.

In that case, the regular linear-quadratic ergodic control problem is quite easily solved
using standard Markovian stochastic control theory. With the notation introduced above,
we have the following result. This result is probably known but we did not find any
reference for it.

Proposition 1.2.1. Fix γ > 0, the linear-quadratic ergodic control problem of the Orn-
stein-Uhlenbeck process Y γ is given by

min
u∈A

JOU (u;α),

JOU (u;α) := lim sup
T→∞

1
T
JOUT (u;α) = lim sup

T→∞

1
T
E
[∫ T

0
q(Xt − αY γ

t )2dt+
∫ T

0
r(ut)2dt

]
,

where the set A of adapted controls u such that JOU (u;α) < ∞. This control problem
admits an optimal solution uγ characterised by the feedback form,

uγt = δ

(
α

δ

δ + γ
Y γ
t −X

γ
t

)
,

Xγ
t = xγ0 +

∫ t

0
uγsds,

with δ =
√
q/r.

Proof. The proof of this proposition is given in the technical section 1.3.1.

By linearity of the optimiser in the target, the previous result can also be extended
to a target being a linear combination of Ornstein-Uhlenbeck processes sharing the same
noise as presented in the next result.

Proposition 1.2.2. For N ∈ N∗ consider a vector (γ1, . . . , γN ), with γi > 0 for i =
1, . . . , N , a sequence (α1, . . . , αN ) ∈ RN and the Ornstein-Uhlenbeck processes Y γi

t satis-
fying,

dY γi
t = −γiY γi

t dt+ dWt

Y γi
0 = 0,
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for all i = 1, . . . , N . Consider the target given by

Y N
t :=

N∑
i=1

αiY
γi
t ,

and the linear-quadratic ergodic control problem of this target Y N , i.e., minimise

JOU,N (u) := lim sup
T→∞

1
T
JOU,NT (u) = lim sup

T→∞

1
T
E
[∫ T

0
q(Xt − Y N

t )2dt+
∫ T

0
r(ut)2dt

]
,

over the set A of adapted controls such that JOU,N (u) < ∞. Then, the optimal solution
to this problem is characterised by the following feedback form,

uNt = δ

(
N∑
i=1

αi
δ

δ + γi
Y γi
t −XN

t

)
,

XN
t = xN0 +

∫ t

0
uNs ds,

with δ =
√
q/r.

Proof. The proof of this proposition is given in the technical section 1.3.1.

Remark 1.2.3. Motivated by the explicit solution for the finite time horizon linear-
quadratic control problem in Bank et al. (2017), we provide a useful representation of the
solution first pointed out in Gârleanu and Pedersen (2013). The optimal rate in Proposi-
tion 1.2.1 can be rewritten as

uγt = δ(ξ̂γt −X
γ
t ),

ξ̂γt = δ

δ + γ
αY γ

t = E
[∫ ∞
t

δe−δ(s−t)αY γ
s ds

∣∣∣∣Ft] ,
since for s > t,

Y γ
s = e−γ(t−s)Y γ

t +
∫ s

t
e−γ(s−u)dWu.

We call ξ̂γ the signal process. The motivation for this terminology comes from the fact
that the signal process is in essence a convex combination of future values of the target.
This process becomes in particular useful when the target to track is non-Markovian. As
in the finite time horizon case, we expect the signal process to be linear in the target it
tracks. In the case of Proposition 1.2.2, we have the signal process given by

ξ̂Nt = E
[∫ ∞
t

δe−δ(s−t)Y N
s ds

∣∣∣∣Ft] .
which exhibits the linearity of the signal.

In the following lemma, we compute some covariance limits involving the signal ξ̂γ

that will be necessary for our limiting argument and explicit computations.
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Lemma 1.2.4. In the notation introduced above, we have,

lim
t→∞

E
[
Y γ
t Y

γ̄
t

]
= 1
γ + γ̄

,

lim
t→∞

E
[
ξ̂γt Y

γ̄
t

]
= δ

δ + γ

1
γ + γ̄

lim
t→∞

E
[
ξ̂γt ξ̂

γ̄
t

]
= δ

δ + γ

δ

δ + γ̄

1
γ + γ̄

lim
t→∞

E
[
Xγ
t Y

γ̄
t

]
= 1
γ + γ̄

δ2

(δ + γ)(δ + γ̄) ,

lim
t→∞

E
[
Xγ
t ξ̂

γ̄
t

]
= 1
γ + γ̄

δ2

(δ + γ)(δ + γ̄)
δ

δ + γ̄
,

lim
t→∞

E
[
Xγ
t X

γ̄
t

]
= δ2

(δ + γ)(δ + γ̄)
1

γ + γ̄

δ

2

( 1
δ + γ

+ 1
δ + γ̄

)
.

Proof. The proof of the statement is found in the technical section 1.3.2.

The previous results in Proposition 1.2.2 motivates our solution to the RLfBM ergodic
control problem (1.3). Indeed, the representation (1.2) of RLfBM as an infinite integral of
Ornstein-Uhlenbeck processes allows us to guess the optimal rate for the ergodic control
problem of RLfBM. The following result provides the rigorous statement.

Proposition 1.2.5. The minimising solution to the linear-quadratic ergodic control prob-
lem of RLfBM (1.3),

min
u∈A

JW (u;α),

is given by

ût = δ

{
α

∫ ∞
0

δ

δ + γ
Y γ
t µ(dγ)− X̂t

}
,

X̂t = x0 +
∫ t

0
ûsds,

with δ =
√
q/r.

Proof. Without loss of generality, we assume α = 1. We start by considering the linear-
quadratic ergodic control of a general target ξ and we derive a necessary and sufficient
condition for optimality similar to what is obtained in Bank et al. (2017) and Kleptsyna
et al. (2005). The problem consists of minimising

J(u) = lim sup
T→∞

1
T
E
[∫ T

0
q(Xu

t − ξt)2dt+
∫ T

0
r(ut)2dt

]
, (1.4)

over a set A of admissible controls u, i.e., adapted processes, for which, J(u) < ∞. An
admissible control process ū ∈ A is then optimal if it satisfies

J(u) ≥ J(ū)
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for any u ∈ A. Denoting X = Xu, X̄ = X ū, we express the difference as

J(u)− J(ū) = lim sup
T→∞

1
T
E
[∫ T

0
2q(Xt − X̄t)(X̄t − ξt)dt+

∫ T

0
2rūt(ut − ūt)

]

+ lim sup
T→∞

1
T
E
[∫ T

0
q(Xt − X̄t)2dt+

∫ T

0
r(ut − ūt)2

]
(1.5)

≥ lim sup
T→∞

1
T
E
[∫ T

0
2q(Xt − X̄t)(X̄t − ξt)dt+

∫ T

0
2rūt(ut − ūt)

]
,

where the inequality follows from the fact that the second term in (1.5) is always non-
negative. Hence, for an admissible strategy ū ∈ A to be optimal, it is sufficient for it to
satisfy

lim sup
T→∞

1
T
E
[∫ T

0
2q(Xt − X̄t)(X̄t − ξt)dt+

∫ T

0
2rūt(ut − ūt)

]
= 0, (1.6)

for any u ∈ A. We call (1.6) the first order condition of the problem (1.4). Denoting by
w = u− ū and using Fubini’s theorem, we can further rewrite the first order condition as,

lim sup
T→∞

1
T
E
[∫ T

0
2q
(∫ t

0
wsds

)
(X̄t − ξt)dt+

∫ T

0
2rūtwtdt

]
= 0

⇔ lim sup
T→∞

1
T
E
[∫ T

0
ws

{
(2q)

∫ T

s
(X̄t − ξt)dt+ (2r)ūs

}
ds

]
= 0, (1.7)

for all w = u− ū, with u ∈ A.
In particular, we know from Proposition 1.2.1 that the above first order condition (1.7)

is satisfied by the optimal solution uγ when the target ξt = Y γ
t is an Ornstein-Uhlenbeck.

In the case of RLfBM as target,

ξt = WH
t =

∫ ∞
0

Y γ
t µ(dγ),

we need to check that the first order condition (1.7) holds for our following proposed
solution

ût =
∫ ∞

0
uγt µ(dγ),

X̂t = x0 +
∫ t

0
ûsds =

∫ ∞
0

Xγ
t µ(dγ),

where Xγ
t is the optimal position in the problem with target Y γ given by

Xγ
t = xγ0 +

∫ t

0
uγsds,

with

xγ0 = Γ(H + 1/2)e−γx0.
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To see this, we recall that for t > 0, the measure µ satisfies

tH−1/2

Γ(H + 1/2) =
∫ ∞

0
e−γtµ(dγ).

Choosing t = 1 allows us to write

x0 =
∫ ∞

0
xγ0µ(dγ).

We show in Proposition 1.2.7 that with the defined rate û and corresponding position
X̂, we have

lim
T→∞

1
T
E
[∫ T

0
q(X̂t −WH

t )2 +
∫ T

0
r(ût)2dt

]
<∞,

and therefore û is admissible. In fact, we compute the corresponding objective value
J(û) explicitely. Let us now fix u ∈ A an arbitrary competing trading rate, and denote
w = u− û.

Plugging now û, X̂ in place of ū, X̄ in the limit of (1.7) for the target WH gives

lim sup
T→∞

1
T
E
[∫ T

0
ws

{
(2q)

∫ T

s

∫ ∞
0

(Xγ
t − Y

γ
t )µ(dγ)dt+ (2r)

∫ ∞
0

uγsµ(dγ)
}
ds

]

= lim sup
T→∞

∫ ∞
0

1
T
E
[∫ T

0
ws

{
(2q)

∫ T

s
(Xγ

t − Y
γ
t )dt+ (2r)uγs

}
ds

]
µ(dγ), (1.8)

by Fubini’s theorem. Provided we can interchange the limit and the integral in the above
expression, we would obtain

∫ ∞
0

lim sup
T→∞

1
T
E
[∫ T

0
ws

{
(2q)

∫ T

s
(Xγ

t − Y
γ
t )dt+ (2r)uγs

}
ds

]
µ(dγ) = 0,

as the first order condition (1.7) is satisfied for every Ornstein-Uhlenbeck target Y γ for any
perturbation w, in this case given by w = u − û. Modulo the interchangiblity argument,
this shows the rate û satisfies the first order condition (1.7) and it is therefore optimal.

We devote the rest of the proof to the justification for the interchangeability of the limit
and the integral in (1.8). We start by using the tower property of conditional expectation
to rewrite

fT (γ) := 1
T
E
[∫ T

0
ws

{
(2q)

∫ T

s
(Xγ

t − Y
γ
t )dt+ (2r)uγs

}
ds

]

= 1
T

∫ T

0
E
[
ws

{
(2q)E

[∫ T

s
(Xγ

t − Y
γ
t )dt

∣∣∣∣Fs
]

+ (2r)uγs

}]
ds.

From Proposition 1.2.1, we recall

uγt = δ

(
δ

δ + γ
Y γ
t −X

γ
t

)
.
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By Itô’s formula, uγ satisfies the following dynamics,

duγt = δ2(Xγ
t − Y

γ
t )dt+ δ2

δ + γ
dWt,

uγ0 = −δxγ0 .

Intregrating we have, for 0 < s ≤ T ,

uγT = uγs +
∫ T

s
δ2(Xγ

t − Y
γ
t )dt+ δ2

δ + γ

∫ T

s
dWt.

Hence, we can write, for 0 < s ≤ T ,

uγs = E [uγT | Fs]− δ
2E
[∫ T

s
(Xγ

t − Y
γ
t )dt

∣∣∣∣Fs
]
,

and fT (γ) becomes,

fT (γ) = 1
T
E
[∫ T

0
ws(2r)E [uγT | Fs] ds

]
.

Using Cauchy-Schwarz inequality, Jensen’s inequality and Fubini’s theorem, we estimate
fT (γ) by

fT (γ) ≤ 2r 1
T
E
[∫ T

0
w2
sds

]1/2

E
[∫ T

0
E [uγT | Fs]

2
ds

]1/2

≤ 2r
(

1
T
E
[∫ T

0
w2
sds

])1/2( 1
T

∫ T

0
E
[
(uγT )2

]
ds

)1/2

≤ 2r
(

1
T
E
[∫ T

0
w2
sds

])1/2

E
[
(uγT )2

]1/2
.

Since w = u− û with u, û ∈ A, we have

lim
T→∞

1
T
E
[∫ T

0
w2
sds

]
<∞.

and therefore for T large enough, we can assume the existence of a constant C > 0, such
that

1
T
E
[∫ T

0
w2
sds

]
≤ C.

Using C as an absorbing constant, we bound fT (γ) as

fT (γ) ≤ CE
[
(uγT )2

]
=: gT (γ).

19



Using the fact that

uγT = δ

(
δ

δ + γ
Y γ
T −X

γ
T

)
,

we can compute

E
[
(uγT )2

]
= δ2

{(
δ

δ + γ

)2
E
[
(Y γ
T )2

]
− 2δ
δ + γ

E [Y γ
T X

γ
T ] + E

[
(Xγ

T )2
]}

Using (1.32),(1.34),(1.35) in the proof of Lemma 1.2.4 we obtain the explicit expressions of
E
[
(Y γ
T )2] ,E [Y γ

T X
γ
T ] ,E

[
(Xγ

T )2]. In particular, we notice that E
[
(uγT )2] can be expressed

as a sum of components that are monotone with respect to T . Using then the monotone
convergence theorem, we obtain

lim
T→∞

∫ ∞
0

gT (γ)µ(dγ) =
∫ ∞

0
lim
T→∞

gT (γ)µ(dγ)

= δ2
∫ ∞

0

{(
δ

δ + γ

)2 1
2γ −

2δ
δ + γ

1
2γ

δ2

(δ + γ)2 + δ2

(δ + γ)2
δ

δ + γ

1
2γ

}
µ(dγ)

=
∫ ∞

0

δ4

2(δ + γ)3µ(dγ) <∞.

We therefore use the generalised Lebesgue dominated convergence theorem to justify the
interchangeability of limit and integration in equation (1.8) given by

lim
T→∞

∫ ∞
0

fT (γ)µ(dγ) =
∫ ∞

0
lim
T→∞

fT (γ)µ(dγ) = 0,

which concludes the proof.

Remark 1.2.6. Echoing Remark 1.2.3, we express the solution to the ergodic control of
RLfBM in terms of the signal process. The process towards which the optimal rate reverses
can be rewritten as,

ξ̂t =
∫ ∞

0
ξ̂γt µ(dγ) = E

[∫ ∞
t

δe−δ(s−t)WH
s ds

∣∣∣∣Ft] , (1.9)

where we get the second equality by using the representation

WH
s =

∫ ∞
0

Y γ
s µ(dγ).

The conditional expectation expression in (1.9) clearly exhibits the key feature of the signal
process. In essence, the optimal rate is a feedback towards a weighted sum of future values
of the RLfBM target. This is quite intuitive as we would expect the optimal solution to
exploit the autocorrelation of the target. In the case of RLfBM and fBM with H < 1/2,
the autocorrelation is negative. We provide further interpretation and graphs with the path
realisation of a signal process in Chapter 3.
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Proposition 1.2.7. The minimised ergodic objective of the linear-quadratic ergodic con-
trol of RLfBM is given by

J(α) = α2 q

δ2H
1
2

{
1 + 1

sin(πH)

}
.

Proof. The proof of the proposition can be found in the technical section 1.3.3.

1.2.1 Ergodic control of fBM and RLfBM

Our aim is now to extend our result from the ergodic control of RLfBM to the ergodic
control of fBM. Recall from Mandelbrot and Van Ness (1968) that we have the following
representation of fBM,

BH
t = 1

cH

(∫ 0

−∞

{
(t− u)H−1/2 − (−u)H−1/2

}
dWu +

∫ t

0
(t− u)H−1/2dWu

)
=: 1

cH
Γ(H + 1/2)

(
It +WH

t

)
, (1.10)

with the constant

cH =
√

1
2H +

∫ ∞
0

{
(1 + u)H−1/2 − uH−1/2}2

du.

We want to show that up to the multiplicative constant appearing in (1.10), RLfBM and
fBM provide the same minimised ergodic control problem objective and the structure of
the optimal solution for RLfBM carries over to fBM. We first need to show that the process
It has no effect in the long run and has therefore no impact on the objective value.

We have, for t > s ≥ 0,

It − Is = 1
Γ(H + 1/2)

∫ 0

−∞

{
(t− u)H−1/2 − (s− u)H−1/2

}
dWu,

and therefore,

E
[
(It − Is)2

]
= 1

Γ(H + 1/2)2

∫ ∞
0

{
(t+ u)H−1/2 − (s+ u)H−1/2

}2
du

= 1
Γ(H + 1/2)2 (t− s)2H

∫ ∞
s
t−s

{
(1 + u)H−1/2 − uH−1/2

}2
du, (1.11)

and we have the following result.

Lemma 1.2.8. The function g defined by

g(s) =
∫ ∞
s

{
(1 + u)H−1/2 − uH−1/2

}2
du,

for H < 1/2 and s ≥ 0, satisfies for s > 0,

g(s) ≤
(1

2 −H
)2 s2H−2

2− 2H ,
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and note that

g(s) ≤ g(0) <∞,

for every s > 0.

Proof. We know that for H < 1/2, the function f(x) = xH−1/2, is convex for x > 0. Its
derivative is f ′(x) = (H − 1/2)xH−3/2 < 0 for all x > 0. Moreover, for x > y, we have
f(x) < f(y), and

f(x) ≥ f(y) + f ′(y)(x− y).

Hence, for x > y we obtain

f(y)− f(x) ≤ −f ′(y)(y − x),

which in our case, translates to

uH−1/2 − (1 + u)H−1/2 ≤
(1

2 −H
)
uH−3/2.

Hence, we have the required estimate,

g(s) ≤
∫ ∞
s

(1
2 −H

)2
u2H−3du =

(1
2 −H

)2 s2H−2

2− 2H .

The next result indicates that the contribution to the ergodic control problem objective
of the process I in the decomposition (1.10) is zero.

Proposition 1.2.9. For the process I from (1.10), we define

ξ̂It = E
[∫ ∞
t

δe−δ(s−t)Isds

∣∣∣∣Ft] ,
uIt = δ(ξ̂It −XI

t ),

XI
t = x0 +

∫ t

0
uIsds,

for which we have,

lim
T→∞

1
T

∫ T

0

{
qE
[
(XI

t − It)2
]

+ rE
[
(uIt )2

]}
dt = 0.

Proof. Since for t > 0, It is F0-measurable, we know that

ξ̂It = E
[∫ ∞
t

δe−δ(s−t)Isds

∣∣∣∣Ft] =
∫ ∞
t

δe−δ(s−t)Isds,

22



and

uIt = δ(ξ̂It −XI
t ).

We start by showing that the second moments of the processes XI
t −It and uIt are bounded

from above by a continuous function in t. Once the bounds are established, we can use
the mean-value theorem and consider the limiting value of these second moments. This
amounts to computing the long-term variance of the two Gaussian processes.

Hence, assuming without loss of generality x0 = 0, we start by studying the limit of
E
[
(XI

t − It)2
]
as t→∞, where the solution for XI

t is given by

XI
t =

∫ t

0
δe−δ(t−s)ξ̂Isds.

We then rewrite

XI
t − It = (ξ̂It − It) + (XI

t − ξ̂It ),

and start by computing the limit of E
[
(ξ̂It − It)2

]
as t→∞.

To this effect, we notice

ξ̂It − It =
∫ ∞
t

δe−δ(s−t)(Is − It)ds,

and by Jensen’s inequality,

E
[
(ξ̂It − It)2

]
≤
∫ ∞
t

δe−δ(s−t)E
[
(Is − It)2

]
ds.

Using Lemma 1.2.8, we obtain for s > t > 0, and some absorbing constant C > 0,

E
[
(Is − It)2

]
≤ C(s− t)2t2H−2,

and therefore

E
[
(ξ̂It − It)2

]
≤ CΓ(3)t2H−2 → 0, (1.12)

as t→∞ because H < 1.
Next, we consider the limit as t→∞ of E

[
(XI

t − ξ̂It )2
]
. We rewrite,

XI
t − ξ̂It =

∫ t

0
δe−δ(t−s)(ξ̂Is − ξ̂It )ds+ ξ̂It (ηt − 1), (1.13)

where ηt = 1− exp(−δt). We focus first our attention on the first term of (1.13). For this,
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we consider for 0 < s < t,

ξ̂It − ξ̂Is =
∫ ∞
t

δe−δ(u−t)Iudu−
∫ ∞
s

δe−δ(u−s)Iudu

=
∫ ∞

0
δe−δv (It+v − Is+v) dv.

Using again Lemma 1.2.8, we obtain the estimates

E
[
(It+v − Is+v)2

]
≤ C1(t− s)2(v + s)2H−2,

E
[
(It+v − Is+v)2

]
≤ C2(t− s)2H ,

for C1, C2 > 0 absorbing constants. By Jensen’s inequality, it follows

E
[(
ξ̂It − ξ̂Is

)2
]
≤ C1(t− s)2

∫ ∞
0

δe−δv(v + s)2H−2dv,

E
[(
ξ̂It − ξ̂Is

)2
]
≤ C2(t− s)2H . (1.14)

Using ηt ≤ 1 together with Jensen’s inequality, we obtain

E
[{∫ t

0
δe−δ(t−s)(ξ̂Is − ξ̂It )ds

}2]
≤
∫ t

0
δe−δ(t−s)E

[(
ξ̂It − ξ̂Is

)2
]
ds.

Combining this with the previous estimates yields∫ t

0
δe−δ(t−s)E

[(
ξ̂It − ξ̂Is

)2
]
ds

=
∫ t/2

0
δe−δ(t−s)E

[(
ξ̂It − ξ̂Is

)2
]
ds+

∫ t

t/2
δe−δ(t−s)E

[(
ξ̂It − ξ̂Is

)2
]
ds

≤ C2e
−δt/2t2H + C1

∫ t

t/2
δe−δ(t−s)(t− s)2

{∫ ∞
0

δe−δv(v + s)2H−2dv

}
ds

≤ C2e
−δt/2t2H + C1

∫ t

t/2
e−δ(t−s)(t− s)2s2H−2ds

≤ C2e
−δt/2t2H + C1Γ(3)t2H−2 → 0,

as t → ∞. This allows to conclude that the first term in (1.13) vanishes in L2(P) as
t→∞. For the second term of (1.13) we can use estimate (1.14) with s = 0 to obtain for
some constant C > 0

E
[{
ξ̂It (ηt − 1)

}2
]
≤ Ce−2δtt2H → 0,

as t → ∞. It follows that E
[
(XI

t − ξ̂It )2
]
converges to 0 as t → ∞. Combining this with

(1.12), we conclude that E
[
(XI

t − It)2
]
→ 0 as t→ 0. Moreover, since

E
[
(uIt )2

]
= δ2E

[
(XI

t − ξ̂It )2
]
→ 0,
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as t→∞, this concludes the proof.

The previous result allows us to obtain the optimal solution to the ergodic control
problem of fBM.

Corollary 1.2.10. Consider the linear-quadratic ergodic control of fBM described by the
minimisation of

min
u∈A

J(u, α)

with

J(u, α) := lim sup
T→∞

1
T
E
[∫ T

0
q(Xt − αBH

t )2dt+
∫ T

0
r(ut)2dt

]
,

over the set A of admissible strategies, i.e., adapted strategies such that J(u, α) <∞. This
problem admits an optimal solution,

ξ̂Bt = E
[∫ ∞
t

δe−δ(s−t)αBH
s ds

∣∣∣∣Ft] ,
uBt = δ(ξ̂Bt −XB

t ),

XB
t = x0 +

∫ t

0
uBs ds,

for δ =
√
q/r. Moreover, the minimised objective is given by

J(u;α) = α2 qΓ(2H + 1)
δ2H

{1 + sin(πH)
2

}
.

Proof. Without loss of generality, we consider α = 1. From the representation (1.10), we
have

WH
t = cH

Γ(H + 1/2)B
H
t − It,

We know from Proposition 1.2.7 that the optimal solution to the ergodic control of RLfBM
is characterised by the signal

ξ̂Wt = E
[∫ ∞
t

δe−δ(s−t)αWH
s ds

∣∣∣∣Ft]
= cH

Γ(H + 1/2) ξ̂
B
t − ξ̂It ,

where we use representation (1.10) and the linearity of the signal in the target to separate
it into two signals. We denote aH = cH/Γ(H + 1/2), and the decomposition of the signal
ξ̂W allows to decompose the optimal rate û = uW and the position X̂ = XW as

uWt = aHu
B
t − uIt

XW
t = aHX

B
t −XI

t .
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Considering subproblems corresponding to BH and I separately, we have seen in Proposi-
tion 1.2.9 that the subproblem linked to the process I is not relevant in the ergodic control
problem. More precisely, we know

lim sup
T→∞

1
T
E
[∫ T

0
q(XW

t −WH
t )2dt+

∫ T

0
r(uWt )2dt

]
<∞.

Hence, we have,

E
[
(XW

t −WH
t )2

]
= E

[
(aHXB

t − aHBH
t )2

]
+ E

[
(It −XI

t )2
]

(1.15)

+ 2E
[
(aHXB

t − aHBH
t )(It −XI

t )
]
,

E
[
(uWt )2

]
= E

[
(aHuBt )2

]
+ E

[
(uIt )2

]
− 2aHE

[
uBt u

I
t

]
. (1.16)

For both equalities above, we know that their limit is finite as t→∞. Combining∣∣∣E [(aHXB
t − aHBH

t )(It −XI
t )
]∣∣∣ ≤ E

[
(aHXB

t − aHBH
t )2

]1/2
E
[
(It −XI

t )2
]1/2

,∣∣∣E [uBt uIt ]∣∣∣ ≤ E
[
(uBt )2

]1/2
E
[
(uIt )2

]1/2
,

together with the fact from Proposition 1.2.9 that

lim
t→∞

E
[
(It −XI

t )2
]

= 0,

lim
t→∞

E
[
(uIt )2

]
= 0,

it must be that

lim
t→∞

E
[
(aHXB

t − aHBH
t )2

]
<∞,

lim
t→∞

E
[
(uBt )2

]
<∞,

as this would otherwise contradict the finiteness of the limits in (1.15) and (1.16) as
t → ∞. This also allows to see that the component I does not matter for the ergodic
control problem of BH

t and the optimality of the processes ξ̂Bt , uBt and XB
t is verified.

Moreover, the minimised objective value is obtained directly from the minimised ob-
jective value for the RLfBM ergodic control as in Proposition 1.2.7, by multiplying with
the constant a−2

H . Hence, we have

J(uB; 1) =
{Γ(H + 1/2)

cH

}2 q

δ2H
1
2 (1 + csc(πH))

= q

δ2H Γ(2H + 1)
{1 + sin(πH)

2

}
,

where the last equality is detailed in the technical section 1.3.5.

Remark 1.2.11. The result in Corollary 1.2.10 was derived for the case H > 1/2 in
Kleptsyna et al. (2005). The argument exposed in the paper relies on the Volterra rep-
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resentation of fBM and can also be adapted to the case H < 1/2. This requires working
with the Volterra representation for H < 1/2 and update computations to account for the
kernel difference. For convenience we recall the Volterra representation for H < 1/2,

BH
t =

∫ t

0
KH(t, s)dWs,

where for t > s,

KH(t, s) = bH

{(
t

s

)H−1/2
(t− s)H−1/2 −

(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−1/2uH−3/2du

}
,

for some constant bH > 0.

In Chapter 3, we provide further interpretation of the formula obtained in Corollary
1.2.10 and highlight the differences with the case H = 1/2.

1.3 Technical Section

1.3.1 Proof of Propositions 1.2.1 and 1.2.2

Proof of Proposition 1.2.1. Without loss of generality, we set α = 1 and denote JOU (u;α)
by JOU (u). To accomodate with usual notation in the existing literature such as Ara-
postathis et al. (2012), we rewrite the above ergodic control problem by introducing the
process Zt = (Z1

t , Z
2
t )T ∈ R2, satisfying

dZt =
(
−γZ1

t

ut

)
dt+

(
1
0

)
dWt, (1.17)

Z0 =
(

0
xγ0

)
.

The first component of Z corresponds to the Ornstein-Uhlenbeck process while the second
is simply the controlled process. In other words, we have Z1 ≡ Y γ and Z2 ≡ Xγ . The
objective JOU (u) is rewritten as

JOU (u) = lim sup
T→∞

1
T
E
[∫ T

0

{
q(Z1

t − Z2
t )2 + r(ut)2

}
dt

]
. (1.18)

We know from Arapostathis et al. (2012), that the HJB equation for ergodic control
problems is derived by considering the HJB equation of the infinite horizon discounted
problem and letting the discount factor go to 0. Hence, the HJB equation related to ergodic
control problems described by (1.17) and (1.18) corresponds to finding a pair (V, η), where
V is a real function, V (z) for z = (z1, z2)T ∈ R2, and η ≥ 0, such that,

min
u

{
q(z1 − z2)2 + ru2 − η + Vz1(z)(−γz1) + Vz2(z)u+ 1

2Vz1z1(z)
}

= 0. (1.19)
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In particular, a candidate for optimal control in the feedback form is given by

u(z) = −Vz2(z)
2r .

From the linear-quadratic nature of the problem, we know the function V (z) should exhibit
a dependence on the squared deviation between linear functions of the target and the
controlled position. Hence, it should be of the form

V (z) = a(z1 − bz2)2 + c,

for some a, b, c ∈ R. We therefore make the following Ansatz for the function V (z),

V (z) = a(z1)2 + b(z2)2 + cz1z2 + d, (1.20)

for a, b, c, d ∈ R, the equation (1.19) rewrites as

a− η +
(
q − c2

4r − 2aγ
)
z2

1 +
(
q − b2

r

)
(z2)2 +

(
−2q − bc

r
− cγ

)
z1z2 = 0,

for all z ∈ R2. Solving for a, b, c, the solution triplet is given by

a = 2q3/2√r + qrγ

2(√q +
√
rγ)2 , b = √qr, c = − 2q

√
r

√
q +
√
rγ
,

and

η = a.

In particular, the feedback control is given by

u(z) = −2bz2 − cz1
2r = δ2

(δ + γ)z1 − δz2. (1.21)

We now proceed to the verification of our Ansatz. Let u be any admissible control, in
the sense that JOU (u) < ∞. Let (V, η) be a solution to the HJB equation (1.19) with V
a function in the form (1.20). By Itô’s formula, we have for the process V (Zt),

dV (Zt) =
[
Vz1(Zt)(−γZ1

t ) + Vz2(Zt)ut + 1
2Vz1z1(Zt)

]
dt

+ Vz1(Zt)dWt. (1.22)
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Let us now write,∫ T

0

[
q(Z1

t − Z2
t )2 + r(ut)2

]
dt

=
∫ T

0

[
q(Z1

t − Z2
t )2 + r(ut)2 − η + Vz1(Zt)(−γZ1

t ) + Vz2(Zt)ut + 1
2Vz1z1(Zt)

]
dt

+ ηT +
∫ T

0
Vz1(Zt)dWt + V (Z0)− V (ZT ).

But since (V, η) satisfies the HJB equation (1.19), we obtain the inequality
∫ T

0

[
q(Z1

t − Z2
t )2 + r(ut)2

]
dt ≥ ηT + V (Z0)− V (ZT ) +

∫ T

0
Vz1(Zt)dWt. (1.23)

By admissibility of u, we have

lim
T→∞

1
T

∫ T

0
E
[
(Z1

t − Z2
t )2
]
dt <∞, (1.24)

which implies,

lim
T→∞

E
[
(Z1

T − Z2
T )2
]
<∞, lim

T→∞

1
T
E
[
(Z1

T − Z2
T )2
]

= 0. (1.25)

Moreover, since Z1 equals the Ornstein-Uhlenbeck process Y γ ,

dZ1
t = −γZ1

t dt+ dWt,

Z1
0 = 0,

with mean-reversion speed γ, we have the following long-term behavior,

lim
T→∞

E
[
(Z1

T )2
]
<∞, lim

T→∞

1
T
E
[
(Z1

T )2
]

= 0. (1.26)

Using (1.25) and (1.26), we also obtain

lim
T→∞

1
T
E
[
(Z2

T )2
]

= lim
T→∞

1
T
E
[
(Z2

T − Z1
T + Z1

T )2
]

≤ lim
T→∞

1
T

{
2E
[
(Z1

T − Z2
T )2
]

+ 2E
[
(Z1

T )2
]}

= 0. (1.27)

Since,

E [V (ZT )] = aE
[
(Z1

T )2
]

+ bE
[
(Z2

T )2
]

+ cE
[
Z1
TZ

2
T

]
+ d,

and ∣∣∣E [Z1
TZ

2
T

]∣∣∣ ≤ E
[
(Z1

T )2
]1/2

E
[
(Z2

T )2
]1/2

,
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we conclude, using (1.26) and (1.27), that

lim
T→∞

1
T
E [V (ZT )] = 0. (1.28)

Moreover, by (1.24), we have

E
[∫ T

0
(Z1

t − Z2
t )2dt

]
<∞, ∀T > 0,

and similarly to (1.27), together with the fact that Z1 is an Ornstein-Uhlenbeck process,
we obtain

E
[∫ T

0
(Z2

t )2dt

]
≤ 2E

[∫ T

0
(Z1

t − Z2
t )2dt

]
+ 2E

[∫ T

0
(Z1

t )2dt

]
<∞, ∀T > 0.

Since Vz1(Zt) = 2aZ1
t + cZ2

t , we can conclude

E
[∫ T

0
Vz1(Zt)2dt

]
≤ 2E

[∫ T

0
4a2(Z1

t )2dt

]
+ 2E

[∫ T

0
c2(Z2

t )2dt

]
<∞. (1.29)

Taking now expectation in (1.23) and using (1.29), we see that the stochastic integral
is a true martingale. This implies

E
[∫ T

0

{
q(Z1

t − Z2
t )2 + r(ut)2

}
dt

]
≥ ηT + V (Z0)− E [V (ZT )] .

Dividing by T and taking the limit, together with (1.28), we have

lim sup
T→∞

1
T
E
[∫ T

0

{
q(Z1

t − Z2
t )2 + r(ut)2

}
dt

]
≥ η.

Hence, we have shown that JOU (u) ≥ η, for any admissible control u. Considering our
feedback control u(Zt) from (1.21), we obtain (1.23) with equality. Therefore, we need to
verify (1.28) and (1.29) to conclude our proof.

To this end, since Z1
t = Y γ

t , we notice that

u(Zt) = δ

(
δ

δ + γ
Y γ
t − Z2

t

)
.

But since dZ2
t = u(Zt)dt, we can solve explicitly and obtain

Z2
T = e−δTxγ0 +

∫ T

0
δe−δ(t−s)

δ

δ + γ
Y γ
s ds.

In what follows, we can assume xγ0 = 0, without loss of generality. We estimate, by

30



Jensen’s inequality,

E
[
(Z2

T )2
]
≤ (1− e−δT )

(
δ

δ + γ

)2 ∫ T

0
δe−δ(T−s)E

[
(Y γ
s )2

]
ds.

Introducing for simplification an absorbing constant C > 0 and using the variance of the
Ornstein-Uhlenbeck process,

E
[
(Y γ
s )2

]
= 1

2γ
(
1− e−2γs

)
,

we get

E
[
(Z2

T )2
]
≤ C

[
1− e−δT

δ
− e−2γT − e−δT

δ − 2γ 1{δ 6=2γ} − e−δTT1{δ=2γ}

]
, (1.30)

and therefore,

lim
T→∞

1
T
E
[
(Z2

T )2
]

= 0. (1.31)

Using (1.31) and (1.26), we obtain (1.28) similarly as for any admissible control u.
To show that (1.29) holds, again assuming without loss of generality xγ0 = 0, we use

(1.30) to show

E
[∫ T

0
(Z2

t )2dt

]
=
∫ T

0
E
[
(Z2

t )2
]
dt

≤ C
∫ T

0

[
1− e−δt

δ
− e−2γt − e−δt

δ − 2γ 1{δ 6=2γ} − e−δtt1{δ=2γ}

]
dt <∞,

for every T > 0. Since we have the same property applying for Z1
t , we can conclude that

(1.29) holds. Hence, for our control u(Zt), we obtain

lim sup
T→∞

1
T
E
[∫ T

0

{
q(Z1

t − Z2
t )2 + ru(Zt)2

}
dt

]
= η.

This completes the proof.

Proof of Proposition 1.2.2. The proof follows the exact same lines as Proposition 1.2.1.
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This requires defining the process Zt ∈ RN+1 as

dZt =


−γ1Z

1
t

...
−γNZNt

ut

 dt+


α1
...
αN

0

 dWt,

Z0 =


0
...
0
xN0

 .

The HJB equation is then modified accordingly and the optimal feedback control is of the
form, for z ∈ RN+1,

u(z) =
N∑
i=1

αi
δ2

δ + γi
zi − δzN+1.

The verification argument can then easily be arranged to accomodate for the target Y N

as it suffices to extract each subcomponent Y γi in the estimates and follow the one di-
mensional case.

1.3.2 Proof of Lemma 1.2.4

Proof of Lemma 1.2.4. For Y γ
t =

∫ t
0 e
−γ(t−s)dWs, we have

E
[
Y γ
t Y

γ̄
t

]
= 1− e−t(γ+γ̄)

γ + γ̄
→ 1

γ + γ̄
, (1.32)

as t→∞.
Next, we recall that ξ̂γt = δ

δ+γY
γ
t . Hence, we have, as t→∞,

E
[
ξ̂γt Y

γ̄
t

]
= δ

δ + γ

1− e−t(γ+γ̄)

γ + γ̄
→ δ

δ + γ

1
γ + γ̄

.

In a similar way, we obtain

E
[
ξ̂γt ξ̂

γ̄
t

]
→ δ

δ + γ

δ

δ + γ̄

1
γ + γ̄

.

Next, using Xγ
t = e−δtxγ0 +

∫ t
0 δe

−δ(t−s)ξ̂γs ds, we consider,

E
[
Xγ
t Y

γ̄
t

]
=
∫ t

0
δe−δ(t−s)E

[
ξ̂γs Y

γ̄
t

]
ds =

∫ t

0
δe−δ(t−s)

δ

δ + γ
E
[
Y γ
s Y

γ̄
t

]
ds,
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where the term involving xγ0 vanishes since Y γ is a centered Gaussian process. We need
to compute, for 0 ≤ s ≤ t,

E
[
Y γ
s Y

γ̄
t

]
= E

[∫ s

0
e−γ(s−v)dWv

∫ s

0
e−γ̄(t−v)dWv

]
= e−γ̄(t−s)E

[
Y γ
s Y

γ̄
s

]
= e−γ̄(t−s)

(
1− e−s(γ+γ̄)

γ + γ̄

)
. (1.33)

Hence, we have,

E
[
Xγ
t Y

γ̄
t

]
= δ2

δ + γ

1
γ + γ̄

∫ t

0
e−(δ+γ̄)(t−s)

{
1− e−s(γ+γ̄)

}
ds

= δ2

δ + γ

1
γ + γ̄

[
1− e−(δ+γ̄)t

δ + γ̄
− e−(δ+γ̄)t

{
e(δ−γ)t − 1
δ − γ

}]
, (1.34)

where the term in brackets needs to be understood in the following sense,{
e(δ−γ)t − 1
δ − γ

}
=
{
e(δ−γ)t − 1
δ − γ

}
1{δ 6=γ} + t1{δ=γ}.

As t→∞, since γ, γ̄ > 0, the limit is

lim
t→∞

E
[
Xγ
t Y

γ̄
t

]
= δ

δ + γ

δ

δ + γ̄

1
γ + γ̄

.

Since ξ̂γ̄t = δ/(δ + γ̄)Y γ̄
t , we have

E
[
Xγ
t ξ̂

γ̄
t

]
= δ

δ + γ̄
E
[
Xγ
t Y

γ̄
t

]
,

and the limit follows from the previous result.
For the last limit, we start by writing

E
[
Xγ
t X

γ̄
t

]
= e−2δt(xγ0)2 + E

[∫ t

0
δe−δ(t−s)ξ̂γs ds

∫ t

0
δe−δ(t−r)ξ̂γ̄r dr

]
= e−2δt(xγ0)2 +

∫ t

0

∫ t

0
δe−δ(t−s)δe−δ(t−r)E

[
ξ̂γs ξ̂

γ̄
r

]
dsdr.

In what follows, we assume xγ0 = 0 for simplicity. Notice that, using (1.33), we have,

E
[
ξ̂γs ξ̂

γ̄
r

]
= δ2

(δ + γ)(δ + γ̄)E
[
Y γ
s Y

γ̄
r

]
=


δ2

(δ+γ)(δ+γ̄)e
−γ̄(r−s)

(
1−e−s(γ+γ̄)

γ+γ̄

)
: r ≥ s

δ2

(δ+γ)(δ+γ̄)e
−γ(s−r)

(
1−e−r(γ+γ̄)

γ+γ̄

)
: r ≤ s

.
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Hence, we separate the expectation computation as follows,

E
[
Xγ
t X

γ̄
t

]
=
∫ t

0

∫ s

0
δe−δ(t−s)δe−δ(t−r)E

[
ξ̂γs ξ̂

γ̄
r

]
drds+

∫ t

0

∫ t

s
δe−δ(t−s)δe−δ(t−r)E

[
ξ̂γs ξ̂

γ̄
r

]
drds

=: P1(t) + P2(t), (1.35)

and we start by computing P1(t). Denoting

d = δ2

(δ + γ)(δ + γ̄) ,

we have

P1(t)
d

=
∫ t

0
δe−δ(t−s)

∫ s

0
δe−δ(t−r)e−γ(s−r)

(
1− e−r(γ+γ̄)

γ + γ̄

)
drds

= δ

γ + γ̄

∫ t

0
δe−δ(t−s)

(
e−δte−γs

[
e(δ+γ)s − 1
δ + γ

]
− e−δte−γs

[
e(δ−γ̄)s − 1
δ − γ̄

])
ds,

where as in (1.34), the second term in square brackets equals s when δ = γ̄. The first part
of P1(t)/d satifies,

δ

γ + γ̄

∫ t

0
δe−δ(t−s)e−δte−γs

[
e(δ+γ)s − 1
δ + γ

]
ds

= δ2

γ + γ̄

1
δ + γ

e−2δt
∫ t

0

{
e2δs − e(δ−γ)s

}
ds

= δ2

γ + γ̄

1
δ + γ

(
1− e−2δt

2δ − e−2δt
[
e(δ−γ)t − 1
δ − γ

])

→ δ2

γ + γ̄

1
δ + γ

1
2δ ,

as t → ∞ and where the fraction in bracket again is to be understood as in (1.34). The
second part of P1(t)/d satisfies,

δ

γ + γ̄

∫ t

0
δe−δ(t−s)e−δte−γs

[
e(δ−γ̄)s − 1
δ − γ̄

]
ds

= δ2

γ + γ̄
e−2δt

∫ t

0
eδse−γs

[
e(δ−γ̄)s − 1
δ − γ̄

]
ds

= δ2

γ + γ̄
e−2δt

( 1
δ − γ̄

[∫ t

0

{
e(2δ−γ−γ̄)s − e(δ−γ)s

}
ds

]
1{δ 6=γ̄} +

[∫ t

0
e(δ−γ)ssds

]
1{δ=γ̄}

)
= δ2

γ + γ̄
e−2δt 1

δ − γ̄

[{
e(2δ−γ−γ̄)t − 1

2δ − γ − γ̄

}
− e(δ−γ)t − 1

δ − γ

]
1{δ 6=γ̄}

+ δ2

γ + γ̄
e−2δt

[
e(δ−γ)t {(δ − γ)t− 1}

(δ − γ)2 + 1
(δ − γ)2

]
1{δ=γ̄}

→ 0,
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as t→∞, and where we used the fact that
∫
eaxxdx = (1/a2)eax(ax− 1), for a ∈ R\{0},

and where the fraction in between the curved brackets in the last equality is again to be
understood in the sense of (1.34). Hence, we have

P1(t)
d
→ 1

2
1

γ + γ̄

δ

δ + γ
.

Using Fubini and by symmetry, we know that the limit for P2(t)/d can be obtained from
the limit of P1(t)/d where we replace γ by γ̄. Indeed, we have

P2(t)
d

=
∫ t

0

∫ t

s
δe−δ(t−s)δe−δ(t−r)e−γ̄(r−s)

(
1− e−s(γ+γ̄)

γ + γ̄

)
drds

=
∫ t

0
δe−δ(t−r)

∫ r

0
δe−δ(t−s)e−γ̄(r−s)

(
1− e−s(γ+γ̄)

γ + γ̄

)
dsdr,

which is P1(t)/d with γ̄ instead of γ. It follows that

P1(t)
d
→ 1

2
1

γ + γ̄

δ

δ + γ̄
,

and therefore,

lim
t→∞

E
[
Xγ
t X

γ̄
t

]
= lim

t→∞
P1(t) + P2(t) = δ2

(δ + γ)(δ + γ̄)
1

γ + γ̄

δ

2

( 1
δ + γ̄

+ 1
δ + γ

)
.

1.3.3 Proof of Proposition 1.2.7

Proof of Proposition 1.2.7. We start the proof by recalling that by Remark 1.2.6, we can
write the optimal trading rate with the signal process as,

ut = δ(ξ̂t −Xt).

Solving for Xt, given X0 = x0, we obtain

Xt = e−δtx0 +
∫ t

0
δe−δ(t−s)ξ̂sds = e−δtx0 +

∫ ∞
0

∫ t

0
δe−δ(t−s)ξ̂γs ds µ(dγ),

Notice that Xt is a Gaussian process with vanishing mean and ξ̂t does not depend on x0.
Hence, we can assume for the objective computation, without loss of generality and for
simplicity, x0 = 0. We can then write

Xt =
∫ ∞

0
Xγ
t µ(dγ),

ut =
∫ ∞

0
uγt µ(dγ).

with xγ0 = 0.
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For simplicity, in what follows, we write u instead of û and we call deviation the process
Xt − WH

t . Computing the minimised objective amounts to computing the stationary
variance of both Gaussian processes Xt − WH

t and ξ̂ − Xt. Hence, we first compute
separately

lim
t→∞

E
[
(Xt −WH

t )2
]
, lim

t→∞
E
[
(ξ̂t −Xt)2

]
.

Starting with the deviation, we use the integral representations to rewrite

E
[
(Xt −WH

t )2
]

=
∫ ∞

0

∫ ∞
0

E
[
(Xγ

t − Y
γ
t )(X γ̄

t − Y
γ̄
t )
]
µ(dγ)µ(dγ̄).

Hence, using the limits as t → ∞ of E
[
Xγ
t X

γ̄
t

]
,E
[
Xγ
t Y

γ̄
t

]
,E
[
X γ̄
t Y

γ
t

]
,E
[
Y γ̄
t Y

γ
t

]
, from

Lemma 1.2.4 together with a monotone convergence argument, we obtain,

lim
t→∞

E
[
(Xt −WH

t )2
]

=
∫ ∞

0

∫ ∞
0

[
δ2

(δ + γ)(δ + γ̄)
1

γ + γ̄

δ

2

( 1
δ + γ

+ 1
δ + γ̄

)

− 2
γ + γ̄

δ2

(δ + γ)(δ + γ̄) + 1
γ + γ̄

]
µ(dγ)µ(dγ̄).

Denoting

d = 1
γ + γ̄

1
2

1
(δ + γ)2(δ + γ̄)2 ,

the expression in brackets, can be rewritten as

d
{
δ3(γ + γ̄) + 2δ2(γ̄ + γ)2 + 4δ(γγ̄2 + γ2γ̄) + 2γ2γ̄2

}
=: d {P1 + P2 + P3 + P4} .

Computing now each integrals separately, we have for the first part,∫ ∞
0

∫ ∞
0

d(P1)µ(dγ)µ(dγ̄) = δ3

2

∫ ∞
0

∫ ∞
0

1
(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

2Γ(H + 1/2)2Γ(1/2−H)2

∫ ∞
0

∫ ∞
0

1
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
8(1 + 2H)2π2 sec(πH)2,

where sec(x) = 1/ cos(x). The details for the last equality are described in the section
1.3.4. The formulas obtained for the upcoming double integrals involving P2, P3, P4 and
laterQ1, Q2 are obtained through similar computations as for P1 and are therefore omitted.
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For the second part, we have∫ ∞
0

∫ ∞
0

d(P2)µ(dγ)µ(dγ̄) = δ2
∫ ∞

0

∫ ∞
0

γ + γ̄

(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2

∫ ∞
0

∫ ∞
0

γ + γ̄

(1 + γ)2(1 + γ̄)2γ
−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
2(1− 4H2)π2 sec(πH)2.

For the third part, we compute,∫ ∞
0

∫ ∞
0

d(P3)µ(dγ)µ(dγ̄) = 2δ
∫ ∞

0

∫ ∞
0

(γγ̄2 + γ2γ̄)
γ + γ̄

1
(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2

∫ ∞
0

∫ ∞
0

(γγ̄2 + γ2γ̄)
γ + γ̄

2
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
2(1− 2H)2π2 sec(πH)2.

The fourth part is computed as,∫ ∞
0

∫ ∞
0

d(P4)µ(dγ)µ(dγ̄) =
∫ ∞

0

∫ ∞
0

γ2γ̄2

γ + γ̄

1
(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2

∫ ∞
0

∫ ∞
0

γ2γ̄2

γ + γ̄

1
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
8 {−5− 4(H − 2)H + 4(1−H) csc(πH)}π2 sec(πH)2,

where csc(x) = 1/ sin(x). Summing up the four parts and simplfying, we obtain,

lim
t→∞

E
[
(Xt −WH

t )2
]

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
2(1−H) {1 + csc(πH)}π2 sec(πH)2.

We follow a similar approach for the optimal rate. We have,

E
[
(ut)2

]
= δ2

∫ ∞
0

∫ ∞
0

E
[
(ξ̂γt −X

γ
t )(ξ̂γ̄t −X

γ̄
t )
]
µ(dγ)µ(dγ̄),

and using Lemma 1.2.4 results together with the monotone convergence argument allows
us to write

lim
t→∞

E
[
(ut)2

]
= δ2

∫ ∞
0

∫ ∞
0

[
δ

δ + γ

δ

δ + γ̄

1
γ + γ̄

− δ

δ + γ

(
δ

δ + γ̄

)2 1
γ + γ̄

− δ

δ + γ̄

(
δ

δ + γ

)2 1
γ + γ̄

+ δ2

(δ + γ)(δ + γ̄)
1

γ + γ̄

δ

2

( 1
δ + γ

+ 1
δ + γ̄

)]
µ(dγ)µ(dγ̄).
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The expression in bracket can be rewritten as,

d
[
2δ2γγ̄ + δ3(γ + γ̄)

]
=: d [Q1 +Q2] ,

which again, allows us to compute each integrals separately. For the first part, we have,∫ ∞
0

∫ ∞
0

d(Q1)µ(dγ)µ(dγ̄) = δ2
∫ ∞

0

∫ ∞
0

γγ̄

γ + γ̄

1
(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2

∫ ∞
0

∫ ∞
0

γγ̄

γ + γ̄

1
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
8
(
4H csc(πH)− 4H2 − 1

)
π2 sec(πH)2.

For the second part, we have,∫ ∞
0

∫ ∞
0

d(Q2)µ(dγ)µ(dγ̄) = δ3

2

∫ ∞
0

∫ ∞
0

1
(δ + γ)2(δ + γ̄)2µ(dγ)µ(dγ̄)

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
2

∫ ∞
0

∫ ∞
0

1
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= δ−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
8(1 + 2H)2π2 sec(πH)2.

Summing up the two parts, we obtain,

lim
t→∞

E
[
(ut)2

]
= δ2−2H

Γ(H + 1/2)2Γ(1/2−H)2
1
2H {1 + csc(πH)}π2 sec(πH)2.

Therefore, using δ =
√
q/r, the minimised objective value is given by

J(u; 1) = q lim
t→∞

E
[
(Xt −WH

t )2
]

+ r lim
t→∞

E
[
(ut)2

]
= qδ−2H

Γ(H + 1/2)2Γ(1/2−H)2

{1 + csc(πH)
2

}
π2 sec(πH)2

= qδ−2H 1
2 {1 + csc(πH)}

where the last equality follows from the identity

Γ(z)Γ(1− z) = π

sin(πz) , z /∈ Z,

and the identity sin(x+ π/2) = cos(x).
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1.3.4 Additional details for the Proof of Proposition 1.2.7

We now provide the details for the following equality found in the proof of Proposition
1.2.7,

1
2

∫ ∞
0

∫ ∞
0

1
(1 + γ)2(1 + γ̄)2γ

−H−1/2γ̄−H−1/2dγdγ̄

= 1
8(1 + 2H)2π2 sec(πH)2.

Since this double integral is simply the product of two integrals, we need to show∫ ∞
0

1
(1 + γ)2γ

−H−1/2dγ = 1
4(1 + 2H)2π2 sec(πH)2.

In the other cases where a double integral involves a non-separable integrand, we obtain
similar formulas by integrating with respect to one variable after another while keeping
the same methodology presented for this case. We therefore omit to present these com-
putations.

We denote by 2F1(a, b, c, x) the hypergeometric function satisfying for a ∈ R and
c > b > 0,

2F1(a, b, c, x) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tx)a dt, |x| < 1,

and

∂2F1(a, b, c, x)
∂x

(a, b, c, x) = ab

c
2F1(a+ 1, b+ 1, c+ 1, x).

In that case, we have the following expression for the indefinite integral, up to an additive
constant,

∫ 1
(1 + γ)2γ

−H−1/2dγ = − 2
3 + 2H

( 1
1 + γ

) 3
2 +H

2F1

(1
2 +H,

3
2 +H,

5
2 +H,

1
1 + γ

)
=: g(γ).

We have

2F1

(1
2 +H,

3
2 +H,

5
2 +H,

1
1 + γ

)
=

Γ
(

5
2 +H

)
Γ
(

3
2 +H

)
Γ(1)

∫ 1

0
tH+1/2

(
1− t

1 + γ

)−1/2−H
dt
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so clearly g(γ)→ 0 as γ →∞. It follows,∫ ∞
0

1
(1 + γ)2γ

−H−1/2dγ = −g(0)

= 2
3 + 2H 2F1

(1
2 +H,

3
2 +H,

5
2 +H, 1

)

= 2
3 + 2H

Γ
(

5
2 +H

)
Γ
(

3
2 +H

) ∫ 1

0
tH+1/2(1− t)−1/2−Hdt

= 2
3 + 2H

Γ
(

5
2 +H

)
Γ
(

3
2 +H

)β(H + 3/2, 1/2−H),

where β(a, b) denotes the Beta function, i.e., for a, b > 0,

β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt =

∫ ∞
0

ta−1(1 + t)−a−bdt

and it satisfies in particular,

β(a+ 1, b) = β(a, b) a

a+ b

β(a, 1− a) = π

sin(πa) . (1.36)

Using the above identities for the Beta function, we obtain

β(H + 3/2, 1/2−H) = β(H + 1/2, 1/2−H)(H + 1/2)

= π

sin(πH + π/2) (H + 1/2)

= π

cos(πH)
1
2 (1 + 2H)

= 1
2(1 + 2H)π sec(πH),

where we recall sec(x) = 1/ cos(x). Hence, we have

∫ ∞
0

1
(1 + γ)2γ

−H−1/2dγ = 2
3 + 2H

Γ
(

5
2 +H

)
Γ
(

3
2 +H

) 1
2(1 + 2H)π sec(πH)

= 1
2(1 + 2H)π sec(πH),

where we used the property Γ(z + 1) = zΓ(z).

1.3.5 Additional details for the Proof of Corollary 1.2.10

Next, to complete the proof of Corollary 1.2.10, we want to show that

{Γ(H + 1/2)
cH

}2 q

δ2H
1
2 {1 + csc(πH)} = q

δ2H Γ(2H + 1)
{1 + sin(πH)

2

}
,
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or equivalently

{Γ(H + 1/2)
cH

}2 1
sin(πH) = Γ(2H + 1), (1.37)

where we recall

c2
H = 1

2H +
∫ ∞

0

{
(1 + u)H−1/2 − uH−1/2

}2
du.

We start by rewriting∫ ∞
0

{
(1 + u)H−1/2 − uH−1/2

}2
du

=
∫ ∞

0

{
(1 + u)2H−1 − 2(1 + u)H−1/2uH−1/2 + u2H−1

}
du

=
∫ ∞

0
(1 + u)2H−1du−

∫ ∞
0

u2H−1du+
∫ ∞

0

{
2u2H−1 − 2(1 + u)H−1/2uH−1/2

}
du

= − 1
2H + 2

∫ ∞
0

uH−1/2
{
uH−1/2 − (1 + u)H−1/2

}
du.

Hence, we have

c2
H = 2

∫ ∞
0

uH−1/2
{
uH−1/2 − (1 + u)H−1/2

}
du

= 21−4H
∫ ∞

0
t−H(1 + t)−1−Hdt

= 21−4Hβ(1−H, 2H)

= 21−4H Γ(1−H)Γ(2H)
Γ(H + 1) ,

where the second equality is obtained by a change of variable and the last equality follows
from

β(a, b) = Γ(a)Γ(b)
Γ(a+ b) .

Using the identity

Γ(z)Γ(z + 1/2) = 21−2z√πΓ(2z),

first with z = H + 1/2 and then with z = H, we obtain

c2
H = 21−2HΓ(H + 1/2)Γ(1−H)Γ(2H)

Γ(2H + 1)
√
π

= Γ(H + 1/2)2Γ(1−H)Γ(H)
Γ(2H + 1)π .
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Next we use identity (1.36),

π

sin(πH) = Γ(H)Γ(1−H),

to obtain

c2
H = Γ(H + 1/2)2

Γ(2H + 1)
1

sin(πH) ,

which is exactly (1.37).
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Chapter 2

Small-cost Expansion for Tracking
Problems of Rough Targets

This chapter is based on joint work with Dr. Christoph Czichowsky and Prof. Johannes
Muhle-Karbe.

2.1 Framework and statement

In this section, we consider a probability space (Ω,F ,P) with a fractional Brownian motion
(fBM) (BH

t )0≤t≤T and we denote by F = (Ft)0≤t≤T the completed filtration it generates.
We then consider the finite horizon linear-quadratic tracking problem of a rough target ξ
that is given by ξt = f(BH

t ) for f : R→ R, f ∈ C2(R). The objective is given by

JT (u) := E
[∫ T

0

{
νs(Xu

s − ξs)2 + λκs(us)2
}
ds

]
, (2.1)

for the regular control

Xu
t = x+

∫ t

0
usds,

starting at x > 0 and cost coefficients ν = (νt)0≤t≤T and κ = (κt)0≤t≤T given by positive
adapted processes that will be specified later. The tracking problem then consists of
minimising

min
u∈A

JT (u), (2.2)

over the set A of admissible regular controls, that is, F-adapted processes u = (ut)0≤t≤T

such that Xu
t = x+

∫ t
0 usds is well defined for 0 ≤ t ≤ T and JT (u) <∞.

In general, finding an explicit solution to (2.2) is not possible for random costs coeffi-
cients. Indeed, if a solution exists, it is generally given in terms of solutions to BSDEs as
in Kohlmann and Tang (2002) in a semimartingale setup.
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Motivated by the portfolio optimisation problem with small transactions costs intro-
duced in the Introduction, we consider the small cost limit of the tracking problem (2.2),
as λ → 0. Our aim is then to derive the leading order expansion of the objective (2.1)
as well as asymptotically optimal trading rates ûa that attain the leading order in the
asymptotic expansion, but are more explicit than the true solution.

Heuristic Argument

Let us assume for this discussion that the optimal trading rate for Problem (2.2) exists
and denote it by ûλ. Then, it is clear that the optimised objective JT (ûλ)→ 0 as λ→ 0.

Since we here consider a rough target depending on a fBM, we expect the leading
order of the minimised objective to be linked via a rescaling of space and time to the
self-similarity property of fBM. This together with the structure of our problem in terms
of cost and control suggests that the leading order should be λH .

It is known that leading order coefficients for such tracking problems are linked to
ergodic control problem of the underlying driving noise, see for example ergodic control
problems of BM in Cai et al. (2017a).

In order to derive the leading order coefficient, the first difficulty that arises comes
from the fact that fBM is not a semimartingale and tools from stochastic calculus, such
as Itô’s formula, are not available. However, because we do a rescaling in space and time,
it will turn out that an application of the classical Taylor expansion of our rough target
in place of applying Itô formula will be sufficient. More precisely, for 0 < t < s, with
|t− s| < δ, we have

f(BH
s ) = f(BH

t ) + f ′(BH
u(t,s))(B

H
s −BH

t ), (2.3)

for u(t, s) ∈ [t, s] by continuity of the paths of fBM. Moreover independence of increments
in the classical case is here replaced by the mixing property of increments of fBM. This
together with the heuristic approach to derive the leading order coefficient exposed in Cai
et al. (2017a) can be made precise to provide an expression for the leading order and its
full proof in the case where the cost coefficients are constant νt ≡ ν and κt ≡ κ.

In particular, the constant cost coefficient case has an explicit solution that allows
straightforward computations, see Bank et al. (2017). In the case of random coefficients,
the solutions are expressed in terms of BSDEs. We therefore first establish the convergence
of the rescaled key BSDE solution. This key BSDE solution describes the urgency for
reverting towards some signal process. Then, we express the minimised objective as follows,

JT (ûλ) = λHE
[∫ T

0

(
νt
{
λ−H/2(X̂λ

t − ξt)
}2

+ κt
{
λ(1−H)/2ûλt

}2
)
dt

]
.

and show that the rescaled processes, λ−H/2(X̂λ
t − ξt) and λ(1−H)/2ûλt converge to sta-

tionary processes linked to the ergodic control problem of fBM. This derivation relies on
the above Taylor expansion and also requires us to first characterise the behavior of the
solutions X̂λ, ûλ with our characterisation of the key BSDE as λ→ 0.

44



Assumptions

For completeness, we recall important facts from Nourdin (2012) that will justify our
assumptions.

Theorem 2.1.1 (Theorem 4.2 in Nourdin (2012)). Let X = (Xt)t∈[0,T ] be a centered and
continuous Gaussian process. Set σ2 = supt∈[0,T ] Var(Xt). Then, m := E

[
supu∈[0,T ]Xu

]
is finite and we have, for all x > m,

P
(

sup
u∈[0,T ]

Xu ≥ x
)
≤ e−

(x−m)2

2σ2 .

For a Gaussian process satisfying X d= −X, we have

P
(

sup
u∈[0,T ]

|Xu| ≥ x
)
≤ P

(
sup

u∈[0,T ]
Xu ≥ x

)
+ P

(
sup

u∈[0,T ]
−Xu ≥ x

)

= 2P
(

sup
u∈[0,T ]

Xu ≥ x
)
.

Since for a nonnegative random variable Z, we have

E [|Z|p] =
∫ ∞

0
ptp−1P (Z > t) dt, (2.4)

it follows that supt∈[0,T ] |Xu| has all moments for p ≥ 1. Moreover, (2.4) also implies that
supu∈[0,T ] |Xu| has all exponential moments, i.e, for all θ ∈ R,

E
[
eθ supu∈[0,T ]|Xu|

]
<∞.

In our application framework in Chapter 3, the targets we consider are of the form
ξt = ηebXt , η > 0, b ∈ R, for X either a fBM, a RLfBM or a fOU. These processes all
satisfy the assumption of Theorem 2.1.1. Moreover, the positive cost coefficients νt, κt for
the control problem and their inverses 1/νt, 1/κt, are all of the same form as ξt. Hence,
for a process of the form of ξt, we have

E
[∣∣∣∣∣ sup
t∈[0,T ]

ξt

∣∣∣∣∣
p]
≤ ηpE

[
ebp supt∈[0,T ]|Xt|

]
<∞, ∀p ≥ 1.

This justifies the following assumptions we will work with for our main result. These
assumptions are satisfied in our application.
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Assumption 2.1.2. We have f ∈ C2(R), νt, κt > 0 for all t ∈ [0, T ] and for all p ≥ 1,

sup
t∈[0,T ]

f(BH
t ) ∈ Lp(P), sup

t∈[0,T ]
f ′(BH

t ) ∈ Lp(P)

sup
t∈[0,T ]

νt ∈ Lp(P), sup
t∈[0,T ]

1
νt
∈ Lp(P)

sup
t∈[0,T ]

κt ∈ Lp(P), sup
t∈[0,T ]

1
κt
∈ Lp(P).

Main Result

Theorem 2.1.3. Under the Assumptions 2.1.2, we have the following small cost leading
order expansion of JT (ûλ) for the target ξt = f(BH

t ) :

JT (ûλ) = E
[∫ T

0
νt(X̂λ

t − ξt)2dt+ λ

∫ T

0
κt(ûλt )2dt

]

= λH
∫ T

0
E
[
I(f ′(Bt), νt, κt)

]
dt+ o(λH), (2.5)

where for α ∈ R and ν, κ > 0,

I(α, ν, κ) = inf
u∈A

lim sup
T→∞

1
T
E
[∫ T

0
ν(Xt − αBH

t )2dt+ κ(ut)2dt

]
=: inf

u∈A
J(u, α)

= α2 q

δ2H Γ(2H + 1)
{1 + sin(πH)

2

}
, δ =

√
ν

κ
,

corresponds to the minimised objective of the linear-quadratic ergodic control of fBM over
the set of adapted controls (ut)t≥0 such that Xt = x+

∫ t
0 usds, and J(u, α) <∞ as studied

in Chapter 1.
Moreover, an asymptotically optimal strategy, denoted ûat , which attains the leading

order in (2.5) is given by

ξ̂at := f(BH
t ) + f ′(BH

t )E

∫ T

t

√
νt
κt

1√
λ
e
−
√

νt
κt

1√
λ

(u−t) (
BH
u −BH

t

)
du

∣∣∣∣Ft
 ,

ûat :=
√
νt
κt

1√
λ

(
ξ̂at − X̂a

t

)
,

X̂a
t := x+

∫ t

0
ûasds.

In Chapter 3, we provide interpretation for the formulas of the leading order coefficient
obtained in Theorem 2.1.3 and we also simulate realisations of the asymptotically optimal
signal process ξ̂a.
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2.2 Proof of Theorem 2.1.3

Throughout this proof, we separate for λ small enough, the interval [0, T ] into intervals
[0, λa] ∪ [λa, T − λa] ∪ [T − λa, T ], where a > 0 satisfies,

0 < max
{
H,

1−H
2

}
< a <

1
2 . (2.6)

In particular, we have λa−1/2 → ∞ as λ → 0. We sometimes also denote η(λ) = T − λa.
We essentially show that the main statement holds on the interval [λa, T − λa] and that
the remaining intervals have effect of order o(λH).

2.2.1 BSDE solution

Under our Assumptions 2.1.2, we have by Corollary 1 in Kruse and Popier (2016) that a
solution to the BSDE (2.8) below exists. Then, by the verification argument of Theorem
3.4 in Bank and Voß (2018), we have the existence of a solution to the control problem
(2.2) and its optimal solution is described by

dX̂λ
t = ûλt dt

ûλt = cλt
λκt

(
ξ̂λt − X̂λ

t

)
, (2.7)

where cλt is given by the BSDE

dcλt =
{

(cλt )2

λκt
− νt

}
dt− dNλ

t , 0 ≤ t < T, cλT = 0, (2.8)

for Nλ a martingale, or in its conditional form,

cλt = E
[∫ T

t
e−
∫ s
t

cλr
λκr

drνs ds

∣∣∣∣Ft
]
, 0 ≤ t < T. (2.9)

The signal process ξ̂λ = (ξ̂λt )0≤t≤T is given by the form

ξ̂λt = 1
cλt

E
[∫ T

t
e−
∫ s
t

cλr
λκr

drνsξs ds

∣∣∣∣Ft
]
, 0 ≤ t < T.

We notice from (2.7) that the optimal rate of trading is described by a reversion towards
a process ξ̂λ. The signal process ξ̂λ weights in future values of the target. This permits to
take advantage of any autocorrelation of the target as in the case of the linear-quadratic
ergodic control of fBM problem in Chapter 1.

Moreover, we see that the process cλ provides the urgency at which the reversion
towards the signal needs to happen. In particular, we notice it appears on both side of
(2.9) making it harder to study. Therefore, characterising the behavior of cλ as λ→ 0 will
be of crucial importance for our work.
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We can derive the above BSDE by considering the value function of the problem (2.2)

ess inf
ũ∈C(u,t)

Jt(ũ) := ess inf
ũ∈C(u,t)

E
[∫ T

t

{
(X ũ

s − ξs)2νs + λκs(ũs)2
}
ds

∣∣∣∣Ft
]
,

for C(u, t) being the set of admissible strategies starting at time t for the initial the position
Xu
t . In particular, it can be shown that the value function is of the form

Jt(u) = αt(Xu
t )2 − 2βtXu

t + γt.

This together with the martingale optimality principle imply that α, β, γ satisfy the fol-
lowing BSDEs,

dαt =
{

(αλt )2

λκt
− νt

}
dt− dNα

t , αλT = 0,

dβt =
{
αt
λkt

βt − ξtνt
}
dt− dNβ

t , βT = 0, (2.10)

dγt =
{
β2
t

λκt
− ξ2

t νt

}
dt− dNγ

t , γT = 0,

where Nα, Nβ, Nη are martingales and the terminal conditions encode the terminal con-
straint. We realise that α ≡ cλ as above and that

βt = E
[∫ T

t
e−
∫ s
t

αr
λκr

drνsξs ds

∣∣∣∣Ft
]

= ξ̂λt c
λ
t .

We can therefore also rewrite the value function as

Jt(u) = cλt

(
Xu
t − ξ̂λt

)2
+ rt, (2.11)

rt = γt − cλt (ξ̂λt )2.

We now study the behavior of the BSDE solution cλt as λ→ 0. Some of the results pro-
vided below are given in terms of assumptions that are always implied by our Assumptions
2.1.2. In what follows, we sometimes write ‖·‖p short for ‖·‖Lp(P).

Proposition 2.2.1. Suppose that ν = (νt)t∈[0,T ] and κ = (κt)t∈[0,T ] are continuous,
νt, κt > 0 for t ∈ [0, T ] and sup0≤t≤T

√
νtκt is in Lp(P) for some p > 1. Let (cλt , Nλ

t )t∈[0,T ]
be, as in Bank and Voß (2018), the solution to the BSDE

dcλt =
{

(cλt )2

λκt
− νt

}
dt− dNλ

t , cλT = 0, (2.12)

given by

cλt = E
[∫ T

t
e−
∫ s
t

cλr
λκr

drνs ds

∣∣∣∣Ft
]
. (2.13)
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Then,

sup
0≤t≤η(λ)

∣∣∣∣∣ cλt√λ −√νtκt
∣∣∣∣∣→ 0, as λ→ 0,

P-a.s. and in Lp(P).

For the proof of Proposition 2.2.1, we consider first the following intermediary result.
We know from our previous discussion that, for C(u, t) being the set of admissible strategies
starting at time t for the initial position Xu

t ,

ess inf
ũ∈C(u,t)

Jt(ũ) := ess inf
ũ∈C(u,t)

E
[∫ T

t

{
(X ũ

s − ξs)2νs + λκs(ũs)2
}
ds

∣∣∣∣Ft
]

= cλt (Xu
t − ξ̂λt )2 + rt,

where cλ satisfies the BSDE (2.12) and ξ̂λ and r are as in (2.11). In particular, when
(ξv)v∈[t,T ] ≡ 1, we have ξ̂λ ≡ 1. Moreover in the notation from equations (2.10) we have,
when ξ ≡ 1, βt ≡ αt ≡ γt and therefore,

rt = γt − cλt = 0.

It follows that we can write

(Xu
t − 1)2cλt = ess inf

ũ∈C(u,t)
Jt(ũ).

Choosing the initial position Xu
t = 0, we obtain the following representation of cλ as

cλt = ess inf
ũ∈C(u,t),Xu

t =0
E
[∫ T

t

{
(X ũ

s − 1)2νs + λκs(ũs)2
}
ds

∣∣∣∣Ft
]
. (2.14)

Note that representation (2.14) is independent of the target ξt and has been proved in
similar contexts, see for example Theorem 1.3 in Ankirchner et al. (2014). In what follows,
we use Jt(ũ) to denote the conditional expectation in (2.14). We prove Proposition 2.2.1
in several steps involving the following lemmas.

Lemma 2.2.2. Let (cλt )0≤t≤T be as in (2.14) and consider

ũλs = 1√
λ

√
νs
κs

exp
(
− 1√

λ

∫ s

t

√
νr
κr
dr

)
,

for s ≥ t. Then, X ũ
s =

∫ s
t ũ

λ
vdv = 1− exp

{
−(1/

√
λ)
∫ s
t

√
νr/κrdr

}
,

cλt√
λ
≤ Jt(ũλ)√

λ
:= E

[∫ T

t
exp

(
− 2√

λ

∫ s

t

√
νr
κr
dr

) 2√
λ

√
νs
κs

√
νsκsds

∣∣∣∣Ft
]
. (2.15)

Proof. By the fact that (ũλs )t≤s≤T is an admissible strategy in (2.14), we immediately
obtain (2.15).
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Lemma 2.2.3. Under the assumptions of Proposition 2.2.1, we have, for p > 1, for all
η(λ) ∈ (0, T ) such that η(λ)→ T and T−η(λ)√

λ
→∞, as λ→ 0, that

sup
s∈[t,η(λ)]

∣∣∣∣∣
∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu−

√
νsκs

∣∣∣∣∣→ 0,

P-a.s. and in Lp(P), as λ→ 0, and for ũλ from Lemma 2.2.2,

w̃
(
η(λ), λ

)
:= sup

r∈[t,η(λ)]

∣∣∣∣∣Jr(ũλ)√
λ
−
√
νrκr

∣∣∣∣∣→ 0,

P-a.s. and in Lp(P), as λ→ 0.

Proof. Fix ε > 0 and choose δ ∈ (0, T − t) such that
∣∣√νuκu −√νsκs∣∣ < ε, for all

u, s ∈ [t, T ] with |u− s| < δ. Then, writing √νuκu = √νuκu−
√
νsκs +√νsκs, we obtain,

for s ∈ [t, η(λ)],∣∣∣∣∣
∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu−

√
νsκs

∣∣∣∣∣
≤
∫ (s+δ)∧T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu
|
√
νuκu −

√
νsκs| du

+ 2 sup
u∈[t,T ]

|
√
νuκu|

∫ T

(s+δ)∧T
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu
du

+
√
νsκs

∣∣∣∣∣
∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu
du− 1

∣∣∣∣∣
≤ ε+ 2 sup

u∈[t,T ]
|
√
νuκu| exp

(
− 2√

λ

∫ (s+δ)∧T

s

√
νr
κr
dr

){
1− exp

(
− 2√

λ

∫ T

(s+δ)∧T

√
νr
κr
dr

)}

+
√
νsκs exp

(
− 2√

λ

∫ T

s

√
νr
κr
dr

)
, (2.16)

where the last inequality follows by simply integrating each du integral. Because t 7→√
νt/κt > 0 and is continuous, we have that

exp
(
− 2√

λ

∫ (s+δ)∧T

s

√
νr
κr
dr

)
≤ exp

(
− 2√

λ

{(
T − η(λ)

)
∧ δ
}

inf
u∈[t,T ]

√
νu
κu

)
,

and

exp
(
− 2√

λ

∫ T

s

√
νr
κr
dr

)
≤ exp

(
− 2√

λ
{T − η(λ)} inf

u∈[t,T ]

√
νu
κu

)
,

for all s ∈ [t, η(λ)]. Therefore, the right hand side of (2.16) is smaller than 2ε for all
s ∈ [t, η(λ)], when λ is sufficiently small. This implies that

sup
s∈[t,η(λ)]

∣∣∣∣∣
∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu−

√
νsκs

∣∣∣∣∣ P−a.s.→ 0, (2.17)
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as λ→ 0.
Because∣∣∣∣∣

∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu

∣∣∣∣∣ ≤ sup
s∈[t,T ]

√
νsκs ∈ Lp(P),

we obtain by Lebesgue’s dominated convergence theorem that the convergence in (2.17)
as λ→ 0 also holds in Lp(P).

Defining for v ∈ [t, T ],

Mλ
v = E

[
sup

s∈[t,η(λ)]

∣∣∣∣∣
∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu−

√
νsκs

∣∣∣∣∣
∣∣∣∣Fv

]
,

we can apply Doob’s maximal inequality as in Proposition 7.16 in Kallenberg (2006) and
use the convergence (2.17) in Lp(P) to obtain

sup
v∈[t,T ]

∣∣∣Mλ
v

∣∣∣→ 0,

in Lp(P), as λ→ 0. Because for ũλ from Lemma 2.2.2 we have,

Js(ũλ)√
λ

= E
[∫ T

s
exp

(
− 2√

λ

∫ u

s

√
νr
κr
dr

) 2√
λ

√
νu
κu

√
νuκudu

∣∣∣∣Fs
]
,

this implies

w̃
(
η(λ), λ

)
= sup

s∈[t,η(λ)]

∣∣∣∣∣Js(ũλ)√
λ
−
√
νsκs

∣∣∣∣∣→ 0

P-a.s. and in Lp(P), as λ→ 0.

Combining Lemmas 2.2.2 and 2.2.3, we already have

lim sup
λ→0

cλt√
λ
≤ lim sup

λ→0

Jt(ũλ)√
λ

=
√
νtκt,

in Lp(P) and P-a.s. We next consider lim infλ→0 c
λ
t /
√
λ.

Lemma 2.2.4. Under the assumptions of Proposition 2.2.1, fix any η(λ) ∈ (0, T ) such
that η(λ)→ T and T−η(λ)√

λ
→∞, as λ→ 0. Define η̃(λ) = T − T−η(λ)

2 ∈ (0, T ) and

J̃t
(
η(λ), λ) := E

[∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr

{√
νrκr + w̃

(
η̃(λ), λ

)}
dr

)
νsds

∣∣∣∣Ft
]
. (2.18)

Then, we have that η̃(λ)→ T and η̃(λ)−η(λ)√
λ

→∞, as λ→ 0, and

cλt√
λ
≥
J̃t
(
η(λ), λ)
√
λ
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and

sup
r∈[t,η(λ)]

∣∣∣∣∣ J̃r(η(λ), λ)√
λ

−
√
νrκr

∣∣∣∣∣→ 0,

P-a.s. and in Lp(P), for p > 1, as λ→ 0.

Proof. Using the expression (2.13) of cλ, we have

cλt√
λ

= E
[∫ T

t
exp

(
−
∫ s

t

cλr
λκr

dr

)
νs√
λ
ds

∣∣∣∣Ft
]

≥ E
[∫ T

t
exp

(
−
∫ s

t

Jr(ũλ)
λκr

dr

)
νs√
λ
ds

∣∣∣∣Ft
]

≥ E
[∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr
{
√
νrκr + w̃(η̃(λ), λ)} dr

)
νs√
λ
ds

∣∣∣∣Ft
]
,

= J̃t(η(λ), λ)√
λ

,

where the first inequality follows from Lemma 2.2.2, the second inequality follows from
Lemma 2.2.3 and η̃(λ) < T .

Proceeding now as in the proof of Lemma 2.2.3, we first show that

sup
0≤t≤η(λ)

∣∣∣∣∣
∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr
{
√
νrκr + w̃(η̃(λ), λ)} dr

)
νs√
λ
ds−

√
νtκt

∣∣∣∣∣→ 0, (2.19)

P-a.s. as λ→ 0. Indeed, by writing∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr
{
√
νrκr + w̃(η̃(λ), λ)} dr

)
νs√
λ
ds

=
∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr
{
√
νrκr + w̃(η̃(λ), λ)} dr

)
·
(√

νsκs + w̃(η̃(λ), λ)√
λκs

)
νsκs√

νsκs + w̃(η̃(λ), λ)ds,

we observe that the mollifier

exp
(
− 2√

λ

∫ s

t

√
νr
κr
dr

) 2√
λ

√
νs
κs

simply needs to be replaced by the mollifier

exp
(
− 1√

λ

∫ s

t

√
νrκr + w̃(η̃(λ), λ)

κr
dr

) 1√
λ

√
νsκs + w̃(η̃(λ), λ)

κs
,
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and the same type of estimates as in (2.16) carry over. We still have

exp
(
− 1√

λ

∫ (s+δ)∧η̃(λ)

s

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)

≤ exp
(
−{η̃(λ)− η(λ)} ∧ δ√

λ
inf

u∈[0,T ]

√
νu
κu

)
,

and

exp
(
− 1√

λ

∫ η̃(λ)

s

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)
≤ exp

(
− η̃(λ)− η(λ)√

λ
inf

u∈[0,T ]

√
νu
κu

)
,

holds for all s ∈ [0, η(λ)]. Therefore, we obtain (2.19) as in (2.17). Moreover, by combining

sup
0≤t≤η(λ)

∣∣∣∣∣
∫ η̃(λ)

t
exp

(
− 1√

λ

∫ s

t

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)
νs√
λ
ds

∣∣∣∣∣
≤ sup

0≤t≤η(λ)

∣∣∣∣∣
∫ η̃(λ)

t
exp

(
− 1√

λ

∫ s

t

√
νrκr
κr

dr

) 1√
λ

κs√
νsκs

√
νsκsds

∣∣∣∣∣
≤ sup

0≤t≤T
|
√
νtκt| ∈ Lp(P)

together with (2.19), we have by Lebesgue’s dominated convergence theorem that

sup
s∈[0,η(λ)]

∣∣∣∣∣
∫ η̃(λ)

s
exp

(
− 1√

λ

∫ u

s

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)
νs√
λ
ds−

√
νsκs

∣∣∣∣∣→ 0,

in Lp(P), as λ→ 0. By Doob’s maximal inequality, this also implies that for

Yv :=

E
[

sup
s∈[0,η(λ)]

∣∣∣∣∣
∫ η̃(λ)

s
exp

(
− 1√

λ

∫ u

s

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)
νu√
λ
ds−

√
νsκs

∣∣∣∣∣
∣∣∣∣Fv

]
,

we have

sup
v∈[0,T ]

|Yv| → 0, (2.20)

in Lp(P), as λ→ 0. This allows to conclude as in the Proof of Lemma 2.2.3.

Proof of Proposition 2.2.1. Combining that

J̃t(η(λ), λ)√
λ

= E
[∫ η̃(λ)

t
exp

(
− 1√

λ

∫ s

t

√
νrκr + w̃(η̃(λ), λ)

κr
dr

)
νs√
λ
ds

∣∣∣∣Ft
]

≤ cλt√
λ
≤ Jt(ũλ)√

λ
,

for all t ∈ [0, η(λ)], by Lemmas 2.2.2, 2.2.3 and 2.2.4, with the convergence of the upper
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and lower bound to √νtκt, we obtain that

sup
t∈[0,η(λ)]

∣∣∣∣∣ cλt√λ −√νtκt
∣∣∣∣∣→ 0,

in Lp(P) as λ→ 0.

For later use we establish a variation of Proposition 2.2.1.

Proposition 2.2.5. Under the assumptions of Proposition 2.2.1, suppose that
sup0≤t≤T

(√
κt/νt

)
∈ Lq1(P) and sup0≤t≤T

(
1/√νtκt

)
∈ Lq2(P), for some 1 < q1, q2 <∞.

Then, we have, for any η(λ) ∈ (0, T ) such that η(λ) → T and (T − η(λ))/
√
λ → ∞ as

λ→ 0, that

E
[

sup
0≤t≤η(λ)

∣∣∣∣∣ 1
cλt /
√
λ
− 1
√
νtκt

∣∣∣∣∣
p]
→ 0, (2.21)

as λ→ 0 for p > 1 such that 1/p = 1/q1 + 1/q2.

Proof. By Proposition 2.2.1, we have that

sup
0≤t≤η(λ)

∣∣∣cλt /√λ−√νtκt∣∣∣ P−a.s.→ 0,

as λ→ 0. Because sup0≤t≤T 1/√νtκt <∞ implies inf0≤t≤T
√
νtκt > 0, we have that

sup
0≤t≤η(λ)

∣∣∣∣∣ 1
cλt /
√
λ
− 1
√
νtκt

∣∣∣∣∣ P−a.s.→ 0,

as λ → 0, since the function f(x) = 1/x is Lipschitz continuous on [ε,∞) for any ε > 0.
Therefore, we only need to establish an integrable majorant for sup0≤t≤η(λ)

∣∣∣∣ 1
cλt /
√
λ

∣∣∣∣ in order
to conlcude (2.21) by Lebesgue’s dominated convergence theorem. For this, we recall that

J̃t
(
η(λ), λ)
√
λ

= E
[∫ η̃(λ)

t
exp

(
−
∫ s

t

1√
λκr

{√
νrκr + w̃

(
η̃(λ), λ

)}
dr

)
νs√
λ
ds

∣∣∣∣Ft
]

≤ cλt√
λ
,

for all t ∈ [0, T ) by Lemma 2.2.4 and hence,
√
λ

J̃t
(
η(λ), λ)

≥ 1
cλt /
√
λ
,

for all t ∈ [0, η(λ)]. We denote for r ∈ [t, η̃(λ)],

g(r) = 1√
λκr

{√
νrκr + w̃

(
η̃(λ), λ

)}
,
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so that

J̃t
(
η(λ), λ)
√
λ

= E
[∫ η̃(λ)

t
exp

(
−
∫ s

t
g(r)dr

)
νs√
λ
ds

∣∣∣∣Ft
]
.

We then estimate the integral as,∫ η̃(λ)

t
exp

(
−
∫ s

t
g(r)dr

)
νs√
λ
ds

=
∫ η̃(λ)

t
exp

(
−
∫ s

t
g(r)dr

)
g(s) 1

g(s)
νs√
λ
ds

≥
∫ η̃(λ)

t
exp

(
−
∫ s

t
g(r)dr

)
g(s)ds

{
inf

0≤s≤T

νsκs√
νsκs + w̃

(
η̃(λ), λ

)}

≥
{

1− exp
(
−
∫ η̃(λ)

t
g(r)dr

)}{
inf

0≤s≤T

νsκs√
νsκs + w̃

(
η̃(λ), λ

)}

≥
(

1− 1
e

){∫ η̃(λ)

t
g(r)dr ∧ 1

}{
inf

0≤s≤T

νsκs√
νsκs + w̃

(
η̃(λ), λ

)} ,
where we use the fact that 1− e−x ≥ (1− 1/e)x, for x ∈ [0, 1]. Since, w̃

(
η̃(λ), λ

)
> 0, we

obtain∫ η̃(λ)

t
exp

(
−
∫ s

t
g(r)dr

)
νs√
λ
ds

≥
(

1− 1
e

){(
η̃(λ)− η(λ)√

λ

)(
inf

0≤s≤T

√
νs
κs

)
∧ 1
}{

inf
0≤s≤T

νsκs√
νsκs + w̃

(
η̃(λ), λ

)} .
Using Jensen’s inequality for conditional expectations with the convex function h(x) =
1/x, we obtain

1
cλt /
√
λ
≤

√
λ

J̃t
(
η(λ), λ)

≤Mt,

where

Mt := E

 1(
1− 1

e

) { √λ
η(λ)

(
sup

0≤s≤T

√
κs
νs

)
∨ 1
}{

sup
0≤s≤T

√
νsκs + w̃

(
η̃(λ), λ

)
νsκs

} ∣∣∣∣Ft
 .

Taking the supremum and then using Doob’s maximal inequality for martingale, we obtain

E
[(

sup
0≤t≤η(λ)

∣∣∣∣∣ 1
cλt /
√
λ

∣∣∣∣∣
)p]
≤ E

[(
sup

0≤t≤T
Mt

)p]
≤ CE [|MT |p] ,
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for some constant C > 0. Hence, we obtain by Jensen’s and by Hölder’s inequality,

E
[(

sup
0≤t≤η(λ)

∣∣∣∣∣ 1
cλt /
√
λ

∣∣∣∣∣
)p]

≤ CE

∣∣∣∣∣∣ 1(
1− 1

e

) { √λ
η(λ)

(
sup

0≤s≤T

√
κs
νs

)
∨ 1
}{

sup
0≤s≤T

√
νsκs + w̃

(
η̃(λ), λ

)
νsκs

}∣∣∣∣∣∣
p

≤ C
∥∥∥∥∥
(

sup
0≤s≤T

√
κs
νs

)
∨ 1
∥∥∥∥∥
p

q1

∥∥∥∥∥ sup
0≤s≤T

√
νsκs + w̃

(
η̃(λ), λ

)
νsκs

∥∥∥∥∥
p

q2

<∞,

for λ small enough where q1, q2 > 0 satisfy 1/q1 + 1/q2 = 1/p, and C was used as an
absorbing constant.

This last lemma about cλ will be necessary when establishing convergences for the
processes ξ̂λt and X̂λ.

Lemma 2.2.6. Under the Assumption of Proposition 2.2.5, we have

λ−H/2 sup
0≤t≤T−2λa

e−
∫ t+λa
t

cλr
λκr

dr → 0, (2.22)

as λ→ 0, P-a.s. and in Lp(P) for p > 1.

Proof. We have

λ−H/2e−
∫ t+λa
t

cλr
λκr

dr ≤ λ−H/2e
− inf0≤r≤T−λa

(
cλr√
λκr

)
λa−1/2

and want to show the right hand side is bounded in Lp(P). For this, we define the function

f(x, y) = x
−H

2a−1 e−xy,

for x ∈ (1,∞) and y ∈ (0,∞). Notice that

f

(
λa−1/2, inf

0≤r≤T−λa

(
cλr√
λκr

))
= λ−H/2e

− inf0≤r≤T−λa

(
cλr√
λκr

)
λa−1/2

.

We then have

max
x∈(1,∞)

f(x, y) =
(

H

1− 2a

) H
1−2a

y−
H

1−2a e−
H

1−2a > 0,

which is positive since we have a > 1/2. Therefore, the collection of random variables

C1 =


λ−H/2e− inf0≤r≤T−λa

(
cλr√
λκr

)
λa−1/2

p ∣∣∣∣λ ∈ (0, 1)


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is dominated by the collection of random variables,

C2 =


(

H

1− 2a

) pH
1−2a

e−
pH

1−2a

{
inf

0≤r≤T−λa

(
cλr√
λκr

)}− pH
1−2a ∣∣∣∣λ ∈ (0, 1)


in the sense that for each random variable X1 ∈ C1, we can find X2 ∈ C2, such that
0 ≤ X1 ≤ X2.

Since
{

inf
0≤r≤T−λa

(
cλr√
λκr

)} pH
1−2a

≥
(

inf
t∈[0,T−λa]

cλt√
λ

) pH
1−2a

(
inf

t∈[0,T ]

1
κt

) pH
1−2a

,

we have
{

inf
0≤r≤T−λa

(
cλr√
λκr

)}− pH
1−2a

≤
(

sup
t∈[0,T−λa]

1
ct/
√
λ

) pH
1−2a

(
sup
t∈[0,T ]

κt

) pH
1−2a

and the right hand side is integrable by Corollary 2.2.5. It follows that the set C2 is
uniformly integrable and so is the set C1. The convergence in (2.22) follows by applying
Lebesgue’s dominated convergence theorem, as Theorem 1.21 in Kallenberg (2006), and
the fact that we have the convergence

λ−H/2 sup
0≤t≤T−2λa

e−
∫ t+λa
t

cλr
λκr

dr → 0,

P-a.s., as λ → 0. This convergence follows directly from Proposition 2.2.1 and the fact
that λa−1/2 →∞ as λ→ 0.

2.2.2 Convergence of rescaled processes

We now show several results related to the convergence of the rescaled processes we will
encounter. Before moving to the rescaled processes involved in the solution to Problem
(2.2), we start this section by studying the behavior of some processes that will emerge
from our proof together with the behavior of rescaled fBM. In particular, the next lemma
deals with the stationarity behavior of the processes involved in the solution to the ergodic
linear-quadratic control of fBM.

Lemma 2.2.7. Let (B̃H
t )t∈R a fractional Brownian motion on R. For t ∈ R, set

ξ̃0
t = E

[∫ ∞
t

√
ν

κ
e−
√

ν
κ

(s−t)B̃H
s ds

∣∣∣∣ F̃t] ,
X̃0
t = e−

√
ν
κ
tx+

∫ t

0

√
ν

κ
e−
√

ν
κ

(t−s)ξ̃0
sds,

for constants ν, κ > 0. Then, (ξ̃0
t − B̃H

t )t∈R, (ξ̃0
t − X̃0

t )t∈R and (B̃H
t − X̃0

t )t∈R are Gaussian
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processes and

ξ̃0
t − B̃H

t
L2(P)→ Z1 ∼ N (0, σ2

1),

ξ̃0
t − X̃0

t
L2(P)→ Z2 ∼ N (0, σ2

2), (2.23)

B̃H
t − X̃0

t
L2(P)→ Z3 ∼ N (0, σ2

3), (2.24)

as t→∞, with

σ2
2 = δ−2HHΓ(2H + 1)

{1 + sin(πH)
2

}
σ2

3 = δ−2H(1−H)Γ(2H + 1)
{1 + sin(πH)

2

}
,

where δ =
√
ν/κ.

Proof. We start the proof by using the Mandelbrot-Van Ness representation of fBM to
show

E
[
B̃H
t+h − B̃H

t

∣∣∣∣ F̃t] = 1
cH

∫ t

−∞

{
(t+ h− s)H−1/2 − (t− s)H−1/2

}
dW̃s

d= 1
cH

∫ 0

−∞

{
(h− s)H−1/2 − (−s)H−1/2

}
dW̃s

= E
[
B̃H
h

∣∣∣∣ F̃0

]
,

for a constant cH > 0, where we used the fact that increments of the Brownian motion
(W̃t)t∈R are stationary. Hence, the process(

E
[
B̃H
t+h − B̃H

t

∣∣∣∣ F̃t])
t≥0

is for each h > 0, a stationary Gaussian process with respect to the filtration (F̃t)t∈R.
Denoting δ =

√
ν/κ, this implies that

ξ̃0
t − B̃H

t =
∫ ∞

0
δe−δhE

[(
B̃H
t+h − B̃H

t

) ∣∣∣∣ F̃t] dh
d=
∫ ∞

0
δe−δh

1
cH

∫ 0

−∞

{
(h− s)H−1/2 − (−s)H−1/2

}
dW̃sdh

=
∫ 0

−∞

( 1
cH

∫ ∞
0

δe−δh
{

(h− s)H−1/2 − (−s)H−1/2
}
dh

)
dW̃s (2.25)

is a stationary Gaussian process as well.
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The process ξ̃0
t − X̃0

t can be decomposed as follows

ξ̃0
t − X̃0

t = ξ̃0
t − e−δt

(
x+

∫ t

0
δeδsξ̃0

sds

)
= ξ̃0

t − e−δt
(
x+

∫ t

0
δeδsξ̃0

sds+
∫ 0

−∞
δeδsξ̃0

sds−
∫ 0

−∞
δeδsξ̃0

sds

)
= −

∫ t

−∞
δe−δ(t−s)ξ̃0

sds+ ξ̃0
t − e−δt

(
−
∫ 0

−∞
δeδsξ̃0

sds+ x

)
. (2.26)

The process

Yt := −
∫ t

−∞
δe−δ(t−s)ξ̃0

sds+ ξ̃0
t ,

is a stationary Gaussian process since ξ̃0, as the sum of two processes with stationary
increments in (2.25), has stationary increments.

The remainder term in (2.26),

Y R
t := −e−δt

(
−
∫ 0

−∞
δeδsξ̃0

sds+ x

)

converges to 0 in L2(P), as t→ 0. Finally, since we have

B̃H
t − X̃0

t =
(
B̃H
t − ξ̃0

t

)
+
(
ξ̃0
t − X̃0

t

)
,

the result as t→∞, for the process (B̃H
t − X̃0

t )t∈R follows from the two previous parts of
the proof.

The explicit formulas for the limiting variances in the statement follow from rescaling
the formulas in Proposition 1.2.7 in Chapter 1 to adapt from RLfBM to fBM.

Lemma 2.2.8. For H < 1/2, let (BH
u )u≥0 and (B̃H

u )u∈(−∞,∞) be fractional Brownian
motions with respect to the filtrations (Fu)u≥0 and (F̃u)u∈(−∞,∞), respectively. Then, for
each t > 0, s ∈ R, we have

E
[
λ−H(BH

t+λs −BH
t )
∣∣∣∣Ft] d→ E

[
B̃H
s

∣∣∣∣ F̃0

]
,

as λ→ 0.

Proof. First, recall from the representation in Nuzman and Poor (2000) that there are
Brownian motions (Wt)t≥0 and (W̃t)t∈(−∞,∞) with respect to (Ft)t≥0 and (F̃t)t∈(−∞,∞)
respectively, such that the following representations hold, for t ≥ 0,

BH
t = 1

Γ(H + 1/2)

∫ t

0

{
u

t

}1/2−H
(t− u)H−1/2dWu

+ 1/2−H
Γ(H + 1/2)

∫ t

0
uH−1/2β1−u/t(H + 1/2, 1− 2H)dWu =: BH,1

t +BH,2
t ,
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where BH,1
t and BH,2

t correspond to each integral and

βv(a, b) =
∫ v

0
ra−1(1− r)b−1dr,

and, for t ∈ (−∞,∞),

B̃H
t = eH

∫ t

−∞

[
(t− u)H−1/21(0,∞)(t− u)− (−u)H−1/21(0,∞)(−u)

]
dW̃u,

where eH = 1/Γ(H + 1/2) > 0, is a normalising constant. Then, we compute,

E
[
λ−H(BH,1

t+λs −B
H,1
t )

∣∣∣∣Ft]
= eHλ

−H
(∫ t

0

{
u

t+ λs

}H−1/2
(t+ λs− u)H−1/2dWu −

∫ t

0

{
u

t

}1/2−H
(t− u)H−1/2dWu

)
d= eHλ

−H
(∫ 0

−t

[{
ũ+ t

t+ λs

}1/2−H
(λs− ũ)H−1/2 −

{
ũ+ t

t

}1/2−H
(−ũ)H−1/2

]
dW̃ũ

)

= eH

(∫ 0

−t/λ

[{
t+ λũ

t+ λs

}1/2−H
(s− ũ)H−1/2 −

{
t+ λũ

t

}1/2−H
(−ũ)H−1/2

]
d

1
λ1/2 W̃λũ

)
d= eH

(∫ 0

−t/λ

[{
t+ λv

t+ λs

}1/2−H
(s− v)H−1/2 −

{
t+ λv

t

}1/2−H
(−v)H−1/2

]
dW̃v

)
=: Xλ,

where we use the self-similarity property of Brownian motion in the last equality.
The collection (Xλ)λ∈(0,1) consists of Gaussian centered random variables. In order

to show the convergence in distribution, we only need to show the convergence of the
variances Var(Xλ) = E

[
X2
λ

]
, as λ→ 0. To this end, we compute,

E
[
X2
λ

]
= e2

H

∫ 0

−t/λ

[{
t+ λv

t+ λs

}1/2−H
(s− v)H−1/2 −

{
t+ λv

t

}1/2−H
(−v)H−1/2

]2

dv

= e2
H

∫ 0

−t/λ

[{
t+ λv

t

}1/2−H
(−v)H−1/2

{((t+ λs)(s− v)
t(−v)

)H−1/2
− 1

}]2

dv

= e2
H

∫ t/λ

0

{
t− λv
t

}1−H
(v)2H−1

{((t+ λs)(s+ v)
tv

)H−1/2
− 1

}2

dv.

Next, we estimate the expression
{
t− λv
t

}1−H
≤ 1.

Moreover, by convexity of the function x 7→ (1 + x)H−1/2, we have
∣∣∣(1 + x)H−1/2 − 1

∣∣∣ ≤ x
for x ≥ 0. We then obtain for λ small enough, and some constant C > 0,

{((t+ λs)(s+ v)
tv

)H−1/2
− 1

}2

≤ C s
2

v2 .
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Therefore,

{
t− λv
t

}1−H
(v)2H−1

{((t+ λs)(s+ v)
tv

)H−1/2
− 1

}2

≤ v2H−11(0,1)(v) + Cs2v2H−31(1,∞)(v),

for v ∈ (0, t/λ). Since
∫ 1

0 v
2H−1dv + C

∫∞
1 s2v2H−3dv < ∞, we can apply Lebesgue’s

dominated convergence theorem and obtain

E
[
X2
λ

]
→
∫ ∞

0

{
(s+ v)H−1/2 − vH−1/2

}2
dv,

as λ→ 0. Finally, observe that

X0 = E
[
B̃H
s

∣∣∣∣ F̃0

]
=
∫ 0

−∞

{
(s− v)H−1/2 − (−v)H−1/2

}
dW̃v,

is a centered Gaussian random variable with Var(X0) =
∫∞

0

{
(s+ v)H−1/2 − vH−1/2

}2
dv.

This allows to conclude that Xλ
d→ X0, as λ→ 0.

For the second term, denoting e′H = (1/2−H)eH , we have,

E
[
λ−H(BH,2

t+λs −B
H,2
t )

∣∣∣∣Ft]
= λ−He′H

∫ t

0
uH−1/2

[
β1−u/(t+λs)(H + 1/2, 1− 2H)− β1−u/t(H + 1/2, 1− 2H)

]
dWu.

Writing

g(t;u) = β1−u/(t+λs)(H + 1/2, 1− 2H)− β1−u/t(H + 1/2, 1− 2H)

=
∫ 1−u/(t+λs)

1−u/t
rH−1/2(1− r)−2Hdr,

we have the following estimate,

g(t;u) ≤ (1− u/t)H−1/2
∫ 1−u/(t+λs)

1−u/t
(1− r)−2Hdr

≤ (1− u/t)H−1/2 1
1− 2Hu1−2H

[(1
t

)1−2H
−
( 1
t+ λs

)1−2H
]

≤ (1− u/t)H−1/2 1
1− 2Hu1−2H(1− 2H)t2H−2(λs),

where we use the convexity of the function h(x) = (1/x)1−2H in the last inequality.

Since E
[
λ−H(BH,2

t+λs −B
H,2
t )

∣∣∣∣Ft] is again a Gaussian centered random variable, we
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estimate its second moment using the estimate for g(t;u), and some constant C > 0,

E
[(
λ−H

∫ t

0
uH−1/2g(t;u)dWu

)2]
= λ−2H

∫ t

0
u2H−1g(t;u)2du

≤ λ−2HC

∫ t

0
(1− u/t)2H−1u1−2Ht4H−4(λs)2du

≤ λ2(1−H)s2t4H−4C

∫ t

0
u1−2H(1− u/t)2H−1du

≤ λ2(1−H)s2t2H−2C

∫ 1

0
v1−2H(1− v)2H−1dv

≤ λ2(1−H)s2t2H−2Cβ1(2− 2H, 2H).

It follows that as λ→ 0, the second moment of the random variable vanishes.

Lemma 2.2.9. Fix H ∈ (0, 1/2) and let (BH
t )t∈R be a fractional Brownian motion. For

t > 0, define the process

Xt,λ
u := λ−H

(
BH
t+λu −BH

t

)
for u ∈ R. Then, the process (BH

u , X
t,λ
u )u∈R converges in distribution to (BH

u ,W
H,t
u )u∈R,

where (WH,t
u )u∈R is a fractional Brownian motion on R that is independent of (BH

u )u∈R.
Moreover, there exists a probability space (Ω̃, F̃ , P̃) and random variables (B̃H

u , X̃
t,λ
u )u∈R

and (B̃H
u , W̃

H,t
u )u∈R on that probability space such that

(B̃H
u , X̃

t,λ
u )u∈R

d= (BH
u , X

t,λ
u )u∈R,

(B̃H
u , W̃

H,t
u )u∈R

d= (BH
u ,W

H,t
u )u∈R

and

(B̃H
u , X̃

t,λ
u )u∈R

P̃-a.s.→ (B̃H
u , W̃

H,t
u )u∈R,

on C(R,R2), as λ→ 0, where we equip C(R,R2) with the metric of uniform convergence
on compacts and thus have a Polish space.

For α > 1, define the measure µα on
(
R,B(R)

)
by

µα(dw) = Cα(1 + |w|)−α, Cα = 2
α− 1 ,

so that the product measure P(dω)×µα(du) is a probability measure on
(
Ω×R,F⊗B(R)

)
.

Then,
((
|(B̃H

u , X̃
t,λ
u )|β

)
u∈R

)
λ∈(0,1) is uniformly integrable with respect to P × µα for β ∈(

0, (α− 1)/H
)
and, for u ∈ R,

(B̃H
u , X̃

t,λ
u ) L

β(P̃× µα)→ (B̃H
u , W̃

H,t
u ), as λ→ 0.

Proof. By the self-similarity and stationarity of fractional Brownian motion, we clearly
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have,

(Xt,λ
u )u∈R

d= (WH,t
u )u∈R.

The tightness follows from Corollary 16.9 of Kallenberg (2006), since

E
[
|(BH

u , X
t,λ
u )− (BH

s , X
t,λ
s )|R2

]
= Var[BH

u −BH
s ] + Var[Xt,λ

u −Xt,λ
s ] ≤ 2|u− s|2H

We next verify the claim on independence. For this, let us fix t > 0 and u, v ∈ R.
Using the covariance formula of fBM, we compute

Cov(Xt,λ
u , BH

v ) = E
[
λ−H(BH

t+λu −BH
t )BH

v

]
= λ−H

1
2
{(
|t+ λu|2H − |t|2H

)
+
(
|t− v|2H − |t− v + λu|2H

)}
.

By convexity of the function g(x) = x2H , we have for 0 < x < y,

y2H − x2H ≤ 2Hx2H−1(y − x).

Hence, we obtain∣∣∣Cov(Xt,λ
u , BH

v )
∣∣∣ ≤ λ1−HH

{
(|t+ λu| ∧ |t|)2H−1 + (|t− v| ∧ |t− v + λu|)2H−1

}
|u|

→ 0, (2.27)

as λ → 0. Therefore, the correlation between the random variables goes to 0 and since
BH is a Gaussian process, we get the independence between the processes.

This implies that the tight family of random variables has a unique limit law and,
hence, converges in distribution.

Since C(R,R2) with the metric of uniform convergence on compacts is a Polish space,
we have, by Skorokhod representation as in Theorem 4.30 in Kallenberg (2006), that there
exists a probability space (Ω̃, F̃ , P̃) such that

(B̃H
u , X̃

t,λ
u )u∈R

P̃−a.s.→ (B̃H
u , W̃

H,t
u )u∈R

in C(R,R2), as λ→ 0.
Because (B̃H

u )u∈R and (X̃t,λ
u )u∈R are both fractional Brownian motions, we have

EP̃[|B̃H
u |β] = EP̃[|X̃t,λ

u |β] = cβu
βH

for all u ∈ R and for cβ > 0. Therefore, EP̃×µα [|(B̃H
u , X̃

t,λ
u )|β] =

∫
RCβu

βHµα(du) =
Cβ
α−1

1
Hβ−α−1 , for some Cβ > 0, for all β ∈

(
0, (α−1)/H

)
. Hence,

((
|(B̃H

u , X̃
t,λ
u )|β

)
u∈R

)
λ∈(0,1)

is uniformly integrable with respect to P̃× µα for β ∈
(
0, (α− 1)/H

)
. By Vitali’s conver-

gence theorem, as in Proposition 4.12 of Kallenberg (2006), we have, for u ∈ R, that

(B̃H
u , X̃

t,λ
u ) L

β(P̃× µα)→ (B̃H
u , W̃

H,t
u ), as λ→ 0.
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For the next proofs, we also introduce the two auxiliary measures µα− and µα+ defined
on
(
(−∞, 0],B((−∞, 0])

)
and

(
[0,∞),B([0,∞))

)
, respectively by,

µα+(dw) = Cα
2 (1 + |w|)−α,

µα−(dw) = Cα
2 (1 + |w|)−α.

To simplify notation, we also write µ+, µ−. We now turn our attention to the rescaled
process involved in the solution of Problem (2.2).

Lemma 2.2.10. Under the Assumptions 2.1.2, for Uλ = (−λa−1/2, 0), we have that

sup
λa≤t≤T−2λa

∥∥∥∥∥∥∥∥

√
λ

cλ
t+
√
λw

∫ λa−1/2

0
e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du (
Xt,λ
v+w

)
νt+
√
λ(w+v)dv

1Uλ(w)

−
∫ ∞

0

√
νt
κt
e
−
√

νt
κt
v (
W̃H,t
v+w

)
dv

∥∥∥∥∥∥
Lp(µ−×P)

=: sup
λa≤t≤T−2λa

∥∥∥Nλ
t

∥∥∥
Lp(µ−×P)

→ 0, (2.28)

for p > 1, as λ→ 0.

Proof. We start by denoting Vλ = (0, λa−1/2) and define

Zt,λw,v :=

∣∣∣∣∣∣∣∣
√
λνt+

√
λ(w+v)

cλ
t+
√
λw

e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du

1Vλ(v)1Uλ(w)−
√
νt
κt
e
−
√

νt
κt
v

∣∣∣∣∣∣∣∣ (2.29)

for t ∈ [λa, T − 2λa]. Then, we rewrite
√
λ

cλ
t+
√
λw

∫ λa−1/2

0
e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du (
Xt,λ
v+w

)
νt+
√
λ(w+v)dv

1Uλ(w)

=
∫ ∞

0

√
λ

cλ
t+
√
λw

e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du (
Xt,λ
v+w

)
νt+
√
λ(w+v)1Uλ(w)1Vλ(v)dv

and we need to estimate first the ‖·‖Lp(µ−) norm of

Nλ
t :=

∫ ∞
0


√
λ

cλ
t+
√
λw

e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du (
Xt,λ
v+w

)
νt+
√
λ(w+v)1Uλ(w)1Vλ(v)

−
√
νt
κt
e
−
√

νt
κt
v (
W̃H,t
v+w

) dv.
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We then use the fact that µ+(dv) = (Cα/2)(1 + |v|)−αdv and consider the product proba-
bility measure dP(ω)×µ+(dv)×µ−(dw) to apply Hölder inequality. It follows, by applying
first Jensen’s inequality, the triangular inequality and Hölder’s inequality twice,∥∥∥Nλ

t

∥∥∥
Lp(P×µ−)

≤ C
∥∥∥Zt,λw,v(1 + |v|)α1Vλ(v)1Uλ(w)

∥∥∥
Lq1 (P×µ+×µ−)

∥∥∥∣∣∣Xt,λ
v+w

∣∣∣1Vλ(v)1Uλ(w)
∥∥∥
Lq2 (P×µ+×µ−)

+ C
∥∥∥(Xt,λ

v+w

)
1Vλ(v)1Uλ(w)−

(
W̃H,t
v+w

)∥∥∥
Lq2 (P×µ+×µ−)

·

∥∥∥∥∥∥
√
νt
κt
e
−
√

νt
κt
v
(1 + |v|)α

∥∥∥∥∥∥
Lq1 (P×µ+×µ−)

(2.30)

for some C > 0 and 1 < q1, q2 <∞ such that 1/q1 + 1/q2 = 1/p.
We next show that for ε > 0,

sup
λ∈(0,1)

sup
λa≤t≤T−2λa

E
[∫ 0

−∞

∫ ∞
0

{
Zt,λw,v(1 + |v|)α

}q1+ε
1Uλ(w)1Vλ(v)µ+(dv)µ(dw)

]
(2.31)

is bounded and hence,
{
Zt,λw,v(1 + |v|)α

}q1 is uniformly integrable with respect to dP(ω)×
µ+(dv) × µ−(dw). For this, we consider both terms in (2.29) separately. Using the in-
equality, (1+ |v|)p ≤ C(1+ |v|p), for C > 0, we estimate first, for some absorbing constants
C1, C2 > 0, w ∈ Uλ,

∫ λa−1/2

0

∣∣∣∣∣∣∣∣
νt+
√
λ(w+v)

cλ
t+
√
λw
/
√
λ
e
−
∫ v

0

cλ
t+
√
λ(w+u)√

λκ
t+
√
λ(w+u)

du

∣∣∣∣∣∣∣∣
q1+ε

(1 + |v|)α(q1+ε)µ+(dv)

≤ C1

{
sup

t∈[0,T−λa]

νt

cλt /
√
λ

}q1+ε−1

+ C2

{
sup

t∈[0,T−λa]

νt

cλt /
√
λ

}q1+ε Γ(α(q1 + ε− 1) + 1){
inf0≤t≤T−λa ct/(

√
λκt)

}α(q1+ε−1)+1 .

This estimate which we call Z1 is a random variable in L1(P) by Assumptions 2.1.2.
Similarly, we can estimate

∫ λa−1/2

0


√
νt
κt
e
−
√

νt
κt
v
(1 + |v|)α


q1+ε

µ+(dv)

≤ C1

{√
νt
κt

}q1+ε−1
+ C2

{√
νt
κt

}(1−α)(q1+ε−1)
Γ(α(q1 + ε− 1) + 1) =: Z2

which is again a random variable in L1(P) by Assumption 2.1.2. Hence, since Z1 + Z2 ∈
L1(P), this implies the Lq1-boundedness in (2.31) with respect to the product measure.
Because Zt,λv,w(1 + |v|)α P−a.s.→ 0, as λ → 0, for fixed v, w, t, we obtain by the generalised
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Lebesgue convergence theorem that∥∥∥Zt,λv,w(1 + |v|)α1Vα(v)1Uα(w)
∥∥∥
Lq1 (µ+×µ−×P)

→ 0, (2.32)

as λ→ 0.
Next, we show that

sup
λa≤t≤T−2λa

∥∥∥(Xt,λ
v+w

)
1Vλ(v)1Uλ(w)−

(
W̃H,t
v+w

)∥∥∥
Lq2 (P×µ+×µ−)

(2.33)

= sup
λa≤t≤T−2λa

∫ 0

−∞

∫ ∞
0

E
[∣∣∣(Xt,λ

v+w

)
1Vλ(v)1Uλ(w)−

(
W̃H,t
v+w

)∣∣∣q2]µ+(dv)µ−(dw)

converges to 0. Denoting

Y t,λ
v,w :=

(
Xt,λ
v+w

)
1Vλ(v)1Uλ(w)−

(
W̃H,t
v+w

)
,

we observe that (Xt,λ
s )s∈R and (W̃H,t

s )s∈R are both fractional Brownian motions. Therefore,
we have that

E
[∣∣∣Xt,λ

v+w

∣∣∣q2+ε
1Vλ(v)1Uλ(w)

]
≤ C |v + w|(q2+ε)H

1Vλ(v)1Uλ(w)

≤ C1
(
|v|(q2+ε)H + |w|(q2+ε)H

)
1Vλ(v)1Uλ(w),

for some C1 > 0 and for C2 > 0,

E
[∣∣∣W̃H,t

v+w

∣∣∣q2+ε
]
≤ C2

(
|v|(q2+ε)H + |w|(q2+ε)H

)
.

This implies that
∣∣∣Y t,λ
v,w

∣∣∣q2 is uniformly integrable.
Since by Lemma 2.2.9 we have (Xt,λ

v )v∈R → (W̃H,t
v )v∈R, P-.a.s, as λ → 0, we obtain

that

sup
λa≤t≤T−2λa

∫ 0

−∞

∫ ∞
0

E
[∣∣∣Y t,λ

v,w

∣∣∣q2]µ+(dv)µ−(dw)→ 0, (2.34)

as λ→ 0.
Finally, combining both convergences (2.32) and (2.34) with the estimates in (2.30)

yields the claimed convergence in (2.28).

Lemma 2.2.11. Under the Assumptions 2.1.2, set

ξ̃0,t
w = E

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
r
W̃H,t
r+wdr

∣∣∣∣ F̃w
 ,

for w ∈ R. Then, we have

sup
λa≤t≤T−2λa

∥∥∥λ−H/2 (ξ̂λ
t+
√
λw
− ξt

)
1(−λa−1/2,0)(w)− f ′(BH

t )ξ̃0,t
w

∥∥∥
Lp(P×µ−)

→ 0,
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for p > 1, as λ→ 0.

Proof. For r ∈ (t− λa, t+ λa), we use Taylor’s formula to obtain

ξr = f(BH
r ) = f(BH

t ) + f ′(BH
u(r,t))(B

H
r −BH

t )

for some u(r, t) ∈ (min {r, t} ,max {r, t}). This implies that

λ−H/2
(
ξ̂λs − ξt

)
= λ−H/2

cλs
E
[∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv (ξr − ξt) νrdr
∣∣∣∣Fs

]
+R1,λ

s

= λ−H/2

cλs
E
[∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv
{
f ′(BH

u(r,t))(B
H
r −BH

t )
}
νrdr

∣∣∣∣Fs
]

+R1,λ
s

= λ−H/2

cλs
E
[∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv
{
f ′(BH

s )(BH
r −BH

t )
}
νrdr

∣∣∣∣Fs
]

+R1,λ
s +R2,λ

s ,

where the remainders are given by

R1,λ
s :=λ−H/2

cλs
E
[∫ T

s+λa
e−
∫ r
s

cλv
λκv

dv (ξr − ξt) νrdr
∣∣∣∣Fs

]
,

R2,λ
s :=λ−H/2

cλs
E
[∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv
{(
f ′(BH

u(r,t))− f
′(BH

s )
)
(BH

r −BH
t )
}
νrdr

∣∣∣∣Fs
]

and we use, for s ∈ [0, T ), that

cλs = E
[∫ T

s
e−
∫ r
s

cλv
λκv

dvνrdr

∣∣∣∣Fs
]
.

After the change of variable s = t+
√
λw, for s ∈ (t− λa, t), we can write

λ−H/2

cλs
E
[∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv
{
f ′(BH

s )(BH
r −BH

t )
}
νrdr

∣∣∣∣Fs
]

(2.35)

=
√
λ

cλs
f ′(BH

s )E

∫ λa−1/2

0
e
−
∫ v

0

cλ
s+
√
λx√

λκ
s+
√
λx

dx {
λ−H/2(BH

s+
√
λv
−BH

t )
}
νs+
√
λvdv

∣∣∣∣Fs


=
√
λ

cλ
t+
√
λw

f ′(BH
t+
√
λw

)E

∫ λa−1/2

0
e
−
∫ v

0

cλ
t+
√
λ(x+w)√

λκ
t+
√
λ(x+w)

dx {
Xt,λ
v+w

}
νt+
√
λ(v+w)dv

∣∣∣∣Ft+√λw
 .

Therefore,

λ−H/2
(
ξ̂λ
t+
√
λw
− ξt

)
= f ′(BH

t )ξ̃0,t
w +R1,λ

t+
√
λw

+R2,λ
t+
√
λw

+R3,λ
t+
√
λw

+R4,λ
t+
√
λw

+R5,λ
t+
√
λw
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where the remainders R3,λ, R4,λ, R5,λ are given by, for s = t+
√
λw,

R3,λ
s

= f ′(BH
s )E

∫ ∞
0

√λ
cλs
e
−
∫ v

0

cλ
s+
√
λx√

λκ
s+
√
λx

dx

νs+
√
λv1Vλ(v)−

√
νt
κt
e
−
√

νt
κt
v

{Xt,λ
v+w

}
dv

∣∣∣∣Fs
 ,

R4,λ
s =

(
f ′(BH

s )− f ′(BH
t )
)
E

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
v {
Xt,λ
v+w

}
dv

∣∣∣∣Fs
 ,

R5,λ
s = f ′(BH

t )E

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
v {
Xt,λ
v+w − W̃

H,t
v+w

}
dv

∣∣∣∣Fs
 ,

for V λ = (0, λa−1/2).
Now, it only remains to show that the remainder terms R1,λ, R2,λ, R3,λ and R4,λ

converge to zero in the norm ‖·‖Lp(P×µ−) for all t ∈ [λa, T − 2λa].
By the tower property of conditional expectation, we can further rewrite R1,λ

s as

R1,λ
s = λ−H/2

cλs
E
[
e−
∫ s+λa
s

cλv
λκv

dvcλs+λa
(
ξ̂λs+λa − ξt

) ∣∣∣∣Fs
]
.

By Jensen’s and Hölder’s inequality for 1 < q1, q2 < ∞ such that 1/p = 1/q1 + 1/q2, we
have that

∥∥∥R1,λ
s

∥∥∥
Lp(P)

≤
∥∥∥∥∥λ−H/2e−

∫ s+λa
s

cλv
λκv

dv

∥∥∥∥∥
Lq1 (P)

∥∥∥∥∥cλs+λacλs

(
ξ̂λs+λa − ξt

)∥∥∥∥∥
Lq2 (P)

,

By Lemma 2.2.6, the first term on the right-hand side converges to 0 uniformly for s ∈
[0, T − 2λa]. The second term can be decomposed as estimated by∥∥∥∥∥cλs+λacλs

(
ξ̂λs+λa − ξt

)∥∥∥∥∥
Lq2 (P)

≤
∥∥∥∥∥cλs+λa√

λ

∥∥∥∥∥
Lq3 (P)

∥∥∥∥∥
√
λ

cλs

∥∥∥∥∥
Lq4 (P)

∥∥∥(ξ̂λs+λa − ξt)∥∥∥
Lq5 (P)

,

with 1/q2 = 1/q3+1/q4+1/q5 for 1 < q3, q4, q5 <∞. By Proposition 2.2.1 and Proposition
2.2.5, we have the first two norm being bounded uniformly in s. For the last norm, we
have, ∥∥∥(ξ̂λs+λa − ξt)∥∥∥

Lq5 (P)
≤
∥∥∥ξ̂λs+λa∥∥∥

Lq5 (P)
+ ‖ξt‖Lq5 (P) <∞,

and this shows R1,λ converges to 0. Here, for the finiteness of the first norm, we have the
following decomposition

|ξ̂λs | ≤
∣∣∣∣∣E
[

1
cλs

∫ T−λa

s
e−
∫ r
s

cλv
λκv

dvξrνrdr

∣∣∣∣Fs
]

+ E
[

1
cλs

∫ T

T−λa
e−
∫ r
s

cλv
λκv

dvξrνrdr

∣∣∣∣Fs
]∣∣∣∣∣ .
(2.36)

Then, by a change of variable, we have for the first conditional expectation above the
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following upper bound,

E

√λ
cλs

∫ λ−1/2(T−λa)

0
e
−
∫ u

0

cλ
s+
√
λr√

λκ
s+
√
λr

dv ∣∣∣ξs+√λu∣∣∣ νs+√λudu ∣∣∣∣Fs


≤ E
[(

sup
t∈[0,T−λa]

√
λ

cλt

)(
sup
t∈[0,T ]

|ξtνt|
)(

sup
t∈[0,T−λa]

√
λ

cλt κt

) ∣∣∣∣Fs
]
. (2.37)

For the second conditional expectation in (2.36), we have the following estimate,

E
[√

λ

cλs
sup
t∈[0,T ]

|ξtνt| e−
∫ T−λa
s

cλv
λκv

dv
∫ λa−1/2

0
e
−
∫ T−λa+

√
λv

T−λa
cλr
λκr

dr
dv

∣∣∣∣Fs
]

≤ E
[(

sup
t∈[0,T−λa]

√
λ

cλt

)(
sup
t∈[0,T ]

|ξtνt|
)(

sup
t∈[0,T−λa]

λa−1/2e−
∫ T−λa
s

cλr
λκr

dr

) ∣∣∣∣Fs
]
. (2.38)

Since we have a > (1−H)/2, we have H/2 > 1/2−a. We can therefore apply Lemma 2.2.6
for the last part of the integrand of (2.38). Therefore, we can estimate the expressions
inside the conditional expectations of (2.37) and (2.38). In particular, with our Assump-
tions 2.1.2, we have that the ‖·‖q5 of these expression is finite (up to adding further Hölder
inequality steps). It follows by Doob’s maximal inequality that

∥∥∥supt∈[0,T−λa]

∣∣∣ξ̂λt ∣∣∣∥∥∥
q5
<∞.

Note that
∥∥∥sup0≤s≤T−2λa |ξ̂λs |

∥∥∥
Lq5 (P)

<∞ also implies that

∥∥∥∥∥ sup
0≤t≤T−2λa

∣∣∣X̂λ
t

∣∣∣∥∥∥∥∥
Lq5 (P)

≤
∥∥∥∥∥ sup

0≤t≤T−2λa

∣∣∣∣∣e−
∫ t

0
cλs
λκs

ds

(
x+

∫ t

0

cλs
λκs

e
∫ s

0
cλr
λκr

dr ξ̂λs ds

)∣∣∣∣∣
∥∥∥∥∥
Lq5 (P)

≤ |x|+
∥∥∥∥∥ sup

0≤s≤T−2λa

∣∣∣ξ̂λs ∣∣∣
∥∥∥∥∥
Lq5 (P)

<∞. (2.39)

Because t 7→ f ′(BH
t ) is uniformly continuous on [0, T ] and sup0≤t≤T

∣∣∣f ′(BH
t )
∣∣∣ ∈ Lq(P), we

have that

Rf,λ = sup
λa≤t≤T−2λa

sup
s∈[t−λa,t+λa]

∣∣∣f ′(BH
t )− f ′(BH

s )
∣∣∣→ 0,

in Lq(P) as λ→ 0 for q > 1. Hence, we have

∥∥∥R2,λ
s

∥∥∥
Lp(P)

≤
∥∥∥Rf,λ∥∥∥

Lq1 (P)

∥∥∥∥∥
∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv νr
cλs

∣∣∣λ−H/2(BH
r −BH

t )
∣∣∣ dr∥∥∥∥∥

Lq2 (P)

Therefore we have,

∥∥∥R2,λ
t+
√
λw

∥∥∥
Lp(P×µ−)

≤
∥∥∥Rf,λ∥∥∥

Lq1 (P)

∥∥∥∥∥
∫ s+λa

s
e−
∫ r
s

cλv
λκv

dv νr
cλs

∣∣∣λ−H/2(BH
r −BH

t )
∣∣∣ dr∥∥∥∥∥

Lq2 (P×µ−)
.

After a change of variable v = λ−1/2(r− s), and s = t+
√
λw, the second norm is exactly
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the norm of the left expression in the statement of Lemma 2.2.10. Hence, since we have

sup
t∈[λa,T−2λa]

∥∥∥∥∥∥
∫ ∞

0

√
νt
κt
e
−
√

νt
κt
v (
W̃H,t
v+w

)
dv

∥∥∥∥∥∥
Lp(µ−×P)

<∞,

by Assumption 2.1.2, the remainder R2,λ converges to 0.
Similarly, we have for R3,λ

s ,∥∥∥R3,λ
s

∥∥∥
Lp(P)

≤ sup
s∈[0,T ]

∥∥∥f ′(BH
s )
∥∥∥
Lq1 (P)

·

∥∥∥∥∥∥∥
∫ ∞

0

√λ
cλs
e
−
∫ v

0

cλ
s+
√
λx√

λκ
s+
√
λx

dx

νs+
√
λv1Vλ(v)−

√
νt
κt
e
−
√

νt
κt
v

{Xt,λ
v+w

}
dv

∥∥∥∥∥∥∥
Lq2 (P)

,

and therefore, to have
∥∥∥R3,λ

s

∥∥∥
Lp(P×µ−)

converging to 0 for all t ∈ [λa, T − 2λa], we need to
check that∥∥∥∥∥∥∥

∫ ∞
0

√λ
cλs
e
−
∫ v

0

cλ
s+
√
λx√

λκ
s+
√
λx

dx

νs+
√
λv1Vλ(v)−

√
νt
κt
e
−
√

νt
κt
v

{Xt,λ
v+w

}
dv

∥∥∥∥∥∥∥
Lq2 (P×µ−)

converges to 0 for all t ∈ [λa, T − 2λa]. But this follows directly from the proof of Lemma
2.2.10 as this can be estimated by the first term in (2.30).

Finally, for R4,λ
s we have,

∥∥∥R4,λ
s

∥∥∥
Lp(P)

≤
∥∥∥Rf,λ∥∥∥

Lq1 (P)

∥∥∥∥∥∥E
∫ ∞

0

√
νt
κt
e
−
√

νt
κt
v {
Xt,λ
v+w

}
dv

∣∣∣∣Fs
∥∥∥∥∥∥

Lq2 (P)

.

By the proof of Lemma 2.2.10, it is clear that∥∥∥∥∥∥
∫ ∞

0

√
νt
κt
e
−
√

νt
κt
v {
Xt,λ
v+w

}
dv

∥∥∥∥∥∥
Lq2 (P×µ−)

is finite. Hence, we have
∥∥∥R4,λ

s

∥∥∥
Lp(P×µ−)

converging to 0 for all t ∈ [λa, T − λa].

For R5,λ
s , we have for s = t+

√
λw,

∥∥∥R5,λ
s

∥∥∥
Lp(P)

≤
∥∥∥f ′(BH

t )
∥∥∥
Lq1 (P)

∥∥∥∥∥∥
∫ ∞

0

√
νt
κt
e
−
√

νt
κt
v ∣∣∣Xt,λ

v+w − W̃
H,t
v+w

∣∣∣ dv
∥∥∥∥∥∥
Lq2 (P)

,
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and we write

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
v ∣∣∣Xt,λ

v+w − W̃
H,t
v+w

∣∣∣q2 dv
= 2
Cα

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
v ∣∣∣Xt,λ

v+w − W̃
H,t
v+w

∣∣∣q2 (1 + v)αµ+(dv)

≤ C

∥∥∥∥∥∥
√
νt
κt
e
−
√

νt
κt
v
(1 + v)−α

∥∥∥∥∥∥
Lq6 (µ+)

∥∥∥∣∣∣Xt,λ
v+w − W̃

H,t
v+w

∣∣∣q2∥∥∥
Lq7 (µ+)

for C > 0 and 1 < q6, q7 <∞ such that 1/q6 + 1/q7 = 1. It follows that

∥∥∥R5,λ
s

∥∥∥p
Lp(P×µ−)

≤

∥∥∥∥∥∥
√
νt
κt
e
−
√

νt
κt
v
(1 + v)−α

∥∥∥∥∥∥
Lq6 (P×µ+)

∥∥∥∣∣∣Xt,λ
v+w − W̃

H,t
v+w

∣∣∣q2∥∥∥
Lq7 (P×µ+×µ−)

.

By Lemma 2.2.9, we get that the second norm vanishes to 0. Using this and Lemma 2.2.8,
we obtain the convergence of the conditional expectation

E

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
v {
Xt,λ
v+w

}
dv

∣∣∣∣Fs


towards ξ̃0,t
w in Lp(P× µ−) for all t ∈ [λa, T − λa].

Proposition 2.2.12. Under the Assumptions 2.1.2, we have that

sup
λa≤t≤T−2λa

∥∥∥λ−H/2(X̂λ
t − ξt)− f ′(BH

t )(X̃0,t
0 )
∥∥∥
Lp(P)

→ 0,

for p > 1, as λ→ 0, where

X̃0,t
0 =

∫ 0

−∞

√
νt
κt
e

√
νt
κt
s
ξ̃0,t
s ds,

ξ̃0,t
s =

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
r
E
[
W̃H,t
r+s

∣∣∣∣ F̃s] dr
for s ∈ R.

Proof. The solution to the ODE

dX̂λ
t = cλt

λκt

(
ξ̂λt − X̂λ

t

)
dt, 0 ≤ t ≤ T,

X̂λ
0 = x

is given by

X̂λ
t = e−

∫ t
0

cλs
λκs

ds

(
x+

∫ t

0

cλs
λκs

e
∫ s

0
cλr
λκr

dr ξ̂λs ds

)
.
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Moreover, denoting gλ(r) := cλr/(λκr), we have

1 = hλ(t)
∫ t

0
gλ(s)e−

∫ t
s
gλ(r)drds,

hλ(t) = 1

1− e−
∫ t

0 gλ(r)dr
.

Therefore,

λ−H/2
(
X̂λ
t − ξt

)
(2.40)

= λ−H/2
{
e−
∫ t

0
cλs
λκs

dsx+ e
−
∫ t
t−λa

cλs
λκs

ds
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

dr
(
ξ̂λs − ξt

)
ds

}

+
∫ t

t−λa

cλs
λκs

e−
∫ t
s

cλr
λκr

drλ−H/2
(
ξ̂λs − ξt

)
ds+ λ−H/2ξt

1− hλ(t)
hλ(t) ,

and we have

λ−H/2ξt
1− hλ(t)
hλ(t) = −λ−H/2e−

∫ t
0 gλ(r)drξt.

Because we have by previous results,

sup
0≤t≤T−λa

(λ−H/2e−
∫ t
t−λ

cλr
λκr

dr)→ 0

in Lq(P), as λ→ 0, and

sup
0≤t≤T−λa

∥∥∥∥∥
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

dr ξ̂λs ds

∥∥∥∥∥
Lr(P)

is bounded for λ ∈ (0, 1) by (2.39) for some q, r > 1, we can estimate three out of four
expressions in (2.40). More precisely, we have for 1 < q1, q2 < ∞ such that 1/p =
1/q1 + 1/q2,∥∥∥∥λ−H/2e− ∫ t0 gλ(r)drξt

∥∥∥∥
Lp(P)

≤ ‖ξt‖Lq1 (P)

∥∥∥∥λ−H/2e−∫ t0 gλ(r)dr
∥∥∥∥
Lq2 (P)

.

But then, we have

e−
∫ t

0 gλ(r)dr ≤ e
− t√

λ
infv∈[0,T−λa]

(
cλv√
λκv

)
≤ e
−λa−1/2 infv∈[0,T−λa]

(
cλv√
λκv

)
,

for every t ∈ [λa, T − λa]. As seen in the proof of Lemma 2.2.6, the random variables

λ−H/2e
−λa−1/2 infv∈[0,T−λa]

(
cλv√
λκv

)
,
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indexed by λ ∈ (0, 1) are uniformly integrable in Lq2(P). Hence, we obtain

sup
t∈[λa,T−λa]

∥∥∥∥λ−H/2e− ∫ t0 gλ(r)dr
∥∥∥∥
Lq2 (P)

→ 0.

By Assumption 2.1.2 on ξt, we get the convergence towards 0. The term involving the
initial condition x is dealt with the same way without the need for Hölder’s inequality.

Next we estimate∥∥∥∥∥λ−H/2e−
∫ t
t−λa

cλs
λκs

ds
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

dr
(
ξ̂λs − ξt

)
ds

∥∥∥∥∥
Lp(P)

≤
∥∥∥∥∥λ−H/2e−

∫ t
t−λa

cλs
λκs

ds

∥∥∥∥∥
Lq1 (P)

∥∥∥∥∥
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

dr
(
ξ̂λs − ξt

)
ds

∥∥∥∥∥
Lq2 (P)

and we know the first norm is vanishing in the limit. For the second one, we have the
upper bound

sup
t∈[λa,T−λa]


∥∥∥∥∥
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

dr ξ̂λs ds

∥∥∥∥∥
Lq2 (P)

+
∥∥∥∥∥
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

drξtds

∥∥∥∥∥
Lq2 (P)


and for the second term, since 1/hλ(t) ≤ 1 for any t > 0, we have

sup
t∈[λa,T−λa]

∥∥∥∥∥
∫ t−λa

0

cλs
λκs

e−
∫ t−λa
s

cλr
λκr

drξtds

∥∥∥∥∥
Lq2 (P)

≤ sup
t∈[λa,T−λa]

‖ξt‖Lq2 (P) <∞.

For the first term, we have the finiteness following from (2.39).
For the rest of the proof, we do a change of variable, s = t +

√
λw. We denote by

λ−H/2(X̂λ
t − ξt) the main term in (2.40). We also denote Vλ = (−λa−1/2, 0), and introduce

the measure µ−(dw) = (Cα/2)(1 + |w|)−αdw and we have by Hölder’s inequality that

sup
λa≤t≤T−2λa

∥∥∥λ−H/2(X̂λ
t − ξt)− f ′(BH

t )X̃0,t
0

∥∥∥
Lp(P)

= sup
λa≤t≤T−2λa

∥∥∥∥∥∥∥
∫ 0

−∞


cλ
t+
√
λw√

λκt+
√
λw

e
−
∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

λ−H/2(ξ̂λ
t+
√
λw
− ξt)1Vλ(w)

−f ′(BH
t )
√
νt
κt
e

√
νt
κt
w
ξ̃0,t
w

 dw
∥∥∥∥∥∥
Lp(P)

≤ sup
λa≤t≤T−2λa

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥
∣∣∣∣∣∣∣
cλ
t+
√
λw√

λκt+
√
λw

e
−
∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

1Vλ(w)−
√
νt
κt
e

√
νt
κt
w

∣∣∣∣∣∣∣ (1 + |w|)α

∥∥∥∥∥∥∥
Lq1 (µ−)

·
∥∥∥λ−H/2(ξ̂λ

t+
√
λw
− ξt)

∥∥∥
Lq2 (µ−)

∥∥∥∥
Lp(P)

+ sup
λa≤t≤T−2λa

∥∥∥∥∥∥
∫ 0

−∞

√
νt
κt
e

√
νt
κt
w ∣∣∣λ−H/2(ξ̂λ

t+
√
λw
− ξt)1Vλ(w)− f ′(BH

t )ξ̃0,t
w

∣∣∣ dw
∥∥∥∥∥∥
Lp(P)

,
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again for 1 < q1, q2 < ∞ such that 1/p = 1/q1 + 1/q2. Applying Hölder’s inequality
again and introducing the product probability measure P(dω) × µ−(dw) this can further
be estimated by

sup
λa≤t≤T−2λa

∥∥∥λ−H/2(X̂λ
t − ξt)− f ′(BH

t )X̃0
t

∥∥∥
Lp(P)

≤

sup
λa≤t≤T−2λa


∥∥∥∥∥∥∥
 cλ

t+
√
λw√

λκt+
√
λw

e
−
∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

1Vλ(w)−
√
νt
κt
e

√
νt
κt
w

 (1 + |w|)α

∥∥∥∥∥∥∥
Lq1 (P×µ−)

·
∥∥∥λ−H/2(ξ̂λ

t+
√
λw
− ξt)1Vλ(w)

∥∥∥
Lq2 (P×µ−)

}

+ sup
λa≤t≤T−2λa

∥∥∥∥∥∥
√
νt
κt
e

√
νt
κt
w

(1 + |w|)α
∥∥∥∥∥∥
Lq1 (P×µ−)

(2.41)

·
∥∥∥λ−H/2(ξ̂λ

t+
√
λw
− ξt)1Vλ(w)− f ′(BH

t )ξ̃0,t
w

∥∥∥
Lq2 (P×µ−)

.

By Lemma 2.2.11, we have that∥∥∥λ−H/2(ξ̂λ
t+
√
λw
− ξt)1Vλ(w)− f ′(BH

t )ξ̃0,t
w

∥∥∥
Lq2 (P×µ−)

→ 0,

as λ → 0 and therefore, the second term in (2.41) converges to 0. For the first term in
(2.41), we show that the random variables,

Y 1,λ =


cλ
t+
√
λw√

λκt+
√
λw

e
−
∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

(1 + |w|)α1Vλ(w)


q1

,

Y 2,λ =


√
νt
κt
e

√
νt
κt
w

(1 + |w|)α1(−∞,0)(w)


q1

are bounded in L1+ε(P× µ−) and hence uniformly integrable. We estimate

EP×µ−

[
(Y 1,λ)1+ε

]

≤ CE

∫ 0

−λa−1/2

 cλ
t+
√
λw√

λκt+
√
λw

q1(1+ε)

e
−q1(1+ε)

∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

(1 + |w|)αq1(1+ε)−αdw


≤ C1E

{ sup
t∈[0,T−λa]

cλt√
λκt

}q1(1+ε) 1
inft∈[0,T−λa] c

λ
t /(
√
λκt)


+ C2E

{ sup
t∈[0,T−λa]

cλt√
λκt

}q1(1+ε) Γ(αq1(1 + ε)− α+ 1){
inft∈[0,T−λa] c

λ
t /(
√
λκt)

}αq1(1+ε)−α+1

 .
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for C1, C2 > 0 and

EP×µ−

[
(Y 2,λ)1+ε

]
≤ C1E

( sup
t∈[0,T ]

√
νt
κt

)q1(1+ε)−1


+ C2Γ(α(q1(1 + ε)− 1) + 1)E

( sup
t∈[0,T ]

√
νt
κt

)(1−α)q1(1+ε)−1+α
 .

The uniform integrability of Y 1,λ and Y 2,λ then allows us to interchange the limit with
taking expectation with respect to P× µ. Because

sup
0≤t≤T−λa

∣∣∣∣∣ cλt√λ −√νtκt
∣∣∣∣∣→ 0,

P-a.s., as λ→ 0, we have

sup
λa≤t≤T−2λa

∥∥∥∥∥∥∥
 cλ

t+
√
λw√

λκt+
√
λw

e
−
∫ 0
w

cλ
t+
√
λr√

λκ
t+
√
λr

dr

1Vλ(w)−
√
νt
κt
e

√
νt
κt
w

 (1 + |w|)α

∥∥∥∥∥∥∥
Lq1 (P×µ−)

→ 0,

as λ→ 0. This shows the convergence of the right-hand side of (2.41) towards 0.

Lemma 2.2.13. Under the Assumptions 2.1.2, we have

sup
t∈[λa,T−λa]

∥∥∥{λ−H/2 (ξ̂λt − ξt)}− f ′(BH
t )ξ̃0,t

0

∥∥∥
Lp(P)

→ 0,

for p > 1, as λ→ 0, where

ξ̃0,t
s =

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
r
E
[
W̃H,t
r+s

∣∣∣∣ F̃s] dr,
for s ∈ R.

Proof. The proof follows the proofs of Lemma 2.2.11 and Lemma 2.2.10, with w = 0.

Proposition 2.2.14. Under the Assumptions 2.1.2, we have

sup
t∈[λa,T−λa]

∥∥∥{λ−H/2 (ξ̂λt − X̂λ
t

)}
− f ′(BH

t )
(
ξ̃0,t

0 − X̃
0,t
t

)∥∥∥
Lp(P)

→ 0,

for p > 1, as λ→ 0, where

X̃0,t
0 =

∫ 0

−∞

√
νt
κt
e

√
νt
κt
s
ξ̃0,t
s ds,

ξ̃0,t
s =

∫ ∞
0

√
νt
κt
e
−
√

νt
κt
r
E
[
W̃H,t
r+s

∣∣∣∣ F̃s] dr
for s ∈ R.
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Proof. We write

λ−H/2
(
ξ̂λt − X̂λ

t

)
= λ−H/2

(
ξ̂λt − ξt

)
+ λ−H/2

(
ξt − X̂λ

t

)
and the result follows directly from Proposition 2.2.12 and Lemma 2.2.13.

2.2.3 Main proof

Finally, before moving to the main proof of Theorem 2.1.3, we must show that the first
and last interval, [0, λa] and [T − λa, T ] have effect of order o(λH).

Lemma 2.2.15. In the setup of Theorem 2.1.3, we have

J0,λa(ûλ) := E
[∫ λa

0
νt(X̂λ

t − ξt)2dt+ λ

∫ λa

0
κt(ûλt )2dt

]
= o(λH).

Proof. Without any loss of generality, we assume that X̂λ
0 = 0 and we choose the subop-

timal strategy on [0, λa] given by

ūt = 0, t ∈ [0, λa].

It follows that

J0,λa(ûλ) ≤ J0,λa(ū) = E
[∫ λa

0
νt(ξt)2dt

]
.

Then, on the interval [0, λa] we have the following Taylor expansion of the target,

ξt = f(BH
t ) = f(BH

0 ) + f ′(BH
u(0,t))(B

H
t −BH

0 ),

for some u(0, t) ∈ [0, t]. Then, we have

E
[
νt(ξt)2

]
≤ 2f(BH

0 )2 sup
0≤t≤λa

E [νt] + 2E
[{

sup
0≤t≤T

νt

}{
sup

0≤t≤T
f ′(BH

t )2
}

(BH
t −BH

0 )2
]

≤ 2f(BH
0 )2

∥∥∥∥∥ sup
0≤t≤T

νt

∥∥∥∥∥
L1(P)

+ 2
∥∥∥∥∥ sup

0≤t≤T
νt

∥∥∥∥∥
Lq1 (P)

∥∥∥∥∥ sup
0≤t≤T

f ′(BH
t )2

∥∥∥∥∥
Lq2 (P)

∥∥∥(BH
t −BH

0 )2
∥∥∥
Lq3 (P)

,

where 1 < q1, q2, q3 <∞ and 1 = 1/q1 + 1/q2 + 1/q3. Hence using Assumptions 2.1.2, we
obtain, for some constants C1, C2, C3 > 0,

E
[∫ λa

0
νt(ξt)2dt

]
≤ C1λ

a + C2

∫ λa

0
t2Hdt

≤ C1λ
a + C3λ

a(2H+1).
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Since a > H, we have a > H/(2H + 1), and we conclude the higher order than λH .

The next lemma shows that including liquidation constraint for our problem will not
affect our leading order expansion as liquidation has an effect of order o(λH).

Lemma 2.2.16. In the setup of Theorem 2.1.3, define for Xu
t = x+

∫ t
0 usds,

JT−λa,T (u) = E
[∫ T

T−λa
νt(Xu

t − ξt)2dt+ λ

∫ T

T−λa
κt(ut)2dt

]
,

and let us denote by (ûL,λt )t∈[0,T ] the optimal solution to minimising JT (u) as in (2.1) over
the set of admissible stratetgies u satifying the terminal liquidation constraint Xu

T = 0.
Then, we have

JT−λa,T (ûL,λ) = E
[∫ T

T−λa
νt(X̂L,λ

t − ξt)2dt+ λ

∫ T

T−λa
κt(ûL,λt )2dt

]
= o(λH).

Proof. We start by considering ûλ the unconstrained optimal solution to (2.1) and denote
XT−λa = X̂λ

T−λa . We then define the following suboptimal liquidation strategy (where we
drop the λ exponent to alleviate notation) starting at T − λa,

ūt = −XT−λa

λa
, t ∈ [T − λa, T ], (2.42)

such that

X̄t = XT−λa

λa
(T − t), t ∈ [T − λa, T ].

We then have the following inequalities

JT−λa,T (ûλ) ≤ JT−λa,T (ûL,λ) ≤ JT−λa,T (ūλ).

and we then prove that

JT−λa,T (ū) = E
[∫ T

T−λa
νt(X̄t − ξt)2dt+ λ

∫ T

T−λa
κt(ūt)2dt

]
= o(λH).

to get the result.
To that effect, we start by writing

E
[∫ T

T−λa
νt(X̄t − ξt)2dt

]
≤ 3E

[∫ T

T−λa
νt

(
XT−λa

λa
(T − t)−XT−λa

)2
dt

]

+ 3E
[∫ T

T−λa
νt (XT−λa − ξT−λa)2 dt

]

+ 3E
[∫ T

T−λa
νt (ξT−λa − ξt)2 dt

]
,
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and we estimate each part separately. We have

E
[∫ T

T−λa
νt

(
XT−λa

λa
(T − t)−XT−λa

)2
dt

]
≤ λa

3 E
[(

sup
t∈[0,T ]

νt

)
(XT−λa)2

]

≤ λa

3

∥∥∥∥∥ sup
t∈[0,T ]

νt

∥∥∥∥∥
q1

∥∥∥(XT−λa)2
∥∥∥
q2
,

with 1 < q1, q2 <∞, 1/q1 + 1/q2 = 1. With (2.39) and Assumptions 2.1.2, the estimate is
of higher order than λH since we have H < a < 1/2. Next, we consider

λ−HE
[∫ T

T−λa
νt (XT−λa − ξT−λa)2 dt

]
≤ λa

∥∥∥∥∥ sup
t∈[0,T ]

νt

∥∥∥∥∥
q1

∥∥∥∥{λ−H/2(XT−λa − ξT−λa)
}2
∥∥∥∥
q2

,

which converges to 0 as λ → 0 by Proposition 2.2.12. Next, we use Taylor expansion for
t ∈ [T − λa, T ],

f(BH
t ) = f(BT−λa) + f ′(BH

T−λa)(BH
t −BH

T−λa).

and we then have

λ−HE
[∫ T

T−λa
νt (ξT−λa − ξt)2 dt

]

≤
∥∥∥∥∥
{

sup
t∈[0,T ]

νt

}{
sup
t∈[0,T ]

f ′(BH
t )2

}∥∥∥∥∥
q3

∥∥∥∥∥
∫ T

T−λa

{
λ−H/2(BH

t −BH
T−λa)

}2
dt

∥∥∥∥∥
q4

,

for 1 < q3, q4 <∞, 1/q4 + 1/q3 = 1. We further estimate∥∥∥∥∥
{

sup
t∈[0,T ]

νt

}{
sup
t∈[0,T ]

f ′(BH
t )2

}∥∥∥∥∥
q3

≤
∥∥∥∥∥ sup
t∈[0,T ]

νt

∥∥∥∥∥
q5

∥∥∥∥∥ sup
t∈[0,T ]

f ′(BH
t )2

∥∥∥∥∥
q6

<∞,

by Assumption 2.1.2, with 1 < q5, q6 <∞, 1/q3 = 1/q5 + 1/q6. Furthermore, by Jensen’s
inequality, and the fact that the variance of increments of fBM is increasing with the size
of the increments, we have

E
[(∫ T

T−λa

{
λ−H/2(BH

t −BH
T−λa)

}2
dt

)q4]
≤ λaq4E

[{
λ−H/2(BH

T −BH
T−λa)

}2q4
]

≤ Cλq4{a+2H(a−1/2)}

for some C > 0, where we use the fact that λ−H/2(BH
T − BH

T−λa) ∼ N
(
0, λH(2a−1)

)
. We

then have, ∥∥∥∥∥
∫ T

T−λa

{
λ−H/2(BH

t −BH
T−λa)

}2
dt

∥∥∥∥∥
q4

≤ C1/q4λ{a+2H(a−1/2)} → 0,

as we have a > H and therefore, a > H/(1 + 2H).
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Finally, we consider the term

E
[∫ T

T−λa
λκt(ūt)2dt

]
≤ λ1−aE

[(
sup
t∈[0,T ]

κt

)
(XT−λa)2

]

≤ λ1−a
∥∥∥∥∥ sup
t∈[0,T ]

κt

∥∥∥∥∥
q1

∥∥∥(XT−λa)2
∥∥∥
q2

and where we use (2.42). Using (2.39) and Assumption 2.1.2, it then follows,

λ−HE
[∫ T

T−λa
λκt(ūt)2dt

]
≤ λ1−a−H

∥∥∥∥∥ sup
t∈[0,T ]

κt

∥∥∥∥∥
q1

∥∥∥(XT−λa)2
∥∥∥
q2
→ 0,

since H < a < 1/2 and therefore, H + a < 1.

We are now ready to provide the proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. By Lemma 2.2.15 and 2.2.16, we can ignore the first interval
[0, λa] and the last interval [T − λa, T ] as both their respective effects are of order o(λH).
We then rewrite

Jλa,T−λa(ûλ)

= λH
(∫ T−λa

λa
E
[
νt
{
λ−H/2(X̂λ

t − ξt)
}2
]
dt+

∫ T−λa

λa
E
[
κt
{
λ(1−H)/2(ûλt )

}2
]
dt

)
.

For the deviation, we show

sup
t∈[λa,T−λa]

∣∣∣∣E [νt {λ−H/2(X̂λ
t − ξt)

}2
]
− E

[
νtf
′(BH

t )2ZD(δt)2
]∣∣∣∣→ 0,

as λ → 0, where for δ > 0, the random variable ZD(δ) has the same law as (2.24) in
Lemma 2.2.7. For this, we have

sup
t∈[λa,T−λa]

∣∣∣∣E [νt {λ−H/2(X̂λ
t − ξt)

}2
]
− E

[
νtf
′(BH

t )2ZD(δt)2
]∣∣∣∣

≤
∥∥∥∥∥ sup
t∈[0,T ]

νt

∥∥∥∥∥
Lq1 (P)

sup
t∈[λa,T−λa]

∥∥∥∥∣∣∣∣{λ−H/2(X̂λ
t − ξt)

}2
− f ′(BH

t )2ZD(δt)2
∣∣∣∣∥∥∥∥
Lq2 (P)

,

for 1 < q1, q2 < ∞ such that 1/q1 + 1/q2 = 1. The convergence towards 0 follows
immediatly by Proposition 2.2.12 and Lemma 2.2.7.

For the rate, we show

sup
t∈[0,T−λa]

∣∣∣∣E [κt {λ(1−H)/2(ûλt )
}2
]
− E

[
νtf
′(BH

t )2ZR(δt)2
]∣∣∣∣→ 0,

as λ → 0. where for δ > 0, the random variable ZR(δ) has the same law as (2.23) in
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Lemma 2.2.7. We recall that

ûλt = cλt
λκt

(
ξ̂λt − X̂λ

t

)
,

and therefore,

κt
{
λ(1−H)/2(ûλt )

}2
= 1
κt

(
cλt√
λ

)2 {
λ−H/2

(
ξ̂λt − X̂λ

t

)}2
.

We then have,

sup
t∈[λa,T−λa]

∣∣∣∣E [κt {λ(1−H)/2(ûλt )
}2
]
− E

[
νtf
′(BH

t )2ZR(δt)2
]∣∣∣∣

≤ sup
t∈[λa,T−λa]

E

∣∣∣∣∣∣
 1
κt

(
cλt√
λ

)2

− νt

{λ−H/2 (ξ̂λt − X̂λ
t

)}2
∣∣∣∣∣∣
 (2.43)

+ sup
t∈[λa,T−λa]

E
[
νt

∣∣∣∣{λ−H/2 (ξ̂λt − X̂λ
t

)}2
− f ′(BH

t )2ZR(δt)2
∣∣∣∣] . (2.44)

We start with the term (2.44). For this we have

sup
t∈[λa,T−λa]

E
[
νt

∣∣∣∣{λ−H/2 (ξ̂λt − X̂λ
t

)}2
− f ′(BH

t )2ZR(δt)2
∣∣∣∣]

≤
∥∥∥∥∥ sup
t∈[0,T ]

νt

∥∥∥∥∥
Lq1 (P)

sup
t∈[λa,T−λa]

∥∥∥∥∣∣∣∣{λ−H/2 (ξ̂λt − X̂λ
t

)}2
− f ′(BH

t )2ZR(δt)2
∣∣∣∣∥∥∥∥
Lq2 (P)

.

By Proposition 2.2.14 we obtain the convergence towards 0. For the term (2.43), we have
the upper bound∥∥∥∥∥ sup

t∈[0,T ]

1
κt

∥∥∥∥∥
Lq3 (P)

sup
t∈[λa,T−λa]

∥∥∥∥∥ cλt√λ − νtκt
∥∥∥∥∥
Lq4 (P)

sup
t∈[λa,T−λa]

∥∥∥∥{λ−H/2 (ξ̂λt − X̂λ
t

)}2
∥∥∥∥
Lq5 (P)

,

with 1 < q3, q4, q5 < ∞ with 1 = 1/q3 + 1/q4 + 1/q5. The convergence towards 0 then
follows from Assumptions 2.1.2, Proposition 2.2.1, Proposition 2.2.14

Combining the results obtained for the deviation and the rate, we can write

Jλa,T−λa(ûλ) = λH
∫ T−λa

λa
E
[
νtf
′(BH

t )2
{
ZD(δt)2 + ZR(δt)2

}]
dt+ o(λH).

From Lemma 2.2.7, we have

E
[
ZD(δt)2

∣∣∣∣Ft] = δ2
t (1−H)Γ(2H + 1)

{1 + sin(πH)
2

}
,

E
[
ZR(δt)2

∣∣∣∣Ft] = δ2
tHΓ(2H + 1)

{1 + sin(πH)
2

}
,
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and it follows

E
[
νtf
′(BH

t )2
{
ZD(δt)2 + ZR(δt)2

}]
= E

[
I(f ′(Bt), νt, κt)

]
.

Finally, we add the effects from the first and last intervals to obtain, as λ→ 0,

JT (ûλ) = Jλa,T−λa(ûλ) + o(λH)

= λH
∫ T

0
E
[
I(f ′(Bt), νt, κt)

]
dt+ o(λH).

For an asymptotically optimal strategy, we realise that deriving the corresponding
expression comes as a biproduct from our proof. Indeed, if we plug the expressions for
ξ̂a, X̂a, ûa from the statement of Theorem 2.1.3 into the objective value (2.1) our aim is
to show that λ−HJT (ûa) attains the leading order coefficient we derived. In particular
rescaling the processes as they appear in JT (ûa) will result in similar expression encoun-
tered before1. This becomes particularly clear when looking at the proofs Lemma 2.2.10,
2.2.11 and Proposition 2.2.12.

2.3 Extension to other rough targets

We further extend the result of Theorem 2.1.3 to other types of rough target we consider
in our introductory framework.

Fractional Ornstein-Uhlenbeck

Consider a fractional Ornstein-Uhlenbeck proces (fOU) given by, for t > 0,

Y H
t = e−αY t

(
y + ν

∫ t

0
eαY udBH

u

)
,

for αY , ν > 0, y ∈ R, and solving the equation

Y H
t = y − αY

∫ t

0
Y H
u du+ νBH

t .

In particular, for t > s, we obtain that the increment of fOU is

Y H
t − Y H

s = −αY
∫ t

s
Y H
u du+ ν(BH

t −BH
s ). (2.45)

This suggest that once we perform the rescaling, the dt-integral will be of higher order
and only the rescaled fBM, which is again an fBM, will remain.

In the proof of Theorem 2.1.3, the key part that requires additional results for other
types of rough target is the one involving Taylor formula in Lemma 2.2.11. Indeed, we
need to rescale increments like (2.45) and show that the rescaled dt-integral vanishes. The
corresponding term in Lemma 2.2.11 is given in (2.35). In order to show that this term

1With in fact less remainder terms to control.
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vanishes, we need to verify (2.33) in the proof of Lemma 2.2.10, which is a consequence of
the next Lemma.

Lemma 2.3.1. Provided (2.6) holds, we have, for all p ≥ 1,

sup
t∈[λa,T−λa]

sup
s∈[t−λa,t+λa]

∥∥∥λ−H/2(Y H
t − Y H

s )− λ−H/2ν(BH
t −BH

s )
∥∥∥
Lp(P)

→ 0,

as λ→ 0.

Proof. We have for s > t,

λ−H/2(Y H
t − Y H

s )− λ−H/2ν(BH
t −BH

s ) = −λ−H/2αY
∫ t

s
Y H
u du (2.46)

and we have the following estimate (which also holds for s < t),

σ2
λ := E

[∣∣∣∣λ−H/2αY ∫ t

s
Yudu

∣∣∣∣2
]
≤ λ−Hα2

Y max
u∈[0,T ]

E
[∣∣∣Y H

u

∣∣∣2] (s− t)2

≤ λ2a−Hα2
Y max
u∈[0,T ]

E
[∣∣∣Y H

u

∣∣∣2]→ 0,

as λ → 0, if we choose a > H > H/2, which is the case for the proof of Theorem 2.1.3.
Therefore, since Y H is a Gaussian process, the random variable on the right-hand side of
(2.46) is Gaussian. We obtain the result since σλ → 0 as λ→ 0.

Hence, denoting,

At −As = (Y H
t − Y H

s )− ν(BH
t −BH

s ),

we also clearly have for Uλ = (−λa−1/2, 0), Vλ = (0, λa−1/2),

sup
t∈[λa,T−λa]

∥∥∥∣∣∣At+√λ(v+w) −At
∣∣∣1Vλ(v)1Uλ(w)

∥∥∥
Lp(P×µ−×µ+)

→ 0.

From the proof of Lemma 2.3.1, we also deduce that, for t > s,

E
[
(Y H
t − Y H

s )2
]
≤ CT (t− s)2 + C(t− s)2H , (2.47)

for some constants CT , C > 0. This last equation is necessary to adapt the proof for the
higher order of the first and last intervals.

Therefore, under Assumptions 2.1.2, we can adapt the proof of Theorem 2.1.3 to obtain
the following variation of (2.5).

JT (ûλ) = E
[∫ T

0
νt(X̂λ

t − ξt)2dt+ λ

∫ T

0
κt(ûλt )2dt

]

= λH
∫ T

0
E
[
I(νf ′(Y H

t ), νt, κt)
]
dt+ o(λH), (2.48)
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Equation (2.48) tells us that whenever the target is of the form ξt = f(Y H
t ), we can essen-

tially replace Y H
t by νBH

t in the ergodic control formula since the dt-part of increments
of fOU is of higher order.

Riemann-Liouville fractional Brownian Motion

In a similar manner as for fOU, we extend the result of Theorem 2.1.3 to functions of
Riemann-Liouville fBM WH . We recall that we have the following representation,

BH
t = 1

aH

(
It +WH

t

)
,

with

It := 1
Γ(H + 1/2)

∫ 0

−∞

{
(t− u)H−1/2 − (−u)H−1/2

}
dWu,

WH
t := 1

Γ(H + 1/2)

∫ t

0
(t− u)H−1/2dWu,

where aH = cH/Γ(H + 1/2) and

cH =
√

1
2H +

∫ ∞
0

{
(1 + u)H−1/2 − uH−1/2}2

du.

Hence, we have for t > s,

WH
t −WH

s = aH(BH
t −BH

s ) + aH(It − Is),

and as for fOU, we focus our attention on the increment (It − Is).

Lemma 2.3.2. Given It defined above, we have the following result for t > s > 0,

E
[
(It − Is)2

]
≤ C ′H(t− s)(s2H−1 − t2H−1), , (2.49)

E
[
(It − Is)2

]
≤ CH(t− s)2H (2.50)

where CH , C ′H are positive constants that depend on H < 1/2.

Proof. We first notice that the process It is differentiable at any t > 0, and its derivative
is given by

it = (H − 1/2)
Γ(H + 1/2)

∫ 0

−∞
(t− s)H−3/2dWs,

and it satisfies

E
[
(it)2

]
=
(

H − 1/2
Γ(H + 1/2)

)2 ∫ ∞
0

(t+ s)2H−3ds = DHt
2H−2,

83



with DH > 0. By Jensen’s inequality, it follows that,

E
[
(It − Is)2

]
= E

[(∫ t

s
iudu

)2]
≤ (t− s)

∫ t

s
E[(iu)2]du

≤ (t− s)C ′H(s2H−1 − t2H−1),

with C ′H > 0.
For the second estimate, we write

E
[
(It − Is)2

]
= 1

Γ(H + 1/2)2

∫ ∞
0

{
(t+ v)H−1/2 − (s+ v)H−1/2

}2
dv

= 1
Γ(H + 1/2)2 (t− s)2H

∫ ∞
s

{
(1 + u)H−1/2 − (u)H−1/2

}2

≤ (t− s)2H 1
Γ(H + 1/2)2

∫ ∞
0

{
(1 + u)H−1/2 − (u)H−1/2

}2
= CH(t− s)2H ,

with CH > 0 and where we changed the variable u = (s+ v)/(t− s).

In particular, we see from the previous lemma that the term (It − Is) scales like fBM.
This ensures that in the proof of Theorem 2.1.3, the first and last interval are of higher
order. Again, to adapt the proof of Theorem 2.1.3, we need to verify the key property
(2.33) found in Lemma 2.2.10.

Lemma 2.3.3. Provided (2.6) holds, we have, for Uλ = (−λa−1/2, 0), Vλ = (0, λa−1/2)
and for any q > 1,

sup
t∈[2λa,T−2λa]

∥∥∥λ−H/2(It+√λ(v+w) − It)1Vλ(v)1Uλ(w)
∥∥∥
Lq(P×µ−×µ+)

→ 0.

Proof. By Lemma 2.3.2, we have for any t ∈ [2λa, T − 2λa], for some C > 0∥∥∥λ−H/2(It+√λ(v+w) − It)1Vλ(v)1Uλ(w)
∥∥∥
Lq(P)

≤ Cλ−H/2
∣∣∣√λ(w + v)

∣∣∣1/2 {(t+
√
λ(w + v))2H−1 − t2H−1

}1/2
1Vλ(v)1Uλ(w)

≤ Cλ−H/2
∣∣∣√λ(w + v)

∣∣∣1/2 (λa)(2H−1)/2
1Vλ(v)1Uλ(w).

Hence, we have∥∥∥λ−H/2(It+√λ(v+w) − It)1Vλ(v)1Uλ(w)
∥∥∥
Lq(P×µ−×µ+)

=
∥∥∥∥∥∥∥λ−H/2(It+√λ(v+w) − It)1Vλ(v)1Uλ(w)

∥∥∥
Lq(P)

∥∥∥∥
Lq(µ−×µ+)

≤ Cλ1/4−H/2+a(2H−1)/2
{∫ ∞

0

∫ 0

−∞
|w + v|q (1 + |w|)−α(1 + |v|)−αdwdv

}1/q
,

which converges to 0 if we have α large enough and if, 1/2−H − (1− 2H)a > 0, which is
the same as requiring a < 1/2. Hence, we have the result.
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Similarly to the fOU case, under Assumptions 2.1.2, we can adapt the proof of Theorem
2.1.3 to obtain the following variation of (2.5).

JT (ûλ) = E
[∫ T

0
νt(X̂λ

t − ξt)2dt+ λ

∫ T

0
κt(ûλt )2dt

]

= λH
∫ T

0
E
[
I(aHf ′(WH

t ), νt, κt)
]
dt+ o(λH). (2.51)

In Chapter 1, we derived the formula for the ergodic control problem of RLfBM. If we
denote this formula IW (f ′(WH

t ), νt, κt), then we obtain

IW (f ′(WH
t ), νt, κt) = I(aHf ′(WH

t ), νt, κt),

as proved in Corollary 1.2.10.
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Chapter 3

Rough and Classical Stochastic
Volatility Model Comparison

This chapter is based on joint work with Dr. Christoph Czichowsky and Prof. Johannes
Muhle-Karbe1.

We now compare the quantitative impact of small transaction costs in rough and
classical stochastic volatility models. To make the models comparable, the respective
parameters need to be chosen appropriately; we address this by matching the first and
second moments of volatility so that, in particular, the expected volatility and frictionless
positions coincide in both models.

Throughout, the time horizon is

T = 5 years.

For the risk premium in the dynamics of the risky asset,

dSt = µdt+ σtdWt, (3.1)

we use the estimate

µ = $131.7 per year.

This is obtained from the S&P500 time series from December 31, 2013 (when the price
was $1848.36) until December 31, 2018 (when the price was $2506.85). (The average
S&P500 price S̄ during this period was 2255.61$, so that the average risk premium was
about 5.84%.) For the absolute risk-aversion parameter, we follow Gârleanu and Pedersen

1We would like to thank Dr. Mikko Pakkanen, Dr. Eduardo Abi Jaber and Aitor Muguruza for useful
discussions and shared resources.
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(2013) and set

γ = 10−9.

3.1 Volatility models

As a prototype for a rough volatility model, we use the model of Gatheral et al. (2018)
where the volatility process is the exponential of a fractional Ornstein-Uhlenbeck, that is
an Ornstein-Uhlenbeck process driven by fractional Brownian motion with Hurst index
H ∈ (0, 1/2):

σHt = ηHe
νHY

H
t , ηH , νH > 0,

where
dY H

t = −κHY H
t dt+ dWH

t , Y H
0 = 0, κH > 0.

Here, we recall that (WH
t )t∈[0,T ] is a Riemann-Liouville fBM1 (RLfBM) driven by the

Brownian motion (Wt)t∈[0,T ] generating the underlying filtration:

WH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs.

We will compare this model to a classical volatility model, where the Ornstein-Uhlenbeck
process is instead driven by a standard Brownian motion (Wt)t∈[0,T ] with Hurst index
H = 1/2:

σt = ηeYt , η > 0,

where
dYt = −κYtdt+ dWt, Y0 = 0, κ > 0.

Rough volatility model parameters

The following estimates are obtained in Gatheral et al. (2018) from a time series of S&P
500 prices:2

H = 0.14, νH = 0.3× 0.74 = 0.22, ηH = 2255.61× e−5 = 15.2, κH = 5× 10−4.

For time horizons that are not too long, Gatheral et al. (2018) observe that the mean-
reversion speed κH in the rough model can be set to zero without materially affecting
the properties of the model. The intuition for this is that fBM already has negative
autocorrelation for H < 1/2, and thereby displays similar features as a mean-reverting
process.

1In Gatheral et al. (2018) a fBM rather than a RLfBM is used.
2More precisely, Gatheral et al. (2018) work with the geometric version of the model, where σHt is

the volatility of the log price. In order to obtain broadly consistent values in our arithmetic model, we
multiply their log volatility with the average price $2255.61 of the S&P 500 index over the sample period
from December 31, 2013 until December 31, 2018. Moreover, since Gatheral et al. (2018) use fBM instead of
RLfBM; to match the variances of the two processes, we multiply their value of ν by

√
2HΓ(H+1/2) = 0.74.
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To simplify the moment matching below, we follow this approach and henceforth focus
on

σHt = ηHe
νHW

H
t . (3.2)

Classical volatility model parameters

To identify the two parameters η, κ in the classical volatility model, we need two conditions.
To this end, we require that the time-averages of the volatility and the inverse of its square
coincide in both models:

1
T

∫ T

0
E
[
σHt

]
dt = 1

T

∫ T

0
E [σt] dt, (3.3)

1
T

∫ T

0
E
[
(σHt )−2

]
dt = 1

T

∫ T

0
E
[
σ−2
t

]
dt. (3.4)

Matching the moments of the inverse squared volatility ensures that the time-averages
of the frictionless positions µ/(γσ2

t ), µ/(γ(σHt )2) and the corresponding frictionless per-
formances are the same in both models. Moreover, we match the time-averaged level of
volatility for both models.

For the rough model, recall that the RLfBMWH
t is Gaussian with mean 0 and variance

vHt
2H , where vH = (2HΓ(H + 1/2)2)−1. As a result, the moment-generating function

of normal distribution allows us to compute the time-average moments of the volatility
process σHt = ηH exp(νHWH

t ):

M1 = 1
T

∫ T

0
E
[
σHt

]
dt = ηH

T

∫ T

0
e

1
2ν

2
HvH t

2H
dt,

M−2 = 1
T

∫ T

0
E
[
(σHt )−2

]
dt = η−2

H

T

∫ T

0

(
e2ν2

HvH t
2H)

dt.

For the classical model, observe that Yt ∼ N (0, 1
2κ(1−e−2κt)). As a result the correspond-

ing time average moments of the volatility process σt = η exp(Yt) are given by

M1(ν, κ) = 1
T

∫ T

0
E [σt] dt = η

T

∫ T

0
e

1
4κ (1−e−2κt)dt =: ηI1(κ),

M−2(ν, κ) = 1
T

∫ T

0
E
[
σ−2
t

]
dt = η−2

T

∫ T

0
e

1
κ

(1−e−2κt)dt =: η−2I−2(κ),

Hence, to achieve the moment matchings (3.3) and (3.4), η and κ need to satisfy

M1 = ηI1(κ),
M−2 = η−2I−2(κ).

From the first equation, we have

η = I1(κ)−1M1. (3.5)
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Inserting this into the second equation gives

M−2 = I1(κ)2M−2
1 I−2(κ),

or, equivalently,

I1(κ)2I−2(κ) = M2
1M−2.

Since the right-hand side is given in terms of the parameters H, ηH , νH of the rough
volatility model, it remains to solve this scalar equation numerically for κ, and in turn
compute the corresponding value of η using (3.5). For the rough volatility parameters
from Gatheral et al. (2018), this yields

κ = 4.40, η = 0.0067.

Figure 3.1 shows simulated paths for both models with the parameter matching we
have done. To facilitate comparison, the Brownian motion used to simulate the Ornstein-
Uhlenbeck is also used to simulate the RLfBM. We see that the processes display broadly
similar behavior, but the fractional volatility process fluctuates much more rapidly.
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Figure 3.1: Simulated paths of daily volatility for the rough and the classical volatility
models with the matched model parameters.

3.2 Asymptotic expansion of utility losses

For the rough and classical volatility models with parameters matched as above, we now
compare the effect of small transaction costs. Recall that in the classical volatility model,
the agent maximises

E
[∫ T

0

(
µϕt −

γσ2
t

2 ϕ2
t − λϕ̇2

t

)
dt

]
; (3.6)
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in the rough version of the model, σt is replaced by σHt . As seen in the Introduction, max-
imising this goal functional is equivalent to solving the following linear-quadratic tracking
problem for the frictionless optimal strategy ϕ̂t = µ/(γσ2

t ) (resp., ϕ̂t = µ/(γ(σHt )2) for the
rough version of the model):

min
ϕ̇

E
[∫ T

0

{
γ̄t(ϕt − ϕ̂t)2 + λϕ̇2

t

}
dt

]
, where γ̄t = γσ2

t
2 . (3.7)

For small transaction costs λ , we have studied in the previous Chapter 2 the leading-order
expansion of the minimised objective (3.7). In the case where the target is a rough process,
namely a function of fractional Brownian motion ϕ̂t = f(BH

t ) with f ∈ C2(R), we found
in Theorem 2.1.3 that

min
ϕ̇

E
[∫ T

0

{
γ̄t(ϕt − ϕ̂t)2 + λϕ̇2

t

}
dt

]
= λH

∫ T

0
E
[
I(f ′(Bt), γ̄t, 1)

]
dt+ o(λH), (3.8)

where for α, q, r > 0,

I(α, q, r) = inf
u∈A

lim sup
T→∞

1
T
E
[∫ T

0
q(Xt − αBH

t )2dt+ r(ut)2dt

]
=: inf

u∈A
J(u, α)

= α2 q

δ2H Γ(2H + 1)
{1 + sin(πH)

2

}
, δ =

√
q

r
, (3.9)

corresponds to the minimised objective of the linear-quadratic ergodic control of fBM1.
An asymptotically optimal strategy ûat which attains the leading order in (3.8) is given by

ξ̂at = f(BH
t ) + f ′(BH

t )E
[∫ T

t

√
γ̄t
λ
e−
√

γ̄t
λ

(u−t)
(
BH
u −BH

t

)
du

∣∣∣∣Ft
]

ûat =
√
γ̄t
λ

(
ξ̂at − X̂a

t

)
, (3.10)

X̂a
t = x+

∫ t

0
ûasds,

and we call ξ̂at the asymptotically optimal signal process.
If we do not take terminal liquidation (which has order of O(λ1/2)) into account, the

same results holds for the semimartingale stochastic volatility case so we can formally set
H = 1/2 in the above equations2. In that case, the signal process is given by the target
ϕ̂t itself by the martingale property of Brownian motion. Accordingly, the asymptotically
optimal rate always trades towards the current frictionless target and the corresponding
controlled deviation between the target ϕ̂t and the controlled process X̂a, as well as the
optimal rate itself, have Ornstein-Uhlenbeck dynamics.

In the rough volatility case, a first naive guess would be to similarly consider a re-
1We also derived in Chapter 2 the corresponding formula for RLfBM but the formula for fBM is easier

to interpret.
2Compare also with the formula for the lower bounds obtained in Cai et al. (2017a).
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version towards the target. By looking at the underlying ergodic problem, this would
correspond to reverting towards the fBM rather than some signal process. Therefore, the
controlled deviation and optimal rate of the underlying ergodic control problem would
be of fractional Ornstein-Uhlenbeck (fOU) type with unit mean-reversion speed and unit
volatility parameter1. In particular, by Remark 2.4 in Cheridito et al. (2003), we know
that the stationary variance of such a process is given by Γ(2H + 1)/2. Since both the
optimal rate and the controlled deviation are of fOU type, we obtain an ergodic objective
value of Γ(2H + 1). Let us now compare this to the formula (3.9) for the leading-order
optimum:

g(H) = Γ(2H + 1)
{1 + sin(πH)

2

}
.

The graphs of Γ(2H + 1) and g(H) are shown in Figure 3.2. As {1 + sin(πH)} /2 ≤ 1,
for H 6= 1/2 the asymptotically optimal deviation leads to a better performance than
its (fractional) Ornstein-Uhlenbeck counterpart, by taking into account future values of
the frictionless target in the signal process ξ̂at . Thereby, the optimal trading rate exploits
the autocorrelation of the target position, similarly as for mean-reverting target strategies
with non-asymptotically small transaction costs, compare Gârleanu and Pedersen (2013).

Finally, the leading-order term in the expansion (3.8) for the rough volatility model
is of order O(λH), whereas it is of order O(λ1/2) for Itô process targets. Whence, for
sufficiently small cost parameters, the performance losses are always bigger in the rough
model, due to the faster oscillations of the frictionless target strategy.
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Figure 3.2: Plot of the function g(H) and twice the stationary variance of a fractional
Ornstein-Uhlenbeck process Γ(2H + 1).

1We assume that our discussion takes place in the setting α, q, r = 1 in (3.9)
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For the rough volatility model parameter chosen in our calibration, a typical path of
the asymptotically optimal signal process ξ̂a and position X̂a from (3.10) is depicted in
Figure 3.3. Clearly, the signal smooths out the fluctuations of the target and thereby
prevents excessive portfolio adjustments. We provide more details on the algorithm used
for our simulations in section 3.2.2.

Figure 3.3: Target process ϕ̂ with asymptotically optimal signal and controlled process
ξ̂at and X̂a for cost parameter value of λ = 3 · 10−8.

Leading-order utility loss for the rough volatility model

We now compare the leading-order losses (3.8) due to small transaction costs for the rough
and classical volatility models with parameters matched as described in Section 3.1. For
the rough volatility model from Section 3.1, the frictionless optimiser ϕ̂ is of the form

ϕ̂t = f(WH
t ),

where

f(x) = µ

γη2
H

e−2νHx, f ′(x) = −2νHf(x).

In view of (3.8), the leading-order utility loss due to small transaction costs is

JH(λ) := λHE

∫ T

0

(
γσ2

t

2

)1−H

f ′(WH
t )2dt

Γ(2H + 1)
(1 + sin(πH)

2

)
(aH)2,

where aH is the rescaling constant that allows us to pass from the ergodic linear-quadratic
objective value for tracking fBM to the ergodic linear-quadratic objective value for tracking
RLfBM as seen in the proof of Corollary 1.2.10 in Chapter 1. In particular, we have that,

(aH)2Γ(2H + 1)(1 + sin(πH))/2 = (1/2){1 + csc(πH)} =: EH ,
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which corresponds to the ergodic linear-quadratic objective value of tracking a RLfBM as
derived directly in Chapter 11.

After inserting the value of f ′ in the leading-order coefficient, we obtain

E

∫ T

0

{
γ(σHt )2

2

}1−H

f ′(WH
t )2dt

 = E

∫ T

0

{
γ(σHt )2

2

}1−H

(2νH)2
{

µ

γ(σHt )2

}2

dt


=
(
γ

2

)1−H (2µνH
γ

)2 ∫ T

0
E
[{

(σHt )2}−H−1
]
dt.

Moreover, recalling σHt = ηH exp(νHWH
t ) and (1+H)2νHWH

t ∼ N (0, 4(1+H)2ν2
HvHt

2H),
we have

E
[{

(σHt )2}−H−1
]

= η
−2(1+H)
H E

[
e−(1+H)2νHWH

t

]
= η

−2(1+H)
H e2(1+H)2ν2

HvH t
2H
.

As a consequence,

E

∫ T

0

{
γ(σHt )2

2

}1−H

f ′(WH
t )2dt

 =
(
γ

2

)1−H (2µνH
γ

)2
η
−2(1+H)
H

∫ T

0
e2(1+H)2ν2

HvH t
2H
dt.

In summary, we obtain

JH(λ) = λHEH

(
γ

2

)1−H (2µνH
γ

)2
η
−2(1+H)
H

∫ T

0
e2(1+H)2ν2

HvH t
2H
dt. (3.11)

Note that we can also rewrite the last integral as∫ T

0
e2(1+H)2ν2

HvH t
2H
dt

= T

2H

∫ 1

0
e2(1+H)2ν2

HvHT
2Hvv

1
2H−1dv

= T

2H
{
−2(1 +H)2ν2

HvHT
2H
} 1

2H−2
Γ
( 1

2H ,−2(1 +H)2ν2
HvHT

2H
)
,

where Γ(α, x) is the lower incomplete Gamma function:

Γ(α, x) :=
∫ x

0
e−ttα−1dt.

Leading-order utility loss for the classical volatility model

For the classical volatility model, the frictionless optimiser is of the form

ϕ̂t = µ

γσ2
t

= f(Yt),

1With parameters α, q, r = 1 in (3.9)
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where

f(x) = µ

γη2 e
−2x, f ′(x) = −2f(x).

The corresponding leading-order utility loss is

J(λ) := λ1/2E

∫ T

0

(
γσ2

t

2

)1/2

f ′(Yt)2dt

 .
After inserting the expression for f ′(Yt), this can be simplified to

J(λ) = λ1/2E

∫ T

0

(
γσ2

t

2

)1/2 (−2µ
γσ2

t

)2
dt


= λ1/2

(
γ

2

)1/2 (2µ
γ

)2 ∫ T

0
E
[
σ−3
t

]
dt.

Moreover, since σt = η exp(Yt) and Yt ∼ N (0, 1
2κ(1− e2κt)), we have

E
[
σ−3
t

]
= η−3e

9
4κ (1−e−2κt).

In summary, the leading-order utility loss due to small transaction costs in the classical
volatility model therefore can be written as

JC(λ) = λ1/2
(
γ

2

)1/2 (2µ
γ

)2
η−3

∫ T

0
e

9
4κ (1−e−2κt)dt. (3.12)

Note that we can also rewrite the last integral as∫ T

0
e

9
4κ (1−e−2κt)dt = e

9
4κ

∫ 1

e−2κT

1
2κ

1
u
e−

9
4κudu

= e
9

4κ × Ei(9/4κ)− Ei(e2κT 9/4κ)
2κ ,

where

Ei(x) = −
∫ ∞
x

e−t

t
dt

is the exponential integral.

Comparison of the leading order utility losses

We now have closed-form expressions in terms of special functions at hand for the leading-
order utility losses in the rough and classical volatility models. This allows to compare
the corresponding values for the matched parameters from Section 3.1 and various choices
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of the transaction cost λ in a straightforward manner:

JH(λ) = 1.4280× 109 × λ0.14,

JC(λ) = 9.1106× 1011 × λ0.5.

These functions are plotted for various values of λ in Figure 3.4. The leading-order utility
losses intersect for λi = 1.6153 × 10−8; the effect of smaller transaction costs is more
pronounced in the rough volatility model. In contrast, larger transaction costs have a
smaller effect in the rough model. Intuitively, larger transaction costs imply smaller trading
activity in which case any form of predictability in the target becomes an advantage.
Gârleanu and Pedersen (2013) and Cartea and Jaimungal (2016) estimate transaction costs
of the order of 10−7 for commodities and individual stocks, respectively. Accordingly, for
even more liquid indices like the S&P considered here, the effect of the transaction costs
are likely of a similar order of magnitude in both models.
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Figure 3.4: Leading-order utility losses JH(λ) (rough model) and JC(λ) (classical
model).

A disadvantage of the above formulas is that they depend on the risk premium µ, which
is notoriously difficult to estimate. To avoid this, one can consider the relative utility loss
compared to the frictionless optimal utility J , which is the same in both models due to
our moment matching:

J = 9.3002× 108.

We then compute the fractions of utility lost due to transaction costs in the rough and
classical models. To wit, using (3.11), first ratio can be written as

JH(λ)
J

= λHEHγ
−H

(1
2

)−H
(2νH)2η−2H

∫ T
0 e2(1+H)2ν2

HvH t
2H
dt∫ T

0 e2ν2
HvH t

2H
dt

.
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By (3.12), the second one is given by

JC(λ)
J

= λ1/2γ−1/2
(1

2

)−1/2
22η−1

∫ T
0 e

9
4κ (1−e−2κt)dt∫ T

0 e
9

4κ (1−e−2κt)dt
.

These representations no longer depend on the risk premium µ, since it appears quadrati-
cally in all expressions and therefore cancels. Some values of the relative utility losses due
to small transaction costs are shown in the following table.

λ 10−9 1.6153 · 10−8 10−7

Ratio JH(λ)/J 8.4% 12.5% 16.1%
Ratio JC(λ)/J 3.1% 12.5% 31%

With this table, we notice that differences in utility loss can be quite substantial
depending on the size of the cost. Hence, for a cost parameter λ in the order of the
estimated range of 10−7, one would prefer to work with a rough volatility model.

3.2.1 Validity of asymptotic framework

A key question in any asymptotic analysis is whether the approximate formulas it provides
provide good approximations to the original problem for realistic parameter values. In the
present context, it is difficult to compare the optimal trading rates and their performances
to the exact optimisers, because these are very difficult to compute.

However, we can test the accuracy of the formulas for the leading-order minimal utility
losses by comparing them to the actual performance of the asymptotically optimal trad-
ing strategies in a simulation study. For the rough volatility model, a typical pathwise
realisation of the frictionless target ϕ̂ and the corresponding asymptotically optimal sig-
nal process ξ̂a and position X̂a have already been shown on Figure 3.3. We iterate this
simulation M = 500 times for 6 values of λ between λ = 9× 10−9 and λ = 10−7. We then
compute the realised utility loss on the left-hand side of (3.8) and compare them with the
leading order term for the same utility loss on the right-hand side of (3.8). The utility loss
estimates obtained through simulation are the points on Figure 3.5 and the asymptotic
formula for the leading-order utility loss is represented by the blue curve.

The results depicted in Figure 3.5 clearly indicate that the asymptotical expansion
provides an excellent approximation of the utility loss for realistic values of the transaction
cost λ.

3.2.2 Simulation method

We have considered two ways to obtain a simulation of the signal process ξ̂a of our rough
volatility model, given by

ξ̂at = f(WH
t ) + f ′(WH

t )
∫ T

t

√
γ̄t
λ
e−
√

γ̄t
λ

(u−t)E
[(
WH
u −WH

t

) ∣∣∣∣Ft] du. (3.13)
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Obtaining simulations of the path of Riemann-Liouville fBM is already well documented,
see for instance the rDonsker approach in Horvath et al. (2017) or the Hybrid scheme in
Bennedsen et al. (2017). The main challenge in simulating (3.13) comes from the integral
of weighted conditional expectations.
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Figure 3.5: Top: Estimated utility losses (points) and the asymptotic leading-order
utility loss graph JH(λ) (line) for different values of the cost parameter λ. Bottom:

Ratio between estimated utility losses and the values of JH(λ).

More precisely, let us consider a partition {tk = k∆t}k=0,...,N of [0, T ] with step size
∆t. A prediction formula for RLfBM as in Nuzman and Poor (2000) exists. However, in
order to compute the integral expression in (3.13) this requires to compute at each time
tk, conditional expectations E[WH

s | Ftk ] for a number Nλ
f of s > tk values. This approach

appears at a first glance computationally slow. In particular, our goal is to compute
pathwise utility loss and perform averaging over a large number M of simulations for
several values of λ.
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Infinite dimensional Markovian approach

As an alternative, motivated by recent work in Abi Jaber and El Euch (2019) and Abi Jaber
(2019), we can use the infinite dimensional Markovian representation of RLfBM given by

WH
t =

∫ ∞
0

Y γ
t µ(dγ), (3.14)

for

µ(dγ) = 1
Γ(H + 1/2)Γ(1/2−H)

1
γ1/2+H dγ,

with Ornstein-Uhlenbeck processes Y γ
t , γ > 0, satisfying the dynamics

dY γ
t = −γY γ

t dt+ dWt

Y γ
0 = 0

or equivalently

Y γ
t =

∫ t

0
e−γ(t−s)dWs.

Denoting δλt =
√
γ̄t/λ and using (3.14) and Fubini’s theorem allows to compute1

∫ ∞
t

δλt e
−δλt (u−t)

∫ ∞
0

E [Y γ
u | Ft]µ(dγ)du =

∫ ∞
0

δλt
δλt + γ

Y γ
t µ(dγ).

Hence, following the methodology exposed in Abi Jaber (2019), we can approximate the
µ(dγ)−integral by

∫ ∞
0

δλt
δλt + γ

Y γ
t µ(dγ) ≈

n∑
i=1

cni
δλt

δλt + γi
Y
γni
t ,

where the weights cni are computed in a similar way as in Abi Jaber (2019). Due to its
Markovian nature, this last method is theoretically faster than the first approach, as we
only need to store n values (typically, n = 500) of OU processes at any time tk.

The main difficulty we encountered in implementing this approach comes from the fact
that mimicking the precise roughness of RLfBM with a finite number of OU processes is
not always ensured. The methodology described in Abi Jaber (2019) involves an additional
tuning parameter r necessary in the discretisation of the measure µ. The choice of (n, r)
is then responsible for the roughness of our simulations. In particular, as mentioned in
Abi Jaber (2019) when the step size ∆t becomes sufficiently small, statistical tests of
roughness will return an estimated Hurst parameter of 0.5. Since our problem relies on
ergodic properties of the path, it is crucial that the roughness of RLfBM is always matched
adequately.

1Since λ is small, we do the approximation T =∞ in (3.13).
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An additional challenge we faced is that implementing stable schemes for ûa1 requires
a small step size ∆t due to the small values of λ. On the one hand, too little OU processes
in relation to ∆t lead to a semimartingale process rather than a rough process. On the
other hand, a too large value of ∆t leads to inaccurate approximations of the dt−integral.
Unfortunately, we could not find a good pair (n, r) that balanced this tradeoff. In par-
ticular, taking a very large amount n (such as n = 106) of OU processes to balance our
small values of ∆t becomes too heavy in terms of memory allocation. Therefore, with the
capped value of n we considered, the simulated path obtained were not able to mimick
the roughness of RLfBM with H = 0.14.

rDonsker

Since simulations using the Markovian approach where not precise enough for our purpose,
we considered the slower approach introduced at the beginning of this section. This
approach requires to compute several, Nf , conditional expectations of RLfBM at each
time tk and weight them according to the exponential kernel in (3.13).

For this, we chose a simulation method that specifically aims at providing accurate
roughness. This is the enhanced performance rDonsker scheme described in (Horvath
et al., 2017, Section 3.3.1). This approach is in essence a modified version of the left-point
approximation of the integral

WH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWu,

such that

WH
ti ≈

i∑
k=1

(t∗,ik )H−1/2∆Wk

for appropriately scaled independent increments of BM, ∆Wk and

t∗,ik =
(
n

2H
[
(ti − tk−1)2H − (ti − tk)2H

])1/(2H−1)
, k = 1, . . . , i,

is such that the first two moments of the approximation match those of RLfBM. This is
implemented with a convolution. In particular, we modify the weights in the convolution
to compute conditional expectations of future value of RLfBM since for t > s,

E[WH
t | Fs] = 1

Γ(H + 1/2)

∫ s

0
(t− u)H−1/2dWu. (3.15)

Alternatively, we can also use the prediction formula as in Nuzman and Poor (2000)2,

E[WH
t | Fs] ∝ (t− s)H+1/2

∫ s

0

1
(s− u)H+1/2

1
(t− u)W

H
u du

1We recall that ûa = λ−1/2γ̄λt (ξ̂at − X̂a
t ).

2See also the prediction formula for RLfBM in the unpublished work of Forde, Smith, Viitasaari (2019).
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to obtain an approximation for (3.15). Implementing both approaches, we noticed some
differences between the predictions obtained. For our simulations, we preferred to use
the result obtained through our modified rDonsker approach as the prediction formula
involves an exploding kernel that can reduce the precision of our predictions.
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